RECOMMENDATIONS FOR LMV5x CONNECTIONS

Connections affected by EMC noises are related to the bus cable (actuator line cable, PLL52), detection probe cable, speed sensor cable, 4-20mA signal cable that controls the VSD.

Input and power cables (400V e 230 V) must be laid separately from the signal cables.
The bus cable between control panel and burner and between burner and PLL52 board (used when O2 trim control must be perfomed) must be laid separately and far from power cables.
When long cables must be provided, it is recommended to put the bus cable into a pipe or a metallic sheath: the sheath ends must be grounded with suitable rings.

Provide a shielded three-pole cable type FG7OH2R+T (see Annex 1), between VSD and motor; earth must be outside the shielding.

Shielding must get to the lower part of the VSD and get to the motor junction box.
Shielding must be connected to the equipotential ground on both ends, better with suitable rings.
Otherwise, a standard cable can be used also but put inside a pipe or metallic sheath (the sheath ends must be grounded with suitable rings) and an earth external wire for the motor ground.

The cable for the $4 \div 20 \mathrm{~mA}$ signal that controls the VSD, must be shielded, only LMV5x side ends connected to the equipotential terminal. If the VSD is not inside the control panel, the cable must be laid separately inside a metallic sheath earthed by means of rings.

As for the speed sensor cable and QRI detection probe cable, provide a "Ethernet " cat. 5 or 6 cable, inside a metallic sheath (with ends earthed by means of rings) and laid separately from the motor cable.
As the sensor uses three wires, divide and twist the pairs to avoid noises.
Alternatively, provide a $3 \times 2 \times 0,50$ twisted cable Liycy type (see Annex 2).
In case of O2 trim control version, O2 probe and PLL52 board must be connected by means of a $3 \times 2 \times 0,50$ twisted cable Liycy type (see Annex 2).

NB: when a shielding has both ends wired to Earth, be sure they are at the same potential. If there is any Voltage difference, ground just one of the two ones, generally the one closest to the weakest, respect to EMC, component. Anyway give way to the burner control, that is wire to ground the end of the shielding closest to the LMV.
For instance, the cable between LMV and VSD, if the shielding has only one end wired to Earth, this one has to be the one LMV side.

TECHNICAL FEATURES

Cores colour code
Conductors
Insulation:
Assembling:
Shield:
Outer sheath:
Sheath colour code
Vertical fire retardant test:
Emission GAS test
Oil resistant test:
Flame retardant test:
Electric resistance:
Working voltage:
Testing voltage:
Working temperature:
Short circuit temperature
Outer printing:
Bending radius:

FG7OHER+T D,G/1 kV A RIDOTTA EMISSIONE DI ALOGENI

FGフOHRR+T 0,G/1 kV WITH REDUCED halogen emission

TIPO	Ø ESTERNO MEDIO MEDIUM O OUTER	PESO MEDID MEDIUM WEIGHT	CODICE PRODOTTO ITEM CODE
$3 \times 1,5+1 \mathrm{G1,5}$	10,8	173,0	B5803150
$3 \times 2,5+1 \mathrm{Ge}, 5$	12,6	254,0	B5803250
$3 \times 4+1 \mathrm{G4}$	15,3	365,0	B5803400
$3 \times 6+1 \mathrm{G6}$	17,4	497,0	B5803600
$3 \times 10+1 \mathrm{G10}$	20,6	730,0	B58031000
$3 \times 16+1 \mathrm{G16}$	24,8	1095,0	B58031600
$3 \times 25+1 \mathrm{G25}$	30,1	1680,0	B58032500

TIPO	ØESTERNO MEDIO MEDIUM DOUTER	PESO MEDIO MEDIUM WEIGHT	CODICE PRODOTTO ITEM CODE
$\mathrm{n}^{\circ} \times \mathrm{mm}^{2}$	mm	$\mathrm{~kg} \times \mathrm{km}$	

Annex 2 - Example for sensor cable

CAVITIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

IMPIEGO: Cavi schermati per segnali e trasmissione dati per applicazioni in elettronica ed informatica, efficaci contro le interferenze elettromagnetiche ed atti ad offrire una protezione contro influenze capacitive dovute a campi elettrici.

CABLES TYPE "Li-YCY-p" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

STANDARD USE: Signal and data transmission shielded cables for electronics and information technology applications, effective against electromagnetic interferences and suited to offer protection against capacitive influences due to electric fields.

CARATTERISTICHE TECNICHE		TECHNICAL FEATURES
CONDUTTORI; Flessibill in rame rosso sec. CEI 20-29 (IEC 228) Cl. 5, VDE 0295 Cl 5, NF C32-013 ($0,34 \mathrm{~mm}^{2}$: VDE 0295 Cl .2)		CONDUCTORS: Flexible bare copper conductors CEI 20-29 (IEC 228) Cl. 5, VDE 0295 Cl. 5, NF C32-013 Ref. ($0,34 \mathrm{~mm}^{2}$; VDE 0295 Cl .2)
ISOLANTE: Polivinilcloruro (PVC) Sec . CEI 20-11 CI. R2, VDE 0207 Cl . YI2 Codici colori: a norma DIN 47100		INSULATION: Polyvinylahloride (PVC) CEI 20-11 Cl. R2, VDE 0207 Cl . Y12 Ref. Colour code according to DIN 47100
SEPARATORE: Nastro di poliestere		ASSEMBLING: Polyester tape helically wound
SCHERMATURA: A treccia di rame stagnato Cordina di continuità a richiesta		SHIELD: Tinned copper braid On request with drain wire
GUAINA ESTERNA: Polivinilcloruro (PVC) Sec . CEI 20-20 CI. TM2, VDE 0207 Cl . YM2 colore: grigio (diverso a richiesta)		JACKET: Polywinylchloride (PVC) CEl 20-20 Cl. TM2, VDE 0207 Cl. YM2 Ref. colour: grey or on request
RESISTENZA ELETTRICA DEI CONDUTTORI: $0,14 \mathrm{~mm}^{2}$: <148 Ohm$/ \mathrm{Km}$ $0,25 \mathrm{~mm}^{2}: \quad<79 \mathrm{Ohm} / \mathrm{Km}$ $0,34 \mathrm{~mm}^{2}$: $<55 \mathrm{Ohm} / \mathrm{Km}$ $0,50 \mathrm{~mm}^{2}$: $<39 \mathrm{Ohm} / \mathrm{Km}$ $0,75 \mathrm{~mm}^{2}$: $<26 \mathrm{Ohm} / \mathrm{Km}$ $1 \mathrm{~mm}^{2}$: $<19,5$ Ohm/Km	QI	ELECTRICAL CONDUCTOR RESISTANCE: $\begin{array}{crc} 0,14 \mathrm{~mm}^{2}: & <148 & \text { Ohm} / \mathrm{Km} \\ 0,25 \mathrm{~mm}^{2}: & <79 & 0 h \mathrm{~m} / \mathrm{Km} \\ 0,34 \mathrm{~mm}^{2}: & <55 & 0 \mathrm{hm} / \mathrm{Km} \\ 0,50 \mathrm{~mm}^{2}: & <39 & 0 \mathrm{hm} / \mathrm{Km} \\ 0,75 \mathrm{~mm}^{2}: & <26 & 0 \mathrm{hm} / \mathrm{Km} \\ 1 \mathrm{~mm}^{2}: & <19,5 & 0 \mathrm{~mm} / \mathrm{Km} \end{array}$
TEMPERATURA DI ESERCIZIO: posa fissa: $-25^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$ posa mobile: $-15^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$		WORKING TEMPERATURE; fixed installation: $-25^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$ flexing: $-15^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
RAGGIO DI CURVATURA: 15 volte il diametro del cavo		BENDING RADIUS: 15 times overall diameter of cable
TENSIONE DI ESERCIZIO: 250 V		WORKING VOLTAGE: 250 V
TENSIONE DI PROVA: 1500 V	31	TEST VOLTAGE: 1500 V

CAVITIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

CABLES TYPE "Li-YCY-p" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

| PROVA N.P. FIAMMA: Standard: sec. CEI 20-35 (ECC 332.1) A richiesta: sec. CEI 20-22 \|| (IEC 332.3A) | | FLAME RETARDANT TEST:
 Standard: CE1 20-35 (IEC 332.1) Ref
 on request: CE 20-22 II (IEC 332.3A) Ref. |
| :---: | :---: | :---: |
| IMPEDENZA DI TRASFERIMENTO: max 200 mohm/m (k<10MHz) | | SURFACE TRANSFER IMPEDANCE: max 200 mohm/m (f<10MHz) |
| CAPACITA' DI LAVORO: cond/cond: $120 \mathrm{nF} / \mathrm{km}$ (nom.) cond/sch: $180 \mathrm{nF} / \mathrm{km}$ (nom.) | | CAPACITANCE:
 cond/cond: $120 \mathrm{nF} / \mathrm{km}$ (nom.) cond/shield: $180 \mathrm{nF} / \mathrm{km}$ (nom.) |

CODICE	FORMAZIONE	ø esterno medio	Peso medio $\mathrm{Kg} / \mathrm{Km}$	CODICE	FORMAZIONE	$\begin{aligned} & \text { ø esterno } \\ & \text { medio } \end{aligned}$	Peso medio $\mathbf{K g} / \mathbf{K m}$
CODE	TYPE	outer diameters	$\begin{gathered} \text { Medium weight } \\ \mathrm{Kg} / \mathrm{Km} \end{gathered}$	CODE	TYPE	outer diameter 0	$\begin{gathered} \text { Medium weight } \\ \mathrm{Kg} / \mathrm{Km} \end{gathered}$
28.204.1.02.1.000	$2 \times 2 \times 0.14$	5.6	40.0	28.204.1.02.4.000	$2 \times 2 \times 0.34$	7.3	68.0
28.204.1.03.1.000	$3 \times 2 \times 0.14$	5.9	47.0	28.204.1.03.4.000	$3 \times 2 \times 0.34$	7.8	82.0
28.204.1.04.1.000	$4 \times 2 \times 0.14$	6.2	61.0	28.204.1.04.4.000	$4 \times 2 \times 0.34$	8.6	96.0
28.204.1.05.1.000	$5 \times 2 \times 0.14$	7.2	68.0	28.204.1.05.4.000	$5 \times 2 \times 0.34$	10.0	110.0
28.204.1.06.1.000	$6 \times 2 \times 0.14$	7.6	76.0	28.204.1.06.4.000	$6 \times 2 \times 0.34$	10.6	130.0
28.204.1.07.1.000	$7 \times 2 \times 0.14$	7.6	82.0	28.204.1.07.4.000	$7 \times 2 \times 0.34$	10.6	145.0
28.204.1.08.1.000	$8 \times 2 \times 0.14$	8.4	90.0	28.204.1.08.4.000	$8 \times 2 \times 0.34$	11.5	150.0
28.204.1.10.1.000	$10 \times 2 \times 0.14$	9.8	118.0	28.204.1.10.4.000	$10 \times 2 \times 0.34$	13.0	190.0
28.204.1.12.1.000	$12 \times 2 \times 0.14$	10.2	130.0	28.204.1.12.4.000	$12 \times 2 \times 0.34$	13.5	220.0
28.204.1.16.1.000	$16 \times 2 \times 0.14$	11.2	160.0	28.204.1.16.4.000	$16 \times 2 \times 0.34$	15.2	250.0
28.204.1.18.1.000	$18 \times 2 \times 0.14$	11.7	186.0	28.204.1.18.4.000	$18 \times 2 \times 0.34$	16.0	275.0
28.204.1.20.1.000	$20 \times 2 \times 0.14$	12.4	200.0	28.204.1.20.4.000	$20 \times 2 \times 0.34$	17.1	290.0
28.204.1.25.1.000	$25 \times 2 \times 0.14$	14.0	273.0	28.204.1.25.4.000	$25 \times 2 \times 0.34$	19.5	400.0
28.204.1.02.3.000	$2 \times 2 \times 0.25$	5.8	54.0	28.204.1.02.5.000	$2 \times 2 \times 0.50$	7.6	75.0
28.204.1.03.3.000	$3 \times 2 \times 0.25$	7.0	65.0	28.204.1.03.5.000	$3 \times 2 \times 0.50$	9.0	125.0
28.204.1.04.3.000	$4 \times 2 \times 0.25$	7.3	89.0	$\underline{28.204 .1 .04 .5 .000}$	$4 \times 2 \times 0.50$	10.0	140.0
28.204.1.05.3.000	$5 \times 2 \times 0.25$	8.0	99.0	28.204.1.05.5.000	$5 \times 2 \times 0.50$	10.8	160.0
28.204.1.06.3.000	$6 \times 2 \times 0.25$	9.0	114.0	28.204.1.06.5.000	$6 \times 2 \times 0.50$	11.7	190.0
28.204.1.07.3.000	$7 \times 2 \times 0.25$	9.0	120.0	28.204.1.07.5.000	$7 \times 2 \times 0.50$	11.7	220.0
28.204.1.08.3.000	$8 \times 2 \times 0.25$	9.6	126.0	28.204.1.08.5.000	$8 \times 2 \times 0.50$	14.0	250.0
28.204.1.10.3.000	$10 \times 2 \times 0.25$	10.3	160.0	28.204.1.10.5.000	$10 \times 2 \times 0.50$	15.0	300.0
28.204.1.12.3.000	$12 \times 2 \times 0.25$	11.4	171.0	$\underline{28.204 .1 .12 .5 .000 ~}$	$12 \times 2 \times 0.50$	15.7	345.0
28.204.1.16.3.000	$16 \times 2 \times 0.25$	13.1	238.0	28.204.1.16.5.000	$16 \times 2 \times 0.50$	17.6	450.0

CODICE	FORMAZIONE	\varnothing esterno medio	Peso medio $\mathrm{Kg} / \mathrm{Km}$	CODICE	FORMAZIONE	© esterno medio	Peso medio $\mathrm{Kg} / \mathrm{Km}$
CODE	TYPE	outer diameters	Medium weight $\mathrm{Kg} / \mathrm{Km}$	CODE	TYPE	outer diameter 0	Medium weight $\mathrm{Kg} / \mathrm{Km}$
28.204.1.02.6.000	$2 \times 2 \times 0.75$	8.6	103.0	28.204.1.02.7.000	$2 \times 2 \times 1$	9.4	122.0
28.204.1.03.6.000	$3 \times 2 \times 0.75$	9.0	128.0	28.204.1.03.7.000	$3 \times 2 \times 1$	11.5	179.0
28.204.1.04.6.000	$4 \times 2 \times 0.75$	10.6	167.0	28.204.1.04.7.000	$4 \times 2 \times 1$	12.8	237.0
28.204.1.05.6.000	$5 \times 2 \times 0.75$	12.0	215.0	28.204.1.05.7.000	$5 \times 2 \times 1$	13.8	297.0
28.204.1.06.6.000	$6 \times 2 \times 0.75$	12.8	240.0				
28.204.1.07.6.000	$7 \times 2 \times 0.75$	12.8	265.0				
28.204.1.08.6.000	$8 \times 2 \times 0.75$	14.6	306.0				
28.204.1.10.6.000	$10 \times 2 \times 0.75$	16.0	355.0				
28.204.1.12.6.000	$12 \times 2 \times 0.75$	17.0	405.0				
$\underline{28.204 .1 .16 .6 .000 ~}$	$16 \times 2 \times 0.75$	20.5	565.0				

SIEMENS

Appendix: Example for wiring, earthing and shielding the LMV5-System

Addendum 4: LMV52... with 02 trim control and O 2 module

General

The LMV52... system is an extended LMV51... system. A special feature of the LMV52... is control of the residual oxygen content to increase the boiler's efficiency.

In addition to the features of the LMV51..., the LMV52... provides O2 trim control, control of a maximum of 6 actuators, control of a VSD, and acquisition of cumulated fuel consumption and current fuel throughput. The LMV52... system uses an O2 sensor (QGO20...), an external O2 module, and the standard components of the LMV51... system.

The PLL... O2 module is a detached measuring module for the QGO20... sensor and for 2 temperature sensors (Pt1000 / LG-Ni 1000). The module communicates with the LMV52... via CAN bus.

The fuel meters must be connected directly to the fuel-related inputs of the basic unit. On the AZL5... display and operating unit, the individual consumption values can be read out and the meter readings can be reset.

Determination of the maximum cable length

The maximum cable length between transformer and CAN bus users is dependent on the type of cable (cross-sectional area), the number of actuators and the type of actuator used (current).
The following graphs can be used to determine the maximum CAN bus cable lengths between the transformer and group of actuators or the AZL5 ..., depending on the relevant influencing factors.
The assumption was made that the actuators within the group are close to one another. The minimum cross-sectional area for the system examples shown results from the start of the curve.
The maximum cable lengths for the defined system cables AGG5.641 and AGG5.631 result from the points of intersection in the graph.

AGG5.631 (cable type 2) AGG5.641 (cable type 1)
(1) $1 \times$ SQM45...
(5) $2 \times$ SQM48...
(2) $2 \times$ SQM $45 \ldots$
(6) $1 \times$ SQM45 $\ldots+1 \times$ SQM48..
(3) $3 \times$ SQM $45 \ldots$
(7) $2 \times$ SQM45 $\ldots+1 \times$ SQM 48 ...
(4) $4 \times$ SQM 45 ..
(8) $3 \times$ SQM45 $\ldots+1 \times$ SQM $48 \ldots$

CAN bus connection between transformer and actuator group

4
When connecting a PLL52... O2 module, the maximum permissible cable length of a network is to be reduced by 2 m .

Example: - System cable: AGG5.641 (connecting cable to the actuators)

- Actuators: $2 \times$ SQM45...

The point of intersection of the vertical line for the AGG5.641 (1.25 mm^{2}) and curve (1) ($2 \times$ SQM45...) gives a maximum cable length of 33.4 m between the transformer and the group of actuators.

Notes on example 2

Total length of CAN bus cable $\leq 100 \mathbf{m}$
Whenever the distance between the LMV5... and the last actuator exceeds 20 m , or if more than one SQM48 is used on the burner (refer to sizing chart "Determination of maximum cable length"), a second transformer is required for powering the actuators.

In that case, transformer 1 powers the LMV5... basic unit and the AZL5... display and operating unit (Fig. 1). Transformer 2 powers the actuators (Fig. 2).

With the CAN bus cable connections from the LMV5... (Fig. 1) to the first actuator (Fig. 2), the 2 voltages AC1 and AC2 on the LMV5... side must not be connected and only cables CANH, CANL and M (+shielding) are to be connected to the first actuator (Fig. 2).

In that case, the actuators must be powered by a second transformer which to be located near the actuators.

The power from that transformer (lines AC1, AC2, M) must be fed to the actuator (ACT4 in the example above) and then connected through via bus cable AGG5.640 (cable type 1) to all the other actuators.

The fuses required for transformer 1 are accommodated in the LMV5... basic unit.
For transformer 2, these 3 fuses must be located close to the transformer (for type, refer to Basic Documentation P7550).

Installation of all components in the burner; CAN bus cable «LMV52... $\leftrightarrow S A »>20 \mathrm{~m}$ with 6 actuators and $\mathbf{O} 2$ module
PLL52...

Example 3b
Installation in the control panel, actuator on the burner; CAN bus cable «LMV52... $\leftrightarrow S A$ » $>25 \mathrm{~m}$ with 4 actuators and 02 module PLL52...

On LMV52... applications with more than 4 actuators (SQM45...), a second transformer is required for powering the extra actuators.

In that case, transformer 1 powers the LMV52... basic unit, the AZL5..., and the first 4 actuators.

Interrupt the connection between the components at a suitable location. On the actuator side, the 2 voltages AC1 and AC2 must not be connected but only lines «CANH, CANL and M» (+shield) to the O2 module and the other actuator.

In that case, the actuators (SA5, SA6) and the O2 module must be powered by a second transformer to be located near the actuators and the O 2 module.

Connect the power supply line from that transformer to the O2 module PLL52... (in example 3a «SA6» / in example 3b «Auxiliary terminal) (lines AC1, AC2, M) and from there, via bus cable AGG5.640 (cable type 1), through to the second actuator (SA) and the O 2 module.
The fuses required for transformer 1 are accommodated in the LMV52... basic unit.

Optionally, the supply voltage can also be delivered via a conduit box and fed into the connecting line between SA4 and PLL52...

For transformer 2, the OEM must fit the 3 fuses close to the transformer.

O2 module

In comparison with the LMV51... system, the extra components to be connected with the LMV52... system are the O2 module and the O2 sensor QGO... and, optionally, the combustion air and flue gas temperature sensors. The O2 module is to be connected to the basic unit via the CAN bus. The O 2 module must be located in the vicinity of the QGO... (<10 m), aimed at keeping interference on the sensitive detector lines as low as possible. For sensor heating, the O 2 module requires a separate mains connection facility.

18.8.1 Inputs and outputs

QGO20.

Montageanleitung Mounting instruction Instruction de montage Monteringsanvisning Montage-aanwijzing
struzioni di montaggio Asennusohje Instrucciones de montaje Monteringsinstruktion Montasjeanvisning

Fühler aus Keramik - zerbrechlich Ceramic detector - fragile Sonde en céramique - fragile

O2-Fühler QGO20... und
Rauchgassammler AGO20...
Voraussetzungen für eine korrekte messtechnische Erfassung des O2-Gehaltes der Rauchgase:

A - QGO20... nur mit Rauchgassammler AGO20... einsetzen

O2-detector type QGO20... and flue gas collector type AGO20...

Presupposition for the correct measurement of the O2 content of the flue gases:

A - Use QGO20... only with flue gas collector type AGO20...

Sonde O2 QGO20... et collecteur des gaz de fumée AGO20...

Conditions requises pour une détection correcte de la teneur en O2 des gaz de fumée:

A - Utiliser le QGO20... exclusivement avec le collecteur des gaz de fumée AGO...
 Ienzen und Inhomogenitäten. Nicht direkt im Bereich von Klappen oder Bögen montieren. Idealer Abstand: $5 \times$ Kamindurchmesser.

B - Mounting position of the QGO as close as possible to the burner, in a homogenous area without any turbulences. Do not mount the QGO20... in the area of dampers or curves. Ideal distance: Five times the diameter of the stack.

B - Lieu de montage du QGO20... le plus pres possible du brûleur, dans un domaine homogène sans turbulences. Ne pas le monter dans le domaine des clapets ou dans les courbes. Distance idéale: Cinq fois le diamètre de la cheminée.

C - No air must be allowed to join the flue gases on their way from the burner to the detector.

D - Flow velocity $1 \ldots 10 \mathrm{~m} / \mathrm{s}$. Flue gas temperature at the measuring position $\leqslant 300^{\circ} \mathrm{C}$

C - Entre le brûleur et la sonde, il ne doit pas pénétrer d'air dans les gaz de fumée.

D - Vitesse d'ecoulement $1 . .10 \mathrm{~m} / \mathrm{s}$. Température des gaz fumée au lieu de la mesure $\leqslant 300^{\circ} \mathrm{C}$

Anschluss-Schema

6-adriges abgeschirmtes Kabel. Adern möglichst paarweise verdrill. Abschirmung an Klemme GND des RPO... . Abschirmung nicht mit Schutzleiter oder M verbinden!

Anschlusskabel z.B.:

Schéma de raccordement

Câble blindé à 6 brins. Brins torsadés si possible par paires. Blindage sur la borne GND du RPO... . Ne pas connecter le blindage avec le conducteur de protection ou M!

Câble de raccordement p.ex.:

LifYCY LiYCY	$\begin{aligned} & 6 \times 2 \times 0,20 / 22 \text { oder } \\ & 6 \times 2 \times 0,20 \end{aligned}$	LifYCY LiYCY	$\begin{aligned} & 6 \times 2 \times 0,20 / 22 \text { or } \\ & 6 \times 2 \times 0,20 \end{aligned}$	LifYCY LiYCY	$\begin{aligned} & 6 \times 2 \times 0,20 / 22 \text { ou } \\ & 6 \times 2 \times 0,20 \end{aligned}$
$\begin{aligned} & \text { B1 (+) } \\ & \text { M (-) } \end{aligned}$	Signal O2-Messzelle Masse für B1, B2	$\begin{aligned} & \mathrm{B} 1(+) \\ & \mathrm{M}(-) \end{aligned}$	Signal from O2-measuring cell Ground for B1, B2	$\begin{aligned} & \mathrm{B} 1(+) \\ & \mathrm{M}(-) \end{aligned}$	Signal de la cellule de mesure d' O 2 Masse pour B1, B2
$\begin{aligned} & \text { B2 (+) } \\ & \text { M (-) } \end{aligned}$	Thermoelement-Spannung	$\begin{aligned} & \text { B2 (+) } \\ & \text { M (-) } \end{aligned}$	Thermocouple voltage	$\begin{aligned} & \text { B2 (+) } \\ & \text { M (-) } \end{aligned}$	Tension de thermocouple
U3 (+)	Signal Temperaturkompensationselement	U3 (+)	Signal from temperatue compensation element	U3 (+)	Signal de l'élément de cpmpensation de température
G2 (-)	Speisung Temperaturkompensationselement	G2 (-)	Power supply for temperature compensation element	G2 (-)	Alimentation de l'élément de compensation de température
GND	Masse für Anschirmung	GND	Ground for screening	GND	Masse du blindage
$3 \times 1,5 \mathrm{~m}$		$3 \times 1,5 \mathrm{~mm}^{2}$:		$3 \times 1,5 \mathrm{~mm}^{2}$:	
Q4	Fühlerheizung (AC 230 V)	Q4	QGO... detector heating (AC 230 V)	Q4	Chauffage de sonde QGO... (AC 230 V)
Q5	Fühlerheizung (AC 230 V)	Q5	QGO... detector heating (AC 230 V)	Q5	Chauffage de sonde QGO... (AC 230 V)
$\underline{1}$	Erde*	$\underline{1}$	Earth*	$\underline{1}$	Terre*
Vorsich Ein Fehl Ausfall	ei den Anschlüssen U3 und G2! rdrahten der Anschlüsse führt zu einem Kompensationselementes.	Caution when connecting U3 and G2! Faulty wiring leads to failure of the compensation element.		Prière de faire attention lors des raccordements U3 et G2. Une erreur de câblage des fils de raccordement conduit à une destruction de l'élément de compensation.	
* Am RP Verfüg Klemm	.. steht nur 1 Erdleiterklemme zur . Beide Erdleiter müssen auf eine geführt werden.	* At the RPO..., there is only 1 earth terminal available. Both earth wires must be connected to the same earth terminal.		* Le RPO... ne dispose que d'une seule borne de mise à la terrre. Les deux fils de mise à la terre doivent être connectés sur la même borne.	

Hinweise für Installation und Inbetriebnahme

- Distanz zwischen Wand des Rauchgaskanals und Rauchgasaustritt (B) des AGO20... min. 10 mm
- Die Kaminisolierung darf nicht über den Anschlussflansch hinausragen und dadurch den Fühlerkopf isolieren (therm. Überlastung).
Der Fühlerkopf muss frei bleiben!
Strahlungswärme vermeiden; z.B. durch Wärmeleitbleche
- Bei der ersten Inbetriebnahme ist das Mess-Sytem ca. 2 Stunden vor Gebrauch einzuschalten. Bei kurzen Abschaltungen der Anlage (1-2 Wochen) ist es empfehlenswert, das Mess-System (QGO... und RPO) nicht auszuschalten.
- Während des Aufheizvorganges kann der Fühler falsch messen.

1

- QGO20... nie im kalten Zustand bei laufendem Brenner im Kamin einsetzen.
- Nach Fühlertausch, Ansteuerung der Fühlerheizung überprüfen.
- Spannung an Q4-Q5 muss im 2 s Takt pulsieren.
- Sofort auschalten falls Spannung nicht pulsiert $\xrightarrow{\prime \prime} \rightarrow$ RPO austauschen

Commissioning and Installation Guide

- The distance between the wall of the flue gas duct and the flue gas outlet (B) of the AGO20... must be a minimum of 10 mm
- The insulation of the chimney must not project beyond the connecting flange, thus insulating the head of the sensor (thermal overload).
The head of the sensor must remain uncovered! Avoid heat due to radiation, e.g. through therma conductive plates
- When starting up the plant for the first time, the measuring system should be switched on approx. 2 hours prior to usage.
If the plant is switched off for short periods of the time (1 to 2 weeks), it is recommended to leave the measuring system (QGO... and RPO) switched on.
- During the heating up phase, the detector could deliver an incorrect signal.

- Never use a cold QGO20... in the flueway while burner is operating.
- After changing the sensor, check the proper functioning of the sensor's heating element
- Voltage at Q4-Q5 must pulsate at 2-s intervals
- If voltage does not pulsate, switch equipment off immediately
$\mathrm{Im} \rightarrow$ replace RPO

Instructions de mise en service et

 installation- La distance entre la paroi de la conduite de gaz et la sortie des gaz de fumée (B) du AGO20... doit être d'au moins 10 mm .
- L'isolation de la cheminée ne doit pas dépasser la bride de raccordement, c'est-à-dire couvrir la tête de la sonde (surcharge thermique). La tête de la sonde ne doit pas être couverte! Eviter la chaleur de rayonnement, p.ex. par tôles thermoconductrices
- Lors de la première mise en service, le dispositif de mesure doit être raccordé environ 2 heures avant I'utilisation. En case de courtes interruptions de l'installation (1-2 semaines), il est recommandé de ne pas déclencher le dispositif de mesure (QGO... et RPO).
-Pendant l'operation d'échauffement, il est possible que la sonde ne mesure pas correctement.

Ne jamais introduire le QGO20... à l'état froid ou le laisser introduit dans la cheminée quand le brûleur est en marche.

- Lors d'un changement de sonde, verifier le signal de chauffage de celle-ci.
- Les tensions aux bornes Q4- Q5 doivent commuter toutes les 2 s
- Déconnecter immédiatement en cas de noncommutation des tensions
${ }^{m} \Rightarrow$ Echanger le RPO

Maßbilder / Dimensions / Encombrements

QGO20...

AGO20...

$\mathrm{L}=180 \mathrm{~mm}$ für $\mathrm{AGO20.001} \mathrm{~A}$
$\mathrm{L}=260 \mathrm{~mm}$ für AGO20.002A
A = Rauchgaseintritt
B = Rauchgasaustritt
C = Kerbe
D = Flachdichtung (beiliegend)
$\mathrm{L}=180 \mathrm{~mm}$ for AGO20.001A
$\mathrm{L}=260 \mathrm{~mm}$ for AGO20.002A
A = Flue gas inlet
$B=$ Flue gas outlet
C = Notch
D = Flat seal (enclosed)
$\mathrm{L}=180 \mathrm{~mm}$ pour AGO20.001A
$\mathrm{L}=260 \mathrm{~mm}$ pour $\mathrm{AGO20.002A}$
A = Entrée du gaz de fumée
$B=$ Sortie de gaz de fumée
C = Entaille
$D=$ Joint d'étanchéité plat (inclus)

Technical Data PLL52...

LMV52... basic unit
PLL52...

Environmental conditions

Refer to chapter Technical Data!

Transformer AGG5.210

Mains voltage «X89-01»	$\begin{aligned} & \text { AC } 120 \text { V } \\ & -15 \% /+10 \% \end{aligned}$	$\begin{aligned} & \text { AC } 230 \text { V } \\ & -15 \% /+10 \% \end{aligned}$
Safety class	I with parts according to II as per DIN EN 60730-1	
Mains frequency	$50 / 60 \mathrm{~Hz} \pm 6$ \%	
Power consumption	Ca. 4 VA	Ca. 4 VA
Degree of protection	IP54, housing closed	
Transformer AGG5. 210 - Primary side - Secondary side	$\begin{aligned} & \text { AC } 120 \mathrm{~V} \\ & \text { AC } 12 \mathrm{~V}(3 \mathrm{x}) \end{aligned}$	
Transformer AGG5. 220 Primary side Secondary side	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC } 12 \mathrm{~V}(3 \mathrm{x}) \end{aligned}$	
Storage Climatic conditions Mechanical conditions Temperature range Humidity	$\begin{aligned} & \text { DIN EN } 60721-3-1 \\ & \text { class } 1 \mathrm{~K} 3 \\ & \text { class } 1 \mathrm{M} 2 \\ & -20 \ldots+60^{\circ} \mathrm{C} \\ & <95 \% \text { r.h. } \end{aligned}$	
Transport Climatic conditions Mechanical conditions Temperature range Humidity	$\begin{aligned} & \text { DIN EN } 60721-3-2 \\ & \text { class } 2 \mathrm{~K} 2 \\ & \text { class } 2 \mathrm{M} 2 \\ & -30 \ldots+70^{\circ} \mathrm{C} \\ & <95 \% \text { r.h. } \end{aligned}$	
Operation Climatic conditions Mechanical conditions Temperature range Humidity	$\begin{aligned} & \text { DIN EN } 60721-3-3 \\ & \text { class } 3 \text { K5 } \\ & \text { class } 3 M 2 \\ & -20 \ldots+60^{\circ} \mathrm{C} \\ & <95 \% \text { r.h. } \\ & \hline \end{aligned}$	

Mains voltage «X89-01»	$\begin{aligned} & \text { AC } 120 \text { V } \\ & -15 \% /+10 \% \end{aligned}$	$\begin{aligned} & \text { AC } 230 \text { V } \\ & -15 \% /+10 \% \end{aligned}$
Safety class	I with parts according to II as per DIN EN 60730-1	
Mains frequency	$50 / 60 \mathrm{~Hz} \pm 6$ \%	
Power consumption	Ca. 4 VA	Ca. 4 VA
Degree of protection	IP54, housing closed	
Transformer AGG5. 210 Primary side Secondary side	$\begin{aligned} & A C 120 V \\ & A C 12 V(3 x) \end{aligned}$	
Transformer AGG5. 220 Primary side Secondary side	$\begin{aligned} & \text { AC } 230 \mathrm{~V} \\ & \text { AC } 12 \mathrm{~V}(3 \mathrm{x}) \end{aligned}$	
Storage Climatic conditions Mechanical conditions Temperature range Humidity	```DIN EN 60 721-3-1 class 1K3 class 1M2 -20...+60 }\textrm{C < 95 % r.h.```	
Transport Climatic conditions Mechanical conditions Temperature range Humidity	DIN EN 60 721-3-2 class 2K2 class 2M2 $\begin{aligned} & -30 \ldots+70{ }^{\circ} \mathrm{C} \\ & \text { < } 95 \% \text { r.h. } \end{aligned}$	
Operation Climatic conditions Mechanical conditions Temperature range Humidity	DIN EN 60 721-3-3 class 3K5 class 3M2 $\begin{aligned} & -20 \ldots+60{ }^{\circ} \mathrm{C} \\ & <95 \% \text { r.h. } \\ & \hline \end{aligned}$	

Transformer AGG5. 220

Mains voltage «X89-01»	$\begin{aligned} & \text { AC } 120 \text { V } \\ & -15 \% /+10 \% \end{aligned}$	$\begin{aligned} & \text { AC } 230 \text { V } \\ & -15 \% ~ / ~+10 ~ \% ~ \end{aligned}$
Safety class	I with parts according to II as per DIN EN 60730-1	
Mains frequency	$50 / 60 \mathrm{~Hz} \pm 6$ \%	
Power consumption	Ca. 4 VA	Ca. 4 VA
Degree of protection	IP54, housing closed	
Transformer AGG5. 210 Primary side Secondary side	$\begin{aligned} & \mathrm{AC} 120 \mathrm{~V} \\ & \mathrm{AC} 12 \mathrm{~V}(3 \mathrm{x}) \end{aligned}$	
Transformer AGG5. 220 Primary side Secondary side	$\begin{aligned} & A C 230 V \\ & A C 12 V(3 x) \end{aligned}$	
Storage Climatic conditions Mechanical conditions Temperature range Humidity	```DIN EN 60 721-3-1 class 1K3 class 1M2 -20...+60 }\textrm{C < 95 % r.h.```	
Transport Climatic conditions Mechanical conditions Temperature range Humidity	DIN EN 60 721-3-2 class 2K2 class 2M2 $\begin{aligned} & -30 \ldots+70{ }^{\circ} \mathrm{C} \\ & \text { < } 95 \% \text { r.h. } \end{aligned}$	
Operation Climatic conditions Mechanical conditions Temperature range Humidity	DIN EN 60 721-3-3 class 3K5 class 3M2 $\begin{aligned} & -20 \ldots+60{ }^{\circ} \mathrm{C} \\ & \text { < } 95 \% \text { r.h. } \end{aligned}$	

4. Condensation, formation of ice or ingress of water are not permitted!

Terminal ratings, cable lengths and cross-
 sectional areas

LMV52... basic unit PLL52...

Refer to chapter «Technical Data / LMV5... and AZL5...!»

Cable lengths/cross-sectional areas	
Electrical connection «X89»	Screw terminals up to max. $2.5 \mathrm{~mm}^{2}$
Cable lengths	$\leq 10 \mathrm{~m}$ to QGO20...
Cross-sectional areas	Refer to description of QGO20... Twisted pairs
Analog inputs:	
Fresh air temperature detector	Pt1000 / LG-Ni1000
Flue gas temperature detector	Pt1000 / LG-Ni1000
QGO20...	Refer to Data Sheet N7842
Interface	Communication bus for LMV52...

KOSTAL INVERTER

Connection and programming
for electronically controlled burners with

LMV2x/3x, LMV5x, ETAMATIC and INVERTER regulation

Service Manual
TECHNICAL
INSTRUCTIONS

Table of contents:

INVERTER identification, 3

User interface communication (on request), 4
Electrical connections, 5

Motor connection variants for INVERTERS sizes A, B and C, 5
Motor connection variants for INVERTER size D, 6
Connection of INVERTER signals and commands, 7

Electrical connections and parameter configuration, 7
0-10V / 4-20mA analogue input configuration, 8
Configuration of control contact / INVERTER starting and stopping, 9
Configuration of INVERTER start / stop parameters and operating mode, 10

Motor data, 11
Output signal variant for reading motor rpm (optional), 12
Brake chopper connections, 14
Burner terminal with INVERTER interface, 16

	Key		Key
1	Drive controller series: INVEOR	6	Application circuit board: AP12 - Standard AP13-CANopen
2	Installation location/size: motor-integrated - M, size: α, A, B, C, D	7	Control: DK01 - Standard (without membrane keypad) DK04 - With membrane keypad
3	Input voltage : IV02-230 V	8	Housing GH10 - standard heat sink (black painted)
4	Recommended motor rating $\begin{aligned} & \mathrm{kW}: 0.55 ; 0.75 ; 1.1 ; 1.5 ; 2.2 ; 3.0 ; 4.0 ; 5.5 ; 7.5 ; 11.0 ; 15.0 ; \\ & 18.5 ; 22.0 \end{aligned}$	9	Firmware version COOO - Standard CO01 - Specific
5	Printed circuit boards LP01 / LP03 - Standard (without brake chopper); LP02 / LP04 - Standard (with brake chopper);	10	Equipment generation: 1 - current version

The LMV5x device controls fan motor rpm via a sensor and commands it via the inverter with a $\mathbf{4 \div 2 0 \mathrm { mA }}$ signal. The LMV3x/LMV2x device controls fan motor rpm via a sensor and commands it via the inverter with a $\mathbf{0} \div \mathbf{1 0} \mathrm{V}$ signal.
Generally, the inverter curve goes from 50% to 100% of motor rpm. As well as improving burner regulation, this allows for a saving in terms of fan motor consumption.

INVEOR M INVERTER SIZES

α

User interface

COMMUNICATION (on request)

The drive controller can be put in operation in the following ways:

Attention: Contact the manufacturer to order the most suitable device.

USB adaptor for PC
Via the INVERTER PC software
INVEOR MMI remote display:
INVEOR MMI is a portable display on which all inverter parameters can be viewed
and changed. Manual available on the KOSTAL website.
Bluetooth connection:
Using the Bluetooth adaptor you can connect via app from any device. Download
the app for Android / iOS from the Google Play Store / App Store.
The Bluetooth adaptor is required to create a Bluetooth connection with the inverter.
To view and change the inverter parameters, use an external interface device -
tablet or mobile phone. Download the app for Android / iOS from the Google Play
Store / App Store.

ELECTRICAL CONNECTIONS

Motor connection variants for INVERTERS sizes A, B and C

Star or delta connection for speed controller integrated on the motor

Fig. 1

Motor connection variants for INVERTER size D

X1 terminal no.	Designation	Assignment
$\mathbf{1}$	L1	Mains phase 1
$\mathbf{2}$	L2	Mains phase 2
$\mathbf{3}$	L3	Mains phase 3
$\mathbf{4}$	PE	Protective conductor

Tab. 1-X1 terminal assignment -3×400 VAC

X4 terminal no.	Designation	Assignment
$\mathbf{1}$	PE	Protective conductor
$\mathbf{2}$	U	Mains phase 1
$\mathbf{3}$	V	Mains phase 2
$\mathbf{4}$	W	Mains phase 3

Tab. 2-X1 terminal assignment -3×400 VAC
Fig. 2 - Assembly sequence: Connection box - adapter plate size D

Key:
1 Adapter plate option (variant)
2 Holes depending on motor
3 Seal
4 Retaining bolts with spring elements
5 O-ring seal
6 INVEOR / adapter plate support
7 Terminal heightening option
8 Original terminal (not included)
9 Extended screw option (for pos.7)
10 Retaining bolts with spring elements option
11 INVEOR/support retaining bolts

Connection of INVERTER signals and commands

Electrical connections and parameter configuration

There are 2 relays on the INVERTER. Connecting terminals X7-1-2-3 and X6-1-2-3 are used for:
LMV2/3x: Relay 1 is used as a safety contact on the safety loop series of the equipment. Relay 2 is used as a fault indicator on the burner panel front.

LMV5x / ETAMATIC: Relay 1 is used as a contact for control of fan motor start. Relay 2 is used as a fault indicator of the INVERTER to the LMV5x / ETAMATIC equipment.

Parameter		
$\mathbf{1 . 1 8 1}$	Automatic reset function	Automatic reset of faults. The INVERTER resets the fault after the set time. Set value $=30$ seconds
$\mathbf{1 . 1 8 2}$	Automatic reset numbers	With the reset function the maximum number of automatic resets can be limited. Set value $=0$ (maximum number of automatic resets)
4.190	Relay 1 functions	Select the operating mode of relay 1. Set value $=$ LMV2x/3x.. $=11$ (NC inverted error) Set value $=$ LMV5x $/$ ETAMATIC $=19$ (motor is in NO function)
4.210	Relay 2 functions	Select the operating mode of relay 2. Set value $=$ LMV2x/3x.. $=11$ (NC inverted error) Set value $=$ LMV5x / ETAMATIC $=11$ (NC inverted error) $)$
4.210	V O operation	Set value $=\mathbf{1 0}$ (NO error)

0-10V / 4-20mA analogue input configuration

Input Aln1 can be configured as voltage or current input. It is configured as $4-20 \mathrm{~mA}$ input current for LMV5-Etamatic, and $0-10 \mathrm{~V}$ input voltage for LMV2x/3x.

4.020	Input type Al1	Specifies the input type, whether voltage or current. 1= Voltage input 0-10V (LMV2x/3x) 2= Current input 0/4-20mA (LMV5 ETAMATIC)
4.021	Al1 Standard low	Specifies the minimum value of the analogue input as a percentage of the range. E.g.: $0 \ldots 10 \mathrm{~V}$ or $0 \ldots .20 \mathrm{~mA}=0 \% \ldots . .100 \%$ $2 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}=20 \% \ldots 100 \%$ Set value $=\mathbf{2 0 \%}$ for LMV2x/3x, LMV5x, ETAMATIC
4.022	Al1 Standard high	Specifies the maximum value of the analogue input as a percentage of the range at 10 V or 20 mA . Set value $=100 \%$
4.023	Al1 Response time	Specifies the deadband on the input signal. Set value = 1\%
4.024	Al1 Filter time	An input change is taken into consideration after this time. If it is too short, a wire break error may appear if the 4-20 mA signal goes to 0 for a short time. Set value $=4$ seconds
4.030	Al1 Input function	Specifies whether the input is $0=$ analogue / 1 = digital input. Set value $=0$ analogue
4.033	Al1 Measure unit, input 1	Specifies the unit of measurement of input 1. Set value = 0 (\%)
4.034	Al1 Lower limit	Specifies the lower limit of input 1. Set value = 0 (\%)
4.035	Al1 Upper limit	Specifies the upper limit of input 1. Set value = 100 (\%)
4.036	Al1 Wire break time, 5 s	Specifies the time after which the fault appears if input Al1 is interrupted (wire break). Set value = $\mathbf{5}$ seconds
4.037	Al1 Inversion	Inverts the signal of input 1. Set value $=0$ (disabled)

Terminal	Bringing 24V to terminal X5-6 enables INVERTER operation and the contact that switches it on/off. On LMV2/3x X5-3 (24V Out) also powers the motor speed encoder.
X5-3 (24V Out)... X5-6 (Digit In1)..	Required to enable braking ramp xxxx
X5-5 (24V Out) connected with X5-10 (En.HW)...	

Configuration of INVERTER start / stop parameters and operating mode

Parameter		
1.020	Min. frequency (Hz)	Minimum input frequency in Hz . Set value $=0 \mathrm{~Hz}$ (LMV2x-3x/LMV5x) Set value $=>35 \mathrm{~Hz}$ (ETAMATIC)
1.021	Max. frequency (Hz)	Maximum input frequency in Hz . Set value $=51,5 \mathrm{~Hz}$ (LMV2x-3x / LMV5x) Set value $=50 \mathrm{~Hz}$ (ETAMATIC)
1.050	Ramp 1 Braking time 1	Braking time at switch-off to reach the speed of 0 Hz after the start/stop contact has opened (not used). Set value $=\mathbf{1 0}$ seconds
1.051	Ramp 1 Acceleration time 1	Acceleration time 1 is the time necessary for the drive controller to accelerate from 0 Hz to maximum frequency (not used). Set value $=\mathbf{1 0}$ seconds
1.052	Ramp 2 Braking time 2	Braking time at switch-off to reach the speed of 0 Hz after the start/stop contact has opened. Set value $\mathbf{= 1 0}$ seconds
1.053	Ramp 2 Acceleration time 2	Acceleration time 2 is the time necessary for the drive controller to accelerate from 0 Hz to maximum frequency. Set value $=10$ seconds
1.054	Selects ramp used	Digital input 1 (dig In1 / X5-6) selects the ramp used. Set value $=1$ (parameters 1.052 and 1.053)
1.088	Quick stop	Not used but set. Set value $=\mathbf{1 0}$ seconds
1.100	Operating mode	Frequency control mode: specifies the operating mode of the INVERTER. In our case it is always frequency control (0). Set value $=0$
1.130	Reference set point	Determines the source from which the reference value is read. In our case it is always analogue input Al1. Set value $=1$ (analogue input 1)
1.131	Enabling software	Depending on the change made, the motor may start immediately. Selection of the source for enabling control. Set value $=0$
1.132	Start-up protection	Selection of behaviour in response to enabling software. Set value $=1$ (Start only with rising edge at input of control enable)
1.150	Motor rotation direction	Do not change this parameter. To invert the direction of rotation, invert 2 of the 3 INVERTER / MOTOR cabling wires, so that the INVERTERS always have the same setting. Set value $=1$ forwards only / clockwise rotation (no changes to direction of rotation are possible)

Motor data

The motor data depend on the type of motor used. Refer to the data shown on the motor nameplate. Follow the steps below:

- Enter the motor data;
- Activate the motor recognition function;
- If the operation ends successfully, enter the remaining parameters.

During the recognition phase, the INVERTER measures some parameters and changes some settings.
N.B.: At each start-up of the recognition programme, recheck all the parameters in this manual.

Parameter		
33.001	Motor type	Selection of motor type. Set value = 1 (asynchronous motor)
33.010	Motor $\mathrm{I}^{2} \mathrm{t}$ factor	Not used. Only for encoders. Set value = 100\%
33.011	$1^{2} \mathrm{t}$ time	Not used. Only for encoders Set value $=\mathbf{3 0}$ seconds
33.015	R optimisation	If necessary, this parameter can be used to optimise the start-up behaviour. Not used Set value $=\mathbf{1 0 0 \%}$
33.016	Motor phase control	The "Motor connection interrupted" error monitoring (error 45) can be enabled/disabled with this parameter. Set value $=1$ (enabled control)
33.031	Motor current	Maximum motor current. Set value $=$ motor nameplate current value in amps
33.032	Motor rating	Motor shaft rating. Set value $=$ motor nameplate rating value in watts
33.034	Motor rpm	Motor rpm. Set value $=$ motor nameplate speed in rpm
33.035	Motor frequency	Nominal motor frequency. Set value = motor nameplate frequency in Hz
33.050	Stator resistance	Recognised by INVERTER. Set value = automatically detected, value in Ohm
33.105	Leakage inductance	Recognised by INVERTER. Set value $=$ automatically detected, value in henry
33.110	Motor voltage	Nominal motor voltage. Set value $=400 \mathrm{~V}$
33.111	Motor cos phi	Data on motor nameplate. Set value $=\mathbf{0 , x x}$
33.138	Holding current time	Needed to stop the motor!! After braking it is held at continuous current for a specified time interval. Ensure that there is no overheating in this phase. Recommended time: max 5 s. Set value $=\mathbf{0}$ seconds

Activate the "Motor identification" function and follow the instructions proposed by the INVERTER, then change the parameters described below. The image shows the software screen on the PC.

Parameter		
34.010	Control type	Open-loop asynchronous motor. Set value $=100$ (open-loop asynchronous motor)
34.020	Flying restart	Set value = 1 (enabled)
34.021	Flying restart time	Calculated by Inverter. Set value = value calculated by INVERTER in ms
34.090	Speed controller Kp	Calculated by the inverter during the motor recognition phase. Reset it to 2000 after motor recognition. Set value $\mathbf{=} \mathbf{2 0 0 0} \mathbf{~ m A} / \mathrm{rad} / \mathbf{s e c}$
34.091	Speed controller TN	Calculated by the inverter during the motor recognition phase. Reset it to 7.5 seconds after motor recognition. Set value $=7.5$ seconds
34.110	Slip trimmer	If set to $\mathbf{1}$ the function is enabled. If set to $\mathbf{0}$ the motor performs as if connected to the mains. If compensation is enabled, the system aligns the stator frequency with the rotor. As a result, the actual motor rpm increase and are brought in line with the theoretical motor nameplate rpm. The motor is supplied with the same voltage and frequency, but the current increases and the rpm are brought to the nameplate data. Set value = 1 (compensation for slippage)

Output signal variant for reading motor rpm (optional)

To have a 4-20 mA analogue output that indicates the motor rpm to the terminals X5-13 (Aout 0-20 mA) and X5-16 (A GND), set the parameters below:

Parameter		
4.100	Analogue output AO1	Selection of analogue output options. In our case, to have an output proportional to the rpm, set 19. Set value $=19$ (actual rpm)
4.101	Minimum value of analogue output AO1	Output signal at 0-20 mA. To obtain a $4-20 \mathrm{~mA}$ signal with ($4 \mathrm{~mA}=0$ motor rpm), follow the example: if motor rpm are a maximum 2900, calculate: $2900 / 20 \times 4=580$, which is the negative value corresponding to 0 mA from which to start. Therefore: $\begin{aligned} & 0 \mathrm{~mA}=-580 \\ & 20 \mathrm{~mA}=2900 \end{aligned}$ Set value $=-\mathbf{x x x}$ (-580 in the example)
4.102	Maximum value of analogue output AO1	Maximum rpm value for 20 mA . Set value $=\mathbf{x x x x}$ (2900 in the above example)

NOTE 1	If the system enters pendulum mode with LMV.. / ETAMATIC, adjust parameters $\mathbf{3 4 . 0 9 0}$ and $\mathbf{3 4 . 0 9 1}$ by increasing them, in particular parameter $\mathbf{3 4 . 0 9 0}$, in steps of $100 \mathrm{~mA} / \mathrm{rad} / \mathrm{sec}$.
$\begin{gathered} \text { NOTE } \\ 2 \end{gathered}$	With LMV $2 x / 3 x$ with INVERTER control, the device controls the standby rpm with param. 653. If, after the fan is switched off, the device LMV $2 x / 3 x$ sees that the motor continues to run, error 83 diagnostic 32 appears. This occurs if there is significant fan inertia (e.g. on burners with very heavy forward curved blades), then always disable parameter 653, setting it to $\mathbf{0}$.
$\begin{gathered} \text { NOTE } \\ 3 \end{gathered}$	With LMV $2 x / 3 x$ the signal $0-10 \mathrm{~V}$ for motor rpm control during standardisation is brought to approximately 9.7 V and the fan motor rpm is saved. According to the LMV manual, the INVERTER should be set to max 52.5 Hz During standardisation, the INVERTER is driven at approximately $51 \div 51.5 \mathrm{~Hz}$ and may go out of absorption range with the motor. For this reason, set the INVERTER to max 51.5 Hz . During standardisation, the INVERTER will reach 50 Hz and the over-absorption problem will be reduced.
$\begin{gathered} \text { NOTE } \\ 4 \end{gathered}$	If the analogue wire break fault is displayed on the INVERTER and the $\mathbf{4 - 2 0} \mathrm{mA}$ inverter signal continues to oscillate between $1 \div 6 \mathrm{~mA}$, it does not always mean that the LMV $2 x / 3 x$ or ETAMATIC equipment is faulty. It could be due to the old firmware of the INVERTER and should therefore be updated. If this is the case, contact the Service Centre.

FAULTS / PROBLEMS.. SOLUTIONS

Parameter 36.020	If error 36 appears	Problems detected in the mains supply. By setting this parameter to 0, the INVERTER no longer checks the mains and the error message disappears. It is recommended to leave the parameter set to 1.
Parameter 33.105	If mains voltage drops during operation	When the mains voltage drops, the INVERTER decreases the motor rpm. To reduce this change, set the parameter to 0, which should solve the problem.

Brake chopper connections

Brake chopper connections

Terminal no.	Designation	Assignment
$\mathbf{1}$	B+	Braking resistor connection (+)
$\mathbf{2}$	B-	Braking resistor connection (-)

Optional assignment of brake chopper

Parameter	
Braking resistor	Enabled or disabled

Burner terminal block with interface INVERTER

Versioni bruciatore con LMV2x/3x

Versioni bruciatore con LMV5x o ETAMATIC

UNIGAS CIB EHIEASS

C.I.B. UNIGAS S.p.A.

Via L.Galvani, 9-35011 Campodarsego (PD) - ITALY
Tel. +390499200944 - Fax + 39049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

