PG60 PG70 PG81

Light oil burners Progressive / Fully-modulating

MANUAL OF INSTALLATION - USE - MAINTENANCE

CIB HITIAS

DANGERS, WARNINGS AND NOTES OF CAUTION
 THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER.

INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE.

THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE.

1) GENERAL INTRODUCTION

- The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel.
- Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer
- Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier.
The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful.
- Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided.
- Make sure that inlet or exhaust grilles are unobstructed.
- In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action.
Contact qualified personnel only.
Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories
Failure to comply with the above instructions is likely to impair the unit's safety.
To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions
- When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless.
- In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer.
- This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous.
The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things:
- Failure to comply with one of the WARNINGS in this chapter
- Incorrect handling, installation, adjustment or maintenance of the burner
- Incorrect use of the burner or incorrect use of its parts or optional supply

2) SPECIAL INSTRUCTIONS FOR BURNERS

- The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion.
- Only burners designed according to the regulations in force should be used.
- This burner should be employed exclusively for the use for which it was designed.
- Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel).
- Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped.

When the decision is made to discontinue the use of the burner, the use shall have qualified personnel carry out the following operations:
a Remove the power supply by disconnecting the power cord from the mains.
b Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles.

Special warnings

- Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox.
- Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations:
a set the burner fuel flow rate depending on the heat input of the appliance;
b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force;
c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force;
d make sure that control and safety devices are operating properly;
e make sure that exhaust ducts intended to discharge the products of combustion are operating properly;
f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened;
g make sure that a copy of the burner use and maintenance instructions is available in the boiler room.
- In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further
- The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force.

3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED

3a) ELECTRICAL CONNECTION

- For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations.
- It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment
- Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit.
- No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains.
- An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations.
- The use of any power-operated component implies observance of a few basic rules, for example:
-do not touch the unit with wet or damp parts of the body and/or with bare feet;
- do not pull electric cables;
- do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so;
- do not allow children or inexperienced persons to use equipment;
- The unit input cable shall not be replaced by the user.

In case of damage to the cable, switch off the unit and contact qualified personnel to replace.
When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off.

3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS

GENERAL

- The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation.
- Before the burner is commissioned, qualified personnel should inspect the following:
a the fuel supply system, for proper sealing;
b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner;
c the burner firing system, to make sure that it is supplied for the designed fuel type;
d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate;
e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force.
- When the burner is to remain idle for some time, the fuel supply tap or taps should be closed.

SPECIAL INSTRUCTIONS FOR USING GAS

Have qualified personnel inspect the installation to ensure that:
a the gas delivery line and train are in compliance with the regulations and provisions in force;
b all gas connections are tight;
c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion.

- Do not use gas pipes to earth electrical equipment.
- Never leave the burner connected when not in use. Always shut the gas valve off.
- In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off.

Precautions if you can smell gas

a do not operate electric switches, the telephone, or any other item likely to generate sparks;
b immediately open doors and windows to create an air flow to purge the room;
c close the gas valves;
d contact qualified personnel.

- Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures.

DIRECTIVES AND STANDARDS

European directives

-Regulation 2016/426/UE (appliances burning gaseous fuels)
-2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 676 (Automatic forced draught burners for gaseous fuels)
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Light oil burners

European directives

-2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 267-2011(Automatic forced draught burners for liquid fuels)
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Heavy oil burners

European Directives

-2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 267 (Automatic forced draught burners for liquid fuels)
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
-CEI EN 60335-2-102 (Household and similar electrical appliances.
Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Gas - Light oil burners

European Directives

-Regulation 2016/426/UE (appliances burning gaseous fuels) -2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 676 (Automatic forced draught burners for gaseous fuels)
-UNI EN 267(Automatic forced draught burners for liquid fuels)
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Gas - Heavy oil burners

European directives:

-Regulation 2016/426/UE (appliances burning gaseous fuels)
-2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 676 (Automatic forced draught burners for gaseous fuels)
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Industrial burners

European directives

-Regulation 2016/426/UE (appliances burning gaseous fuels)
-2014/35/UE (Low Tension Directive)
-2014/30/UE (Electromagnetic compatibility Directive)
-2006/42/EC (Machinery Directive)

Harmonized standards

-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
-EN 746-2 (Industrial thermoprocessing equipment - Part 2: Safety requirements for combustion and fuel handling systems)
-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);
-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)
-EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements)

Burner data plate

For the following information, please refer to the data plate:

- burner type and burner model: must be reported in any communication with the supplier
- burner ID (serial number): must be reported in any communication with the supplier
- date of production (year and month)
- information about fuel type and network pressure

Type	--
Model	--
Year	--
S.Number	--
Output	--
Oil Flow	--
Fuel	--
Category	--
Gas Pressure	--
Viscosity	--
El.Supply	--
El.Consump.	--
Fan Motor	--
Protection	--
Drwaing n°	--
P.I.N.	--

SYMBOLS USED

Failure to observe the warning may result in irreparable damage to the unit or damage to the environment

DANGER!
Failure to observe the warning may result in serious injuries or death.

Failure to observe the warning may result in electric shock with lethal consequences

Figures, illustrations and images used in this manual may differ in appearance from the actual product.

BURNER SAFETY

The burners - and the configurations described below - comply with the regulations in force regarding health, safety and the environment. For more in-depth information, refer to the declarations of conformity that are an integral part of this Manual.

DANGER! Incorrect motor rotation can seriously damage property and injure people.

Residual risks deriving from misuse and prohibitions

The burner has been built in order to make its operation safe; there are, however, residual risks.

Do not touch any mechanical moving parts with your hands or any other part of your body. Injury hazard
Do not touch any parts containing fuel (i.e. tank and pipes). Scalding hazard
Do not use the burner in situations other than the ones provided for in the data plate.
Do not use fuels other than the ones stated.
Do not use the burner in potentially explosive environments.
Do not remove or by-pass any machine safety devices. Do not remove any protection devices or open the burner or any other component while the burner is running.
Do not disconnect any part of the burner or its components while the burner is running.
Untrained staff must not modify any linkages.

After any maintenance, it is important to restore the protection devices before restarting the machine.
All safety devices must be kept in perfect working order. Personnel authorized to maintain the machine must always be provided with suitable protections.

ATTENTION: while running, the parts of the burner near the generator (coupling flange) are subject to overheating. Where necessary, avoid any contact risks by wearing suitable PPE.

PART I: INSTALLATION

GENERAL FEATURES

Monobloc burners of this series are made in die-cast aluminium housing with relative flange to work on heating generators. The output range is from 150 kW to 1900 kW (according to the model). They can be provided in progressive or fully-modulating version.

The fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame.
In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil pass through the nozzle.
The pump main function is to transfer oil from the tank to the nozzle at required quantity and pressure. To adjust pressure, pumps are provided with a pressure governor (except some models for which a separate adjusting valve is provided). Other pumps are provided with two pressure governors: one for high and one for low pressure (in double-stage systems with one nozzle).
In the double-stage burners, the electric actuator, that moves the air damper, allows the optimisation of the gas flue values, as to get an efficient combustion. The position of the combustion head determines the burner output. The air (comburent) and fuel (light oil) are forced into the combustion chamber, as to let the flame light up.

How to interpret the burner's "Performance curve"

To check if the burner is suitable for the boiler to which it must be installed, the following parameters are needed:

- furnace input, in kW or kcal/h (kW = kcal/h / 860);
- backpressure (data are available on the boiler ID plate or in the user's manual).

Example:
Furnace input: 600 kW
Backpressure: 4mbar
In the "Performance curve" diagram (Fig. 1), draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve.

Fig. 1
Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at $15^{\circ} \mathrm{C}$

Burner model identification

Burners are identified by burner type and model. Burner model identification is described as follows.

Technical specifications

BURNERS		PG60	PG70	PG81
Output	min. -max. kW	151-791	291-1047	264-1900
Fuel			Light oil	
Light oil rate	min. -max. kg/h	13-67	25-88	22-160
Kerosene rate	min. -max. kg/h	12,6-66	24-87	22-159
Light Oil viscosity	cSt @ 40 ${ }^{\circ} \mathrm{C}$		2-7,4	
Light Oil density	$\mathrm{kg} / \mathrm{m}^{3}$		840	
Power supply			00V 3N ~ 50Hz	
Approx. weight	kg	55	85	85
Operation		Progressive - Fully modulating		
Operating temperature	${ }^{\circ} \mathrm{C}$	$-10 \div+50$		
Storage Temperature	${ }^{\circ} \mathrm{C}$	$-20 \div+60$		
Working service(*)		Internittent		

Electrical data 50 Hz

Possible voltages, check the actual three-phase and single-phase supply voltage on the burner data plate.

Power supply Triphase	V	$230 / 4003$ a.c.		
Auxiliary power supply Mono Phase	V	1152 a.c. $/ 2202$ a.c. / 230 1N a.c.		
	Hz	50		
Fan motor	kW	1,1	2,2	3,0
Separated pump motor (*if supplied)	kW	-	-	0,55
Total power consumption	kW	1,6	2,7	4,05

Electrical data 60 Hz

Possible voltages, check the actual three-phase and single-phase supply voltage on the burner data plate.

Power supply Triphase	V	$220 / 230 / 265 / 277 / 380 / 440 / 460 / 480 / 5253$ a.c.		
Auxiliary power supply Mono Phase	V	$110 / 120 / 220 / 230$ a.c.		
	Hz	60	3,6	
Fan motor	kW	1,32	2,64	0,66
Separated pump motor (*if supplied)	kW	-	-	4,76
Total power consumption	kW	1,82	3,14	

A
WARNING: Burners are suitable only for indoor operation with a maximum relative humidity of 80%

(*)NOTE ON THE BURNER WORKING SERVICE:

- Burners provided with Siemens LOA24 control box: for safety reasons, one controlled shutdown must take place every 24 hours.
- Burners provided with Siemens LMO24-44 control box: the control box automatically stops after 24h of continuous working. The control box immediately starts up, automatically.
$\left.{ }^{(* *}\right)$ The distance between the measurement surface and the burner body is 1 meter (UNI EN ISO 3744)

Performance curves

To get the input in kcal/h, multiply value in kW by 860 .
Data are referred to standard conditions: atmosferic pressure at 1013 mbar , ambient temperature at $15^{\circ} \mathrm{C}$.
NOTE: The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjsuting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum.

Burner flange

Suggested boiler drilling

	AS	AL	AA	BS	BL	BB	C	CC	D	F	G	K	H	L	Omin	Omax	P	M	N	P	W	Z
PG60	1014	1212	99	244	442	314	770	362	729	415	153	240	182	344	190	190	190	M10	269	190	464	120
PG70	1147	1297	130	310	460	373	837	317	736	363	198	300	228	374	216	250	233	M10	330	233	529	155
PG81	1177	1327	139	340	490	373	837	382	736	363	234	300	264	376	216	250	233	M10	330	233	531	155

*B, C = measure referred to burner fitted with standard blast tube
*BL, CL = measure referred to burner fitted with extended blast tube

Fig. 3 - 3I2G-24 v0 Hydraulic diagram

POS	OIL TRAIN
1	Filter
2	Flexible hose
3	Pump and pressure governor
6	Solenoid valve
7	Flexible hose
6.1	Solenoid valve
10	Oil distributor
11	Flexible hose
12	Pressure gauge
13	Pressure governor
14	Actuator
15	Pressure switch
16	One-way valve
16.1	One-way valve
18	Flexible hose
19	Manual valve
20	Pressure gauge
	COMBUSTION AIR TRAIN
50	Air damper
51	Actuator
52	Pressure switch - PA
53	Draught fan with electromotor
54	Burner

NOTE: The following POS are optional: 19, 20

Fig. 4-3I2G-23 v0 Hydraulic diagram

Fig. 5

MOUNTINGS AND CONNECTIONS

Transport and storage

ATTENTION! The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. All handling operations must be carried out with appropriate resources and qualified personnel

ATTENTION: Use intact and correctly dimensioned hoisting equipment, conforms to the local regulations and health and safety regulations. Do not stand under lifted loads.

If the product must be stored, avoid humid and corrosive places. Observe the temperatures stated in the burner data table at the beginning of this manual.

Packing

The burners are dispatched in wooden pakages whose dimensions are:
PG60: $1200 \times 670 \times 540 \mathrm{~mm}(\mathrm{~L} \times \mathrm{P} \times \mathrm{H})$
PG70-PG81: $1400 \times 1000 \times 220 \mathrm{~mm}(\mathrm{~L} \times \mathrm{P} \times \mathrm{H})$

Packing cases of this kind are affected by humidity and are not suitable for stacking. The following are placed in each packing case.
1 burner;

2 light oil flexible hoses;
1 light oil filter;
1 gasket to be inserted between the burner and the boiler;
1 envelope containing this manual.
To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials.

Fitting the burner to the boiler

To install the burner into the boiler, proceed as follows:

7 fix the burner to the stud bolts,
8 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement).

Keys

1 Burner
2 Fixing nut
Washer
4 Sealing gasket
5 Stud bolt
7 Blast tube

Handling the burner

ATTENTION! The Ihandling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists.
To move the burner, use means suitable to support its weight (see paragraph "Technical specifications").

Matching the burner to the boiler

The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the type of the blast tube . Verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube lenght follow the instructions of the boiler manufacturer. In absence of these consider the following:

- Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than Dist $=100$ mm into the combustion chamber. (please see the picture below)
- Pressurised boilers with flame reversal: in this case the blast tube must penetrate Dm $50 \div 100 \mathrm{~mm}$ into combustion chamber in respect to the tube bundle plate.(please see the picture below)

(!)
ATTENTION! Carefully seal the free space between blast tube and the refractory lining with ceramic fibre rope or other suitable means.

The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer).

Hydraulic diagrams for light oil supplying circuits

Fig. 2-Gravity circuit

Fig. 3 - Ring circuit

Fig. 4 - Suction circuit

Key

1 Manual valve
2 Light oil filter
3 Light oil feeding pump
4 One way valve
5 Flexible hoses
6 Relief valve

NOTE: in plants where gravity or ring feed systems are provided, install an automatic interception device (see n. 4 - Fig. 5).

Installation diagram of light oil pipes

\} PLEASE READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNING OF THIS MANUAL.

Fig. 5 - Double-pipe system
The burner is supplied with filter and flexible hoses, all the parts upstream the filter and downstream the return flexible hose, must be installed by the customer. As far as the hoses connection, see the related paragraph.

Key

Burner
2 Flexible hoses (fitted)
3 Light oil filter (fitted)
4 Automatic interceptor (*)
5 One-way valve (*)
6 Gate valve
7 Quick-closing gate-valve (outside the tank or boiler rooms)
(*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing.
The direct connection of the device without a timer may cause pump breaks.

The provided pumps can be installed both into single-pipe and double-pipe systems.
Single-pipe system: a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer.
Double-pipe system: as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-bleeding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump.

Burners are factory-set for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug \mathbf{G} (as for ccw-rotation- referring to the pump shaft).
Caution: Changing the direction of rotation, all connections on top and side are reversed.

About the use of fuel pumps

- Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them.
- After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump.
- On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet.
- Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears.
- Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage.
- Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible.
- An external filter should always be installed in the suction line upstream the fuel unit.

ATTENTION: before the burner first start, it is mandatory to fill the adduction pipes with diesel fuel and bleed out residual air bubbles. Prior to switching on the burner, check direction of rotation of the pump motor by briefly pressing the starter switch; ensure there are no anomalous sounds during equipment operation, and only then turn on the burner. Neglect to comply with this requirement will invalidate the burner warranty.

Light oil pumps

The pumps provided with these burners can be:

- PG60: Suntec AJ6
- PG70: Suntec J6/Danfoss RSB30
- PG81: Suntec TA2 / Danfoss KSM50 / HP- UHE-A

PumpSuntec AJ6	
Viscosity	$2.8-75 \mathrm{cSt}$
Oil temperature	$60^{\circ} \mathrm{C} \mathrm{max}$
Inlet maximum pressure	2 bar
Inlet minimum pressure	-0.45 bar to avoid gasing
Rated speed	3600 rpm max.

Suntec J6 - J7	$2.8-200 \mathrm{cSt}$
Oil viscosity	$0-90^{\circ} \mathrm{C}$
Oil temperature	$-0,45$ barto avoid gasing
Min. suction pressure	1.5 bar
Max. suction pressure	1.5 bar
Max. return pressure	3600 rpm max.
Rotation speed	

Key

1 Pressure governor
2 Pressure gauge
3 Vacuum gauge
5 Nozzle
7 Suction
8 Return

Danfoss RSB

Oil viscosity	$2,5 \div 200 \mathrm{cSt}$
Oil temperature	$-10 \div 120^{\circ} \mathrm{C}$
Inlet maximum pressure	4 bar
Maximum return pressure	4 bar
Minimum inlet pressure	$-0,45$ to avoid gasing
Rotation speed max.	3600 rpm

Key

1 Pressure governor
2 Pressure gauge
3 Suction
4 To nozzle
5 Return

HP-Technick UHE-A..	
Oil viscosity	$3 \div 75 \mathrm{cSt}$
Oil temperature	$0 \div 150^{\circ} \mathrm{C}$
Min. suction pressure	-0.45 bar to avoid gasing
Max. suction pressure	5 bar
Max. return pressure	5 bar
Rotation speed	3600 rpm max.

1.Connection for manometer 1 - delivery (M1) - G1/4
2.Connection for manometer 2 - suction (M2) - G1/4
3.Connection for manometer 3 (M3)
A. Suction connection- G1/2
D. Direct - clockwise
I. Indirect - counter clockwise
R. By-pass connection- G1/2
S. Delivery connection - G1/2

VR. After removal of cover screw: pressure regulation

Danfoss KSM..	
Oil viscosity	$2.5 \div 450 \mathrm{cSt}$
Oil temperature	$-10 \div 160^{\circ} \mathrm{C}$
Max. suction pressure	4 bar
Min. suction pressure	-0.45 bar to avoid gasing
Max. return pressure	4 bar
Rotation speed	3450 rpm max

Key

1 Pressure governor
2 Pressure / vacuum gauge port to measure inlet pressure/vacuum
3 Pressure gauge port
5 Suction
7 To nozzle
8 Return

Diesel filters (available on request)

	Item	Note	Connection	Max. operating pressure	Max. operating temperature	Filtering degree	Protec- tion
5	$20151 \mathrm{PE}\left({ }^{*}\right)$	-	$3 / 8^{\prime \prime}$	1 bar	$-20,60^{\circ} \mathrm{C}$	100μ	-
6	$20201 \mathrm{PL}\left(^{*}\right)$	-	$3 / 8^{\prime \prime}$	1 bar	$-20,60^{\circ} \mathrm{C}$	100μ	-
7	GA 70501	-	$1^{\prime \prime}$	4 bar	$90^{\circ} \mathrm{C}$	100μ	IP 65

(*) Supplied per pilot diesel fuel if present

Connecting the light oil flexible hoses

To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided:
1 remove the closing nuts \mathbf{A} and \mathbf{R} on the inlet and return connections of the pump;
2 screw the rotating nut of the two flexible hoses on the pump being careful to avoid exchanging the inlet and return lines: see the arrows marked on the pump that show the inlet and the return (see prevoius paragraph).

Light oil circuit

The fuel is pushed into the pump 1 to the nozzle 3 at the delivery pressure set by the pressure governor. The solenoid valve 2 set the fuel immission into the combustion chamber. The part of fuel that is not burnt goes back to the tank through the return circuit. The fuel amount to be burnt is adjusted by means of the burner actuator according to the adjustments set (see page 23).

Fig. 6 - Stand-by

Fig. 7 - Prepurge

Fig. 8 - Low flame

Fig. 9 - High flame

[^0]The oil flow rate can be adjusted choosing a nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the following charts.

NOZZLE SUPPLY PRESSURE = 20 bar

Example (Bergonzo): if a $220 \mathrm{~kg} / \mathrm{h}$ flow rate BERGONZO nozzle is provided, set the return pressure at 11 bar, supply at 20 bar on the delivery to get a $220 \mathrm{~kg} / \mathrm{h}$ flow rate. If the return pressure needed is 5 bar, instead, act on the \mathbf{V} adjusting screw on the pressure governor. The flow rate will then be about $95 \mathrm{~kg} / \mathrm{h}$ (see the example showed on the Bergonzo diagram).

FLUIDICS KW3...60º

NOZZLE SUPPLY PRESSURE $=20$ bar. VISCOSITY AT NOZZLE $=5 \mathbf{c S t}$

FLUIDICS KW3...60º

NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt

FLUIDICS KW3... 60°

Electrical connections

RESPECT THE BASIC SAFETY RULES. MAKE SURE OF THE CONNECTION TO THE EARTHING SYSTEM. DO NOT REVERSE THE PHASE AND NEUTRAL CONNECTIONS. FIT A DIFFERENTIAL THERMAL MAGNET SWITCH ADEQUATE FOR CONNECTION TO THE MAINS. STRICTLY OBSERVE THE DATA PLATE.

- Remove the cover from the burner electrical panel.
- Execute the electrical connections to the power supply terminal board as shown, check the direction of the fan-pump motor (see next paragraph) and replace the electrical panel cover.

WARNING: The burner is provided with a jumper between terminals 6 and 7; in the event of connecting the high/low flame thermostat remove this jumper before connecting the thermostat.
IMPORTANT: while connecting electric supply wires to burner's teminal block be sure that ground wire should be longer than phase and neutral ones.

Fig. 10
Fully-modulating burners

Fig. 12
(**) Probes connection, see Fig. 11

Probes connection

Fig. 11

Fan-pump motor rotation

Once the burner electrical connection is accomplished, remember to check the motor rotation.
Motor must rotate in the direction showed on the casing. In the event of wrong rotation, reverse the three-phase supply and check again the motor rotation.
NOTEBurners are provided for three-phase 400 V supply, and in the case of three-phase 230 V supply it is necessary to modify the electrical connections inside the terminal box of the electric motor and replace the thermal cutout relay.

ADJUSTMENTS

Adjustments - brief description

| ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open. Be sure that the mains |
| :--- | :--- |
| switch is closed. | | Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would |
| :--- |
| cause the pump seal to break. |

IMPORTANT! the combustion air excess must be adjusted according to the in the following chart:

Recommended combustion parameters		
Fuel	Recommended (\%) CO_{2}	Recommended (\%) O_{2}
Light oil	$11.5 \div 13$	$2.9 \div 4.9$

Adjust the air and fuel flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively.

- Check that the combustion parameters are in the suggested limits.
- Then, adjust the combustion values corresponding to the points between maximum and minimum: set the foil shape of the adjusting cam. The adjusting cam sets the air/fuel ratio in those points, regulating the opening-closing of the fuel governor.
- Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney.

Adjustment procedure

To change the burner setting during the testing in the plant, follow the next procedure, according to the actuator model provided (mod. Berger or mod. Siemens).

- PG60: Berger STA12../Siemens SQN72..
- PG70-PG81: Berger STM30.. / Siemens SQM40..

Adjustment by the Berger actuator

1 Open the electrical panel to check the motor rotation and act directly on its contactor (see next picture): keep pressed until the oil circuit is charged.

2 bleed the air from the \mathbf{M} pressure gauge port (Fig. 13) by loosing the cap without removing it, then release the contactor.

Fig. 13
3 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage .
4 Turn the burner on by means of its main switch A: if the burner locks (LED B on in the control panel) press the RESET button (C) on the control panel (see next picture) - see chapter "OPERATION" on page 29.

5 be sure that the actuator cam for the "Startup enabling signal" (when used) is 5° more than the ignition cam; start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end;
7 drive the burner to high flame stage, by means fo the thermostat TAB.

8 Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the oil pressure (see next step).

- PG60: Berger STA12../Siemens SQN72..
- PG70-PG81: Berger STM30.. / Siemens SQM40..
- Attention:Berger actuator: cams can be moved manually
- Siemens actuator: set the MAN/AUTO lever to MAN to move the cams, rememeber to set it to AUTO once the adjustment is accomplished.

Berger STA12..

ST2 High flame
STO Stand-by and Ignition
ST1 Low flame
MV Startup enabling signal

Siemens SQN72

$$
\begin{aligned}
& \text { I = High flame cam } \\
& \text { II = Ignition position } \\
& \text { III = Low flame }
\end{aligned}
$$

Actuator cams

I High flame
II Stand-by and Ignition
III Low flame
V Startup enabling signal

SQM40.265 Actuator cams

Version with flame control LMO 24.255 / 44.255
(RD) I High flame
(BU) II Stand-by
(OG) III Low flame
(YE) IV -
(BK) V -
(GN) VI Advance stroke limitation cam set $+5^{\circ}$ to cam (BU) II

Version with flame control LAL 2.25
(RD) I High flame
(BU) II Stand-by
(OG) III Low flame
(YE) IV
(BK) V
(GN) VI

9 the nozzle supply pressure is already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph);insert a pressure gauge into the port shown on Fig. 14-Fig. 15 and act on on the pump adjusting screw VR (see Fig. 13) as to get the nozzle pressure at 20bar (Bergonzo nozzles - see diagram on Fig. 10).

Fig. 14 - Light oil manifold
(PG60)

Fig. 15 - Combustion head with light oil gun
(PG70-PG81)

Fig. 16
10 in order to get the maximum oil flow rate, adjust the pressure (reading its value on the PG pressure gauge: checking always the combustion parameters, the adjustment is to be performed by means of the SV adjusting cam screw (see picture Fig. 16) when the cam has reached the high flame position.
11 To adjust the air flow rate in the high flame stage, loose the RA nut and screw VRA as to get the desired air flow rate: moving the rod TR towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases.
Note: once the procedure is perfomed, be sure that the blocking nut RA is fasten. Do not change the position of the air damper rods.

12 The burner is factory-set with the head in its MAX position (maximum output).

PG60:

To let the burner operate at a lower output, turn clockwise the VRT screw and move progressively the combustion head back towards the MIN position.

PG70-PG81:

To let the burner operate at a lower output, loose the VB screw and move progressively the combustion head back towards the MIN
position, by turning clockwise the VRT ring nut. Fasten VB screw when the adjustment is accomplished.

Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above.
13 the air and oil rate are now adjusted at the maximum power stage, go on with the point to point adjustement on the SV adjusting cam as to reach the minimum output point.

14 as for the point-to-point regulation in order to set the cam foil shape, move the low flame microswitch (cam III) a little lower than the maximum position (90°);
15 set the TAB thermostat to the minimum in order that the actuator moves progressively towards the low flame position;
16 move cam III (low flame) towards the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to a lower position: screw \mathbf{V} to increase the rate, unscrew to decrease, in order to get the pressure as showed on diagram in Fig. 10, according to the requested rate.
17 Move again cam III towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point.
18 The low flame position must never match the ignition position that is why cam III must be set $20^{\circ}-30^{\circ}$ more than the ignition position.
Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps.

Oil pressure switch adjustment

Follow the below instruction, according to the pressure switch installed.

Minimum oil pressure switch (when provided)

The minimum oil pressure switch on the inlet line, checks that the pressure does not drop below a default value. The pressure switch must be set, say, at 10% under the pressure at the nozzle.

Maximum oil pressure switch

The oil pressure switch on the return line, checks that the pressure does not exceed a default value. This value must not be higher than the maximum acceptable pressure on the return line (this value is reported on the specification table). A pressure change on the return line could affect the combustion parameters: for this reason, the pressure switch must be set, say, at 20% over the pressure recorded during the combustion adjustment. The factory setting is 4 bar.
It is recommended to verify that the combustion parameters are within the range of acceptable values even against a pressure variation that gets close to the limit of the pressure switch.
This check should be carried out along the whole range of the burner output.
In case of inacceptable values, reduce from 20% to 15% the overpressure; later on, repeat the adjustments described above.

Fully-modulating burners

To adjust the fully-modulating burners, use the CMF switch on the burner control panel (see next picture), instead of the TAB thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of TAB.
The CMF position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set $\mathrm{CMF}=2$.
To move the adjusting cam set $C M F=1$ or 2 and then $C M F=0$.

CMF $=0$ stop at the current position
CMF = 1 high flame operation
CMF = 2 low flame operation
$C M F=3$ automatic operation

Calibration of air pressure switch (when provided)

To calibrate the air pressure switch, proceed as follows:

- Remove the transparent plastic cap.
- Once air and gas setting have been accomplished, startup the burner.
- During the pre-purge phase o the operation, turn slowly the adjusting ring nut VR in the clockwise direction (to increase the adjusting pressure) until the burner locks out, then read the value on the pressure switch scale and set it to a value reduced by 15%.
- Repeat the ignition cycle of the burner and check it runs properly.
- Refit the transparent plastic cover on the pressure switch.

PART II: OPERATION

THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS.

THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER.
A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER.

THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER).

NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE.

OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON.

IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER.

WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT.

OPERATION

ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the mains switch is closed.

[^1]
Burner control panel

PG60

P

Fig. 17
PG70-PG81

Fig. 18

Keys

A ON-OFF main switch
B Lockout signalling lamp
C Conreol box release pushbutton
D Signalling lamp for light oil solenoid valve opening
E Thermal cutout intervention signalling lamp
F High flame operation signalling lamp
G Low flame operation signalling lamp
H Ignition transformer operation signalling lamp
P Siemens modulator
Q Manual operation mode switch

PART III: MAINTENANCE

At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months.

WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED

 AND THE FUEL MANAUL CUTOFF VALVES CLOSED!ATtENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL.

ROUTINE MAINTENANCE

- Check and clean the cartdrige of the fuel filter, replace it if necessary (see next paragraph);
- carefully check for leaks, the fuel flexible hoses;
- check and clean the filter on the fuel pump: bilter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced;
- remove, check and clean the combustion head (page 32); when reassembling, carefully observe the measures on page 32;
- check the ignition electrodes and their ceramic insulators, clean, adjust and replace if necessary;
- remove and clean the oil nozzles (IMPORTANT: do not clean the nozzles using metallic or sharp utensils, use only solvents or steam); at the end of maintenance operations, refit the burner, turn it on and check the combustion. If in doubt, replace the defective nozzle/s. In case of intensive use of the burner, the nozzles must be replaced the the of the working season;
- check and carefully clean the flame detection photoresistor, if necessary replace it and, if in doubt, check the detection current following the diagram on page 34;
- clean and grease levers and rotating parts.

Light oil filter maintenance

For correct and proper servicing, proceed as follows:
1 shut off fuel in the line section being serviced;
2 unscrew the tray;
3 remove the filter cartridge from its support and wash it with petrol or replace if necessary; check seal O-Ring, replace if necessary; 4 reassemble the tray and restore fuel flow.

Removing the combustion head and the oil gun

1 Remove the top cover C;
2 remove the photoresistor from its seat;
3 unscrew the revolving connectors (\mathbf{E} in figure) on the fuel pipes (use 2 spanners to avoid loosening the connections attached to the distributor block);
4 loosen VRT screw to free the threaded rod AR, then screw out the 2 screws \mathbf{V} holding the washer \mathbf{R} and the screw VRT again; 5 remove the whole assembly as shown in the pictures;
6 clean the combustion head and the oil gun by means of a vacuum cleaner; to scrape off the scale use a metallic brush.
Note: to replace the combustion head reverse the procedure described above.

Fig. 19

Removing the oil gun (PG70-PG81)

Once the combustion head is removed, as described before, remove the oil gun as foloows:
1 unscrew the connectors from the 2 oil pipes (\mathbf{E} in figure) using 2 spanners to avoid loosening the connections attached to the distributor block);
2 loosen the screw VB
3 remove the gun with the light oil nozzle holder.
4 clean the oil gun by means of a vacuum cleaner; to scrape off the scale use a metallic brush
5 replace the oil gun, if necessary.
Note: To re-assemble, follow the procedure above in reversed order.

Fig. 20

Correct position of electrodes and combustion head

\triangle
ATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head.

To guarantee a good ignition the measures shown on the next picture Fig. 21 must be observed.
Be sure to tight the screw on the electrodes group before reassembling the combustion head.

Fig. 21

Replacing the ignition electrodes

\triangleATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head.

To replace the ignition electrodes, proceed as follows:
1 remove the burner cover;
2 disconnect the electrodes cables;
3 remove the combustion head (see par. "Removing the combustion head");
4 loose screw that fasten the ignition electrodes;
5 remove the electrodes and replace them, referring to the values quoted on Fig. 21.

Cleaning and replacing the detection photoresistor

To clean/replace the photoresistor, proceed as follows:
1 disconnect the system from the electrical power supply;
2 shut off the fuel supply;
3 remove the photoresistor from its slot;
4 clean it using a clean cloth; do not use any burner cleansing sprays;
5 if necessary, replace it;
6 insert the photoresistor into its slot.

Checking the detection current

To measure the detection signal follow the diagram on the next picture. If the signal is not in the advised range, check the electrical contacts, the cleaning of the combustion head, the position of the photoresistor and if necessary replace it.

Control box	Flame sen- sor	Minimum detec- tion signal
LMO44	QRB4	$45 \mu \mathrm{~A}$
LAL2..	QRB1	$95 \mu \mathrm{~A}$

Fig. 22

Seasonal stop

To stop the burner in the seasonal stop, proceed as follows:
1 turn the burner's main switch to 0 (Off position)
2 disconnect the power mains
3 close the fuel manual valve of the supply line

Burner disposal

In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials".

TROUBLESHOOTING

MAIN SWITCH OPEN	\bigcirc							
LINE FUSE INTERVENTION	\bigcirc							
MAX. PRESSURE SWITCH FAULT	\bigcirc							\bigcirc
FAN THERMAL CUTOUT INTERVENTION	\bigcirc							
AUXILIARY RELAIS FUSES INTERVENTION	\bigcirc							
CONTROL BOX FAULT	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc	
SERVOCONTROL FAULT						-		
SMOKEY FLAME					\bigcirc		\bigcirc	
IGNITION TRANSFORMER FAULT				\bigcirc				
IGNITION ELECTRODE DIRTY OR WRONG POSITIONED				\bigcirc				
DIRTY NOZZLE				\bigcirc			\bigcirc	
FUEL SOLENOID VALVE DEFECTIVE				\bigcirc			\bigcirc	
PHOTORESISTOR DIRTY OR DEFECTIVE					-		-	
HI-LO FLAME THERMOSTAT DEFECTIVE						\bigcirc		
WRONG POSITION OF SERVOCONTROL CAMS						-		
FUEL PRESSURE TOO LOW				\bigcirc				
DIRTY FUEL FILTERS			-	\bigcirc			\bigcirc	

ELECTRICAL WIRING DIAGRAMS
Wiring diagram 05-556 - Progressive Burners - PG60
Wiring diagram 05-1022 - Fully-modulating Burners - PG60

Dota	$03 / 07 / 1997$	PREC.	FOGLLO
Revisione 06	$/$	1	
Dis. N. $05-0556$	SEGUE	TOTALE	
		2	4

SERVOCOMANDO SERRANDA ARIA
AIR DAMPER ACTUATOR
BERGER STA12B3.41/63N32L
ST2 ALTA FIAMMA
STO SOSTAEACCENSIONE
ST1 STAND-BY AND IGNITION
ST1 BASSA FIAMMA LOW FLAME

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER ACTUATOR (ALTERNATIVE)
SIEMENS SQN72.4A4A20

Data	$03 / 07 / 1997$	PREC.	FOGLIO
Revisione	06	2	3
Dis. N. $05-0556$	SEGUE	TOTALE	
4	4		

SIGLA/ITEM	FOGLIO/SHEETFUNZIONE		FUNCTION
EVG1/2	2	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVE
FR	2	FOTORESISTENZA RILEVAZIONE FIAMMA	PHOTORESISTOR FLAME DETECTOR
FU1.0	1	FUSIBILI DI LINEA	LINE FUSES
FU1.1	1	FUSIBILE DI LINEA	LINE FUSE
FU1.3	1	FUSIBILE LINEA AUSILIARI	AUXILIARY LINE FUSE
IG	1	INTERRUTTORE GENERALE	MAINS SWITCH
IL	1	INTERRUTTORE LINEA AUSILIARI	AUXILIARY LINE SWITCH
KA2.3	2	RELE' AUSILIARIO	AUXILIARY RELAY
KM1.5	1	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
KT2.3	2	RELE' TEMPORIZZATORE	DELAYED RELAY
LAF	2	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
LB	2	LAMPADA SEGNALAZIONE BLOCCO FIAMMA	BURNER LOCK-OUT INDICATOR LIGHT
LBF	2	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
LEVG	2	LAMPADA SEGNALAZIONE APERTURA EVG	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE EVG
LM024.11/ / LM024.255 / LMO44.259	1	APPARECCHIATURA CONTROLLO FIAMMA	CONTROL BOX
LT	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN OVERLOAD TRIPPED
LTA	1	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
MV	1	MOTORE VENTILATORE	FAN MOTOR
POMAX	2	PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL)	MAXIMUM OIL PRESSURE SWITCH (OTIONAL)
PS	1	PULSANTE SBLOCCO FIAMMA (SOLO CON LMO24)	LOCK-OUT RESET BUTTON (LMO24 ONLY)
SQN72.4A4A20	2	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER ACTUATOR (ALTERNATIVE)
ST	1	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES
STA12B3.41/63N32L	2	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER ACTUATOR
TA	1	TRASFORMA TORE DI ACCENSIONE	IGNITION TRANSFORMER
TAB	2	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES
TV	1	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL

Data	$03 / 07 / 1997$	PREC.	FOGLIO
Revisione 06	3	4	
Dis. N. $05-0556$	SEGUE		

$$
\left.\begin{array}{c|ll|l}
-\sim & - & \sim \\
\hline 2.5 & \text { sc } 2.6
\end{array} \quad-\quad \right\rvert\, \begin{array}{ll}
\text { sc } 2.6 \text { On-D }
\end{array}
$$

Data	$26 / 03 / 2014$	PREC.	FOGLIO
Revisione	01	1	2
Dis. N. $05-1022$	SEGUE	TOTALE	
		6	6

(\#)
COLLEGAMENTO SOLO PER TRASDUTIORI PASSIV TRASDUCER PASSIVE CONNECTION ONLY

600V RRR0-1-T73

RWF50.2x

Data	$26 / 03 / 2014$	PREC.	FOGLIO
Revisione	01	3	4
	Dis. N.	$05-1022$	SEGUE
	TOTALE		
5	6		

IG

SERVOCOMANDO SERRANDA ARIA
AIR DAMPER ACTUATOR
BERGER STA12B3.41/63N32L
ST2 ALTAFIAMMA
HIGH FLAME
SOSTA E ACCENSIONE
ST1 STAND-BY AND IGNITION
BASSA FIAMM
LOW FLAME

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER ACTUATOR (ALTERNATIVE)
SIEMENS SQN72.4A4A20
$\begin{array}{ll}\text { I (ROSSO) } & \text { ALTA FIAMMA } \\ \text { IRED) } & \text { HOSH FLAME ACENSIONE } \\ \text { IRLU } & \text { (BLU) } \\ \text { "IBE) } & \text { STUAND-BY AND IGNITION } \\ \text { IIIRANCIO) } & \text { SASSA FIAMMA } \\ \text { III (ORANGE) } & \text { LOW FLAME }\end{array}$

Data	$26 / 03 / 2014$	PREC.	FOGLIO
Revisione	01	4	5
Dis. N. $05-1022$	SEGUE	TOTALE	
	6	6	

Data	$26 / 03 / 2014$	PREC.	FOGLIO
Revisione 01	5	6	
	01022	SEGUE	TOTALE
Dis. N. $05-1022$	6		

PG70 - PG81
Wiring diagram 07-352 - Progressive Burners - PG70-PG81
Wiring diagram 07-401 - Fully-modulating Burners PG70-PG81

CAMME SERVOCOMANDO
SERVO CONTROL CAMS
SQL33.03
Y1 ALTA FIAMMA
Y2 HIGH FLAME
STAND-BY AND IGNITION
3 BASSA FIAMMA
6 CONSENSO ALLA PARTENZA
input to start

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER SERVO CONTROL (AL TERNATIVE)
STM30/24Q15.51/641NLP)
ALTA FIAMMA
SOSTAEACCENSIONE
III STAND-BY AND IGNITION
III $\quad \begin{aligned} & \text { BASSA FIAMMA } \\ & \text { LOW FLAME }\end{aligned}$
\checkmark CONSENSO ALLA PARTENZA

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER SERVO CONTROL (AL TERNATIVE)
[SQM40.265A]
$1 \quad$ ALTA FIAMMA
SOSTA E ACCENSIONE
III STAND-BY AND IGNITION
VI \quad LOW FLAME
CONSNSOALIA PARTENZA
INPUT TO START

SIGLA/ITEM	FOGLIO/SHEET	FUNZIONE	FUNCTION
(STM30/24Q15.51/641NLP)	2	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER ACTUATOR (ALTERNATIVE)
EVG1/2	2	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVE
FR	2	FOTORESISTENZA RILEVAZIONE FIAMMA	PHOTORESISTOR FLAME DETECTOR
FU1.0	1	FUSIBILI DI LINEA	LINE FUSES
FU1.2	1	FUSIBILE DI LINEA	LINE FUSE
FU1.3	1	FUSIBILE LINEA AUSILIARI	AUXILIARY LINE FUSE
IG	1	INTERRUTTORE GENERALE	MAIN DISCONNECTOR
IL	1	INTERRUTTORE LINEA AUSILIARI	AUXILIARY LINE SWITCH
KA2.3	2	RELE' AUSILIARIO	AUXILIARY RELAY
KM1.7	1	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
KT2.4	2	RELE' TEMPORIZZATORE	DELAYED RELAY
LAF	2	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
LB	1	LAMPADA SEGNALAZIONE BLOCCO FIAMMA	BURNER LOCK-OUT INDICATOR LIGHT
LBF	2	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
LEVG	2	LAMPADA SEGNALAZIONE APERTURA EVG	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE EVG
LOA44 / LM024.255 / LMO44.255	1	APPARECCHIATURA CONTROLLO FIAMMA	FLAME MONITOR DEVICE
LT	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN OVERLOAD TRIPPED
LTA	2	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
MV	1	MOTORE VENTILATORE	FAN MOTOR
POMAX	2	PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL)	MAXIMUM OIL PRESSURE SWITCH (OTIONAL)
PS	1	PULSANTE SBLOCCO FIAMMA	LOCK-OUT RESET BUTTON
SQL33.03	2	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER ACTUATOR
ST	1	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES
TA	2	TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER
TAB	2	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES
TV	1	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL
[SQM40.265A]	2	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER ACTUATOR (ALTERNATIVE)

Data	$11 / 12 / 1996$	PREC.	FOGLIO
Revisione 07	3	4	
	07	SEGUE	TOTALE
Dis. N. $07-0352$	1	4	

$\left.$	$-\sim$	-	\sim
2.5	sc 2.6		$\quad-\quad \right\rvert\, \begin{array}{ll}\text { sc } 2.6 \text { On-D }\end{array}$

Data	$23 / 02 / 2000$	PREC.	FOGLIO
Revisione	10	1	2
	Dis. N. $07-0401$	SEGUE	TOTALE
			6

CAMME SERVOCOMANDO
ACTUATOR CAMS
SQL33.03
Y1 ALTA FIAMMA
Y2 SIGH FLAME
3 STAND-BY AND IGNITION
LOW FLAME
6 CONSENSO ALLA PARTENZA

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER ACTUATOR (ALTERNATIVE)
(STM30/24Q15.51/641NLP)
1 ALTA FIAMMA
॥ \quad SIGH FLAME
III STAND-BY AND IGNITION
BASSA FIAMMA
LOW FLAME
\checkmark CONSENSO ALLA PARTENZA
input to start

SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)
AIR DAMPER ACTUATOR (ALTERNATIVE)
[SQM40.265A]
1 ALTA FIAMMA
॥ SOSTA EACCENSIONE
SII STAND-BY AND IGNITION
COW FLAME
VI $\begin{aligned} & \text { CONSELAME } \\ & \text { CONSLA PARTENZA } \\ & \text { INPUT TO START }\end{aligned}$

Commands in the event of operational interference Stray light/premature ignition

During pre-purge and/or pre-ignition there should be no flamesignal. If there is a flame signal, eg from premature ignition due to a faulty solenoid, external light, short circuit in the photoresisto or wiring, malfunction in the flame signal amplifier, etc., at the end of pre-purge and safety time the controller locks out the burner and stops the fuel flow even during safety time.

Absence of flame

If there is no flame at the end of safety time the controller locks out immediately.

Absence of flame during operation

If there is no flame during operation the controller cuts off the supply of fuel and automatically initiates a fresh start-up programme: at the end of t4 the start-up programme ends.
Whenever there is a safety stop, terminals 3-8 and 11 are de-energised in less than 1 second; at the same time a remote lockout signal is transmitted through terminal 10. The controller can be reset after c .50 seconds.

SIEMENS OIL BURNERS AUTOMATIC CONTROLLER SIEMENS LMO14 - LMO24 - LMO44

The LMO... burner controls are designed for the start-up and supervision of single- or 2-stage forced draught oil burners in intermittent operation. Yellow-burning flames are supervised with photoresistive detectors QRB..., blue-burning flames with blue-flame detectors QRC...
In terms of housing dimensions, electrical connections and flame detectors, the LMO... are identical to the LOA... oil burner controls.

Preconditions for startup

- Burner control is reset
- All contacts in the line are closed
- No undervoltage
- Flame detector is darkened, no extraneous light

Undervoltage

- Safety shut-down in the operating position takes place should the mains voltage drop below about AC 165 V
- Restart is initiated when the mains voltage exceeds about AC 175 V

Time supervision oil pre-heater

If the oil pre-heater's release contact does not close within 10 minutes, the burner control will initiate lock-out.

Controlled intermittent operation

After no more than 24 hours of continuous operation, the burner control will initiate an automatic safety shut-down followed by a restart.

Control sequence in the event of fault

If lock-out occurs, the outputs for the fuel valves and the ignition will immediately be deactivated (< 1 second).

Cause	Response
After a mains failure	Restart
After voltage has fallen below the undervoltage threshold	Restart

In the event of a premature, faulty flame signal during «t1»	Lock-out at the end of «t1»
In the event of a premature, faulty flame signal during «tw»	Prevention of start-up, lock- out after no more than 40 seconds
If the burner does not ignite during «TSA»	Lock-out at the end of TSA
In the event the flame is lost during operation	Max. 3 repetitions, followed by lock-out
Oil pre-heater's release contact does not close within 10 min.	Lock-out

Lock-out

In the event of lock-out, the LMO... remains locked (lock-out cannot be changed), and the red signal lamp will light up. This status is also maintained in the case of a mains failure.

Resetting the burner

Whenever lock-out occurs, the burner control can immediately be reset. To do this, keep control the lock-out reset button depressed for about 1 second (< 3 seconds).

Ignition program with LMO24.113A2

If the flame is lost during «TSA», the burner will be reignited, but not later than at the end of «TSAmax.». This means that several ignition attempts can be made during TSA (refer to «Program sequence»).

Limitation of repetitions

If the flame is lost during operation, a maximum of 3 repetitions can be made. If the flame is lost for the 4th time during operation, the burner will initiate lock-out. The repetition count is restarted each time controlled switching on by «R-W-SB» takes place.

Operation

Lock-out reset button «EK...» is the key operating element for
 resetting the burner control and for activating / deactivating the diagnostic functions.

The multicolour «LED» is the key indicating element for both visual diagnosis and interface diagnosis.
s Red
I Yellow
o Green

Colour code table		
Status	Colour code	Colour
Oil pre-heater heats, waiting time «tw»	IIIIIIIIIII	Yellow
Ignition phase, ignition controlled	ImImImImIml	Yellow-off
Operation, flame o.k.	oooooooooooo	Green
Operation, flame not o.k.	omomomomomo	Green-off
Undervoltage	IsIslsIsIsl	Yellow-red
Fault, alarm	sssssssssss	Red
Output of fault code (refer to Fault code table)	smsmsmsmsm	Red-off
Extraneous light prior to burner start-up	osososososo	Green-red
Interface diagnosis	ssssssssssssss	Red flicker light

Key

m Off
I Yellow
o Green
s Red

Diagnosis of cause of fault

After lock-out, the red fault signal lamp remains steady on.
In that condition, the visual diagnosis of the cause of fault according to the error code table can be activated by pressing the lock-out reset button for more than 3 seconds.

Error code table	
Blink code	Possible cause
2 blinks **	No establishment of flame at the end of TSA - Faulty or soiled fuel valves - Faulty or soiled flame detector - Poor adjustment of burner, no fuel - Faulty ignition
3 blinks ***	Free
4 blinks ****	Extraneous light on burner startup
5 blinks *****	Free
6 blinks ******	Free
7 blinks *******	Too manny losses of fleme during operation (limitattion og the number of repetitions) - Faulty or soiled fuel valves - Faulty or soiled flame detector - Poor adjustment of burner
8 blinks ********	Time supervision oil pre-heater
9 blinks *********	Free
10 blinks **********	Wiring error or internal error, output contacts

During the time the cause of fault is diagnosed, the control outputs are deactivated.

- Burner remains shut down
- Fault status signal «AL» at terminal 10 is activated

The diagnosis of the cause of fault is quit and the burner switched on again by resetting the burner control.
Press lock-out reset button for about 1 second (< 3 seconds).

Connection diagram and internal diagram

LMO14

LMO24 - LMO44

Control sequence

LMO14

Key
AL Alarm device
kbr... Cable link (required only when no oil pre-heater is used)
BV... Fuel valve
EK1 Lock-out reset button
EK2 Remote lock-out reset button
FS Flame signal
FSV Flame signal amplifier
K... Contacts of control relay

LED 3-colour signal lamps
M Burner motor
OW Release contact of oil pre-heater
t1 Pre-purge time
t3 Pre-ignition time
t 3 n Post-ignition time
$A^{\prime} \quad$ Beginning of start-up sequence with burners using an oil preheater
A Beginning of start-up sequence with burners using no oil preheater
Controller output signals
Required input signals
OH Oil pre-heater
QRB Photoresistive detector
QRC Blue-flame detector
bl = blue
br = brown
sw = black
R Control thermostat or pressurestat
SB Safety limit thermostat
Si External primary fuse
W Limit thermostat or pressure switch
Z Ignition transformer
t4 Interval from flame signal to release «BV2»
TSA Ignition safety time
tw Waiting time for oil pre-heating
B Time of flame establishment
C Operating position
D Controlled shut-down by «R»
$\mu \mathrm{C} 1$ Microcontroller 1
$\mu \mathrm{C} 2$ Microcontroller 2

General unit data

Mains voltage
Mains frequency
External primary fuse (Si)
Power consumption
Mounting orientation
Weight
Degree of protection
Perm. cable lengths
Detector cable laid separately
Remote reset laid separately

Terminal 1
Terminals 3 and 8
Terminals 4,5 and 10
Terminals 6
Flame supervision with QRB and QRC
Min. detector current required (with flame)
Min detector current permitted (without flame)
Max. possible with flame (tipically)
AC $230 \mathrm{~V}+10$ \% / -15 \%
AC $120 \mathrm{~V}+10$ \% / -15 \%
$50 . . .60 \mathrm{~Hz} \pm 6$ \%
6.3A (slow)

12 VA
optional
approx. 200 g
IP40 (to be ensured through mounting) max. 3 m at line capacitance of $100 \mathrm{pF} / \mathrm{m}$

LMO14	LMO24	LMO44
5 A	5 A	5 A
3 A	5 A	5 A
1 A	1 A	1 A
1 A	1 A	2 A

Measurement circuit for detector current

Key
$\mu \mathrm{A} D C$
bl
sw
br

DC microamperometer with an internal resistance of 5 kW max.
Blue
Black
Brown

UNIGAS CIB EHIEASS

C.I.B. UNIGAS S.p.A.

Via L.Galvani, 9-35011 Campodarsego (PD) - ITALY
Tel. +390499200944 - Fax + 39049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

EMC conformity has been tested with the following connections

FUNCTION	CABLE TYPE	LENGTH
Power supply cable	$1 \mathrm{~mm}^{2}$	1 m
Relay output cable	$1 \mathrm{~mm}^{2}$	$3,5 \mathrm{~m}$
TC input	$0,8 \mathrm{~mm}^{2}$ compensated	5 m
Pt100 input	$1 \mathrm{~mm}^{2}$	3 m

USER'S MANUAL

COD. M12925CA Rel 1.2 08/2014

SOFTWARE VERSION 1.0x T73 code 80379 / Edition 01-06/2012

3•DESCRIPTION OF FACEPLATE

"Inc" and "Dec" key
Press to increment (decrement) any numerical parameter •• Increment (decrement) speed is proportional to time key stays pressed •• The operation is not cyclic: once the maximum (minimum) value of a field is reached, the value will not change even if the key remains pressed.

Indication of output states
OUT 1 (AL1): OUT 2 (OPEN). OUT 3 OUT 1 (AL1); OUT 2 (OPEN); OUT 3 (CLOSED)

PV Display: Indication of process variable Error Indication: LO, HI, Sbr, Err
$L O=$ the value of process variable is $<$ di LO_S
Ho the value of process variable is $>$ di
Ebr=faulty sensor or input values higher than max. limits Err= PT100 thir values lower than min. limits (i.e.: TC wrong connection)

SV display: Indication of setpoint
Function key
Gives access to the various configuration phases • Confirms change of set parameters and browses next or previous parameter (if Auto/Man key is pressed)

$4 \cdot$ CONNECTIONS

Prot	Display	Modification
0	SP, Hy.P, Hy.n	SP, Hy.P, Hy.n
1	SP, Hy.P, Hy.n	SP
2	SP	

+4 to disable InP, Out
+8 to disable CFG

6•PROGRAMMING and CONFIGURATION

N.B.: Once a particular configuration is entered, all unnecessary parameters are no longer displayed

- CFG

(*) LBA alarm may be reset by simultaneously pressing $\Delta+\nabla$ keys when OutP is displayed or by switching to Manual.

| Pro Protection code |
| :--- | | Prot | Display | Modification |
| :--- | :--- | :--- |
| 0 | SP, Hy.P, Hy.n, AL.2, AL.3, PoS, OuP, INF | SP, Hy.P, Hy.n, AL.2, AL.3, PoS |
| 1 | SP, Hy.P, Hy.n, AL.2, AL.3, PoS, OuP, INF | SP |
| 2 | SP, OuP, INF | |

+4 to disable InP , Out
+8 to disable CFG

+ 16 to disable SW "power-up - power down"
+ 32 disable manual power latching
+64 to disable manual power modification
+128 enables full configuration
Note: OuP and INF only display configuration extended

- Hrd

- Lin

- U.CAL

| U.CA | |
| :---: | :---: | :--- |
| User
 calibration | Val Function
 1 -
 2 Input 1 - custom $10 \mathrm{~V} / 20 \mathrm{~mA}$
 3 Input 1 - custom 60mV
 4 Custom PT100 / J PT100
 5 Custom PTC
 6 Custom NTC
 7 - |

Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n

$8 \cdot$ PRE-HEATING FUNCTION

Enable the pre-heating function by setting parameters GS.0, Ht.0, GS. 1 other than zero.
It consists of three phases that are activated sequentially at firing:

- Ramp 0 phase

Enabled by setting GS. $0>0$. Starting from setpoint $=P V$ (initial state), it reaches pre-heating set SP. 0 with gradient GS. 0

- Maintenance phase

Enabled by setting Ht. $0>0$. Maintains pre-heating setpoint SP. 0 for time Ht .0

- Ramp 1 phase

Enabled by setting GS. $1>0$. Starting from pre-heating setpoint SP.0, it reaches active _SP set with gradient GS. 1
In case of selftuning, the pre-heating function is not activated

9 • ADJUSTMENT WITH MOTORIZED VALVE

In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller.
For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it.
The adjustment valves vary the delivery in a modulated manner, producing finite variations in the fluid passage inner area corresponding to finite variations of the actuator input signal, coming from the controller. The servomechanism, for example, comprises an electric motor, a reducer and a mechanical transmission system which actions the valve.
Various auxiliary components can be present such as the mechanical and electrical safety end travels, manual actioning systems.

The controller determines, on the basis of the dynamics of the process, the control output for the valve corresponding to the opening of the same in such a way so as to maintain the desired value of the process variable.

Characteristic parameters for valves control

- Actuator time (Ac.t) is the time employed by the valve to pass from entirely open to entirely closed (or vice-versa), and can be set with a resolution of one second. It is a mechanical feature of the valve+actuator unit.
NOTE: if the actuator's travel is mechanically limited it is necessary to proportionally reduce the Ac.t value.
- Minimum impulse (t.Lo) expressed as a \% of the actuator time (resolution 0.1\%).

Represents the minimum change in position corresponding to a minimum change in power supplied by the instrument below which the actuator will not physically respond to the command.
This represents the minimum variation in position due to which the actuator does not physically respond to the command.
The minimum duration of the movement can be set in t.Lo, expressed as a \% of actuator time.

- Impulsive intervention threshold (t.Hi) expressed as a \% of the actuator time (resolution 0.1%) represents the position displacement (requested position real position) due to which the manoeuvre request becomes impulsive.
You can choose between 2 types of control:

1) ON time of movement $=\mathrm{t}$.on and OFF time proportional to shift and greater than or equal to t .Lo (we recommend setting t.on $=\mathrm{t} . \mathrm{Lo}$) (set t.oF = 0).
2) ON time of movement $=$ t.on and OFF time $=$ t.oF. A value set for t.oF <t.on is forced to t.on. To activate this type, set t.oF $<>0$.

The type of movement approach allows fine control of the reverse drive valve (from potentiometer or not), especially useful in cases of high mechanical inertia. Set $\mathrm{t} . \mathrm{Hi}=0$ to exclude modulation in positioning.
This type of modulated approach allows precise control of the feedback actioned valve, by a potentiometer or not, and is especially useful in cases of high mechanical inertia. Setting $\mathrm{t} . \mathrm{Hi}=0$ excludes modulation in positioning.

- Dead zone(dE.b) is a displacement band between the adjustment setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF). It is expressed as a percentage of the bottom scale and is positioned below the setpoint.
The dead zone is useful in an operative process to avoid straining the actuator with repeated commands and an insignificant effect on the adjustment. Setting $\mathrm{dE} . \mathrm{b}=0$ the dead zone is excluded.

Graph of behavior inside the band with integral time $\neq 0$.
With integral time $=0$, movement ON time is always equal to OFF time.

$$
\mathrm{t} 0=\mathrm{t} . \mathrm{Lo}
$$

Valve control modes

With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats.
V0 - for floating valve without potentiometer
Model Vo have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays; every action updates the presumed position of the virtual potentiometer calculated on the basis of the actuator travel declared time.
In this way there is always a presumed position of the valve which is compared with the position request of the controller.
Having reached a presumed extreme position (entirely open or entirely closed determined by the "virtual potentiometer") the controller provides a command in the same direction, in this way ensuring the real extreme position is reached (minimum command time $=\mathrm{t} . \mathrm{on}$).
The actuators are usually protected against the OPEN command in the entirely open position or CLOSE command in the entirely closed position.
V3 - for floating valve, PI control
When the difference between the position calculated by the controller and the only proportional component exceeds the value corresponding to the minimum impulse t.Lo the controller provides an OPEN or CLOSE command of the duration of the minimum impulse itself t .Lo.
At each delivery the integral component of the command is set to zero (discharge of the integral).
The frequency and duration of the impulses is correlated to the integral time (h.it or c.it).
Non-movement behavior
$\mathrm{t} . \mathrm{Hi}=0$: with power $=100 \%$ or 0.0%, the corresponding open or close outputs always remain enabled (safety status).
Movement behavior
t.Hi <>0: with position attained corresponding to 100% or 0.0%, the corresponding open or close outputs are switched off.

If t.oF $=0$, current function is maintained.

If t.oF $\neq 0$ movement mode will be as shown on the graph

10•CONTROL ACTIONS

Proportional Action:

action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint).
Derivative Action:
action in which contribution to output is proportional to rate of variation input deviation.
Integral Action:
action in which contribution to output is proportional to integral of time of input deviation.
Influence of Proportional, Derivative and Integral actions on response of process under control

* An increase in P.B. reduces oscillations but increases deviation.
* A reduction in P.B. reduces the deviation but provokes oscillations of the controlled variable (the system tends to be unstable if P.B. value is too low).
* An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation and prevents oscillation up to a critical value of Derivative Time, beyond which deviation increases and prolonged oscillations occur.
* An increase in Integral Action corresponds to a reduction in Integral Time, and tends to eliminate deviation between the controlled variable and the setpoint when the system is running at rated speed.
If the Integral Time value is too long (Weak integral action), deviation between the controlled variable and the setpoint may persist.
Contact GEFRAN for more information on control actions.

11•MANUAL TUNING

A) Enter the setpoint at its working value.
B) Set the proportional band at 0.1% (with on-off type setting).
C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure:

D) The PID parameters are calculated s follows: Proportional band

(V max $-\mathrm{V} \min$) is the scale range.
Integral time: $\mathrm{It}=1.5 \times \mathrm{T}$
Derivative time: $\mathrm{dt}=\mathrm{It} / 4$
E) Switch the unit to manual, set the calculated parameters. Return to PID action by setting the appropriate relay output cycle time, and switch back to Automatic.
F) If possible, to optimize parameters, change the setpoint and check temporary response. If an oscillation persists, increase the proportional band. If the response is too slow, reduce it.

12•SET GRADIENT

SET GRADIENT: if set to $\neq 0$, the setpoint is assumed equal to $P V$ at power-on and auto/man switchover. With gradient set, it reaches the local setpoint. Every variation in setpoint is subject to a gradient.
The set gradient is inhibited at power-on when self-tuning is engaged.
If the set gradient is set to $\neq 0$, it is active even with variations of the local setpoint.
The control setpoint reaches the set value at the speed defined by the gradient.

13•SOFTWARE ON / OFF SWITCHING FUNCTION

How to switch the unit OFF: hold down the "F" and "Raise" keys simultaneously for 5 seconds to deactivate the unit, which will go to the OFF state while keeping the line supply connected and keeping the process value displayed. The SV display is OFF.
All outputs (alarms and controls) are OFF (logic level 0, relays de-energized) and all unit functions are disabled except the switch-on function and digital communication.
How to switch the unit ON: hold down the " F " key for 5 seconds and the unit will switch OFF to ON. If there is a power failure during the OFF state, the unit will remain in OFF state at the next power-up (ON/OFF state is memorized).
The function is normally enabled, but can be disabled by setting the parameter Prot $=$ Prot +16 .

14•SELF-TUNING

The function works for single output systems (heating or cooling). The self-tuning action calculates optimum control parameter values during process startup. The variable (for example, temperature) must be that assumed at zero power (room temperature).
The controller supplies maximum power until an intermediate value between starting value and setpoint is reached, after which it zeros power.
PID parameters are calculated by measuring overshoot and the time needed to reach peak. When calculations are finished, the system disables automatically and the control proceeds until the setpoint is reached.

How to activate self-tuning:

A. Activation at power-on

1. Set the setpoint to the required value
2. Enable selftuning by setting the Stun parameter to 2 (CFG menu)
3. Turn off the instrument
4. Make sure the temperature is near room temperature
5. Turn on the instrument again

B. Activation from keyboard

1. Make sure that key M/A is enabled for Start/Stop selftuning (code but = 6 Hrd menu)
2. Bring the temperature near room temperature

3. Set the setpoint to the required value
4. Press key M / A to activate selftuning (Attention: selftuning interrupts if the key is pressed again)

The procedure runs automatically until finished, when the new PID parameters are stored: proportional band, integral and derivative times calculated for the active action (heating or cooling). In case of double action (heating or cooling), parameters for the opposite action are calculated by maintaining the initial ratio between parameters (ex.: $\mathrm{CPb}=\mathrm{HPb}{ }^{*} \mathrm{~K}$; where $\mathrm{K}=\mathrm{CPb} / \mathrm{HPb}$ when self-tuning starts). When finished, the Stun code is automatically cancelled.

Notes:

-The procedure does not start if the temperature is higher than the setpoint (heating control mode) or if the temperature is lower than the setpoint (cooling control mode). In this case, the Stu code is not cancelled.
-It is advisable to eneable one of the configurable LEDs to signal selftuning status.By setting one of parameters
LED1, LED2, LED3=4 or 20 on the Hrd menu, the respective LED will be on or flashing when selftuning is active.

15•ACCESSORIES

- Interface for instrument configuration

KIT PC USB / RS485 o TTL

Kit for PC via the USB port (Windows environment) for GEFRAN instruments configuration: Lets you read or write all of the parameters

- A single software for all models
- Easy and rapid configuration
- Saving and management of parameter recipes
- On-line trend and saving of historical data

Component Kit:

- Connection cable PC USB ... port TTL
- Connection cable PC USB ... RS485 port
- Serial line converter
- CD SW GF Express installation

- ORDERING CODE

GF_eXK-2-0-0

cod F049095

16•ORDER CODE

UTPUT 2			
Relay	R		
UTPUT 3			
Relay	R		

- WARNINGS

WARNING: this symbol indicates danger. It is placed near the power supply circuit and near high-voltage relay contacts.

Read the following warnings before installing, connecting or using the device:

- follow instructions precisely when connecting the device.
- always use cables that are suitable for the voltage and current levels indicated in the technical specifications.
- the device has no ON/OFF switch: it switches on immediately when power is turned on. For safety reasons, devices permanently connected to the power supply require a twophase disconnecting switch with proper marking. Such switch must be located near the device and must be easily reachable by the user. A single switch can control several units. - if the device is connected to electrically NON-ISOLATED equipment (e.g. thermocouples), a grounding wire must be applied to assure that this connection is not made directly through the machine structure.
- if the device is used in applications where there is risk of injury to persons and/or damage to machines or materials, it MUST be used with auxiliary alarm units. You should be able to check the correct operation of such units during normal operation of the device.
- before using the device, the user must check that all device parameters are correctly set in order to avoid injury to persons and/or damage to property.
- the device must NOT be used in infiammable or explosive environments. It may be connected to units operating in such environments only by means of suitable interfaces in conformity to local safety regulations.
- the device contains components that are sensitive to static electrical discharges. Therefore, take appropriate precautions when handling electronic circuit boards in order to prevent permanent damage to these components.
Installation: installation category II, pollution level 2, double isolation
The equipment is intended for permanent indoor installations within their own enclosure or panel mounted enclosing the rear housing and exposed terminals on the back.
- only for low power supply: supply from Class 2 or low voltage limited energy source
- power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label.
- install the instrumentation separately from the relays and power switching devices
- do not install high-power remote switches, contactors, relays, thyristor power units (particularly if "phase angle" type), motors, etc... in the same cabinet.
- avoid dust, humidity, corrosive gases and heat sources.
- do not close the ventilation holes; working temperature must be in the range of $0 \ldots 50^{\circ} \mathrm{C}$.
- surrounding air: $50^{\circ} \mathrm{C}$
- use $60 / 75^{\circ} \mathrm{C}$ copper (Cu) conductor only, wire size range $2 x$ No 22-14AWG, Solid/Stranded
- use terminal tightening torque 0.5 N m

If the device has faston terminals, they must be protected and isolated; if the device has screw terminals, wires should be attached at least in pairs.

- Power: supplied from a disconnecting switch with fuse for the device section; path of wires from switch to devices should be as straight as possible; the same supply should not be used to power relays, contactors, solenoid valves, etc.; if the voltage waveform is strongly distorted by thyristor switching units or by electric motors, it is recommended that an isolation transformer be used only for the devices, connecting the screen to ground; it is important for the electrical system to have a good ground connection; voltage between neutral and ground must not exceed 1 V and resistance must be less than 6Ohm; if the supply voltage is highly variable, use a voltage stabilizer for the device; use line filters in the vicinity of high frequency generators or arc welders; power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label.
- Input and output connections: external connected circuits must have double insulation; to connect analog inputs (TC, RTD) you have to: physically separate input wiring from power supply wiring, from output wiring, and from power connections; use twisted and screened cables, with screen connected to ground at only one point; to connect adjustment and alarm outputs (contactors, solenoid valves, motors, fans, etc.), install RC groups (resistor and capacitor in series) in parallel with inductive loads that work in AC (Note: all capacitors must conform to VDE standards (class x2) and support at least 220 VAC. Resistors must be at least $2 W$); fit a 1 N 4007 diode in parallel with the coil of inductive loads that operate in DC.

GEFRAN spa will not be held liable for any injury to persons and/or damage to property deriving from tampering, from any incorrect or erroneous use, or from any use not conforming to the device specifications.

Set-up for 600V RRR0-1-T73 regulator

Set up for temperature probe Pt100 (ex Siemens QAE2120 $130^{\circ} \mathrm{C}$ max.)

The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x

Verify wiring of the sensor

Regulation of the set-point $=\mathbf{8 0}$
It can be modified by using arrows "up" and "down".
By pushing F you go to parameters:

Hy.P	5 (hysteresis positive for output 1, terminals 21-22 (ex Q13-Q14)
Hy.n	-5 hysteresis negative for output ,1 terminals 21-22 (ex Q13-Q14)

Keep pushing \mathbf{F} until you see PASS, release \mathbf{F} and through the arrows set 99 , push \mathbf{F} and visualize Pro (protection code) default is 12, through the arrows set 128 and push \mathbf{F}, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	
S.tun	0
hPb	1,2
hlt	5,83
hdt	1,33
\ldots	

InP	
$\ldots \ldots$	$30($ Pt100)
tyP	1 (decimals num.)
\ldots	0 (min. sensor scale)
dP_S	850,0 (max sensor scale)
Lo.S	0 (offset of input correction)
Hi.S	30,0 (lower set-point range limit)
oFS	130,0 (upper set-point range limit)
Lo.L	
Hi.L	

Out	0
A1.r	
\ldots	3 (operating mode AL1 =inverse-relative-normal)
A1.t	
\ldots	2 (AL1)
rL. 1	18 (open)
rL.2	19 (close)
rL.3	0
rEL	9 (type of servocontrol command)
A.ty	12 (servocontrol running time: SQN72.4.../STA12.. $=12 ;$
Ac.t	SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in \% of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
\ldots	6 (PID warm)
CtrL	1
AL.nr	1
but	0
diSP	1
Ld. 1	28
Ld. 2	20
Ld.3	

Keep pushed \mathbf{F} until you visualize PASS, release \mathbf{F} and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

Manual operation :

Keep pushed the lower left key for at least 5 sec .
The instrument will enter the "MAN" mode (see also "Ld1" switching on).
Through the arrows, "Open" and "Close" outputs are activated.
To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off :

By keeping pushed keys Arrow up + F for more than 5 sec . the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.
To restore keep pushed \mathbf{F} for more than 5 sec.

Set up for temperature probe Pt100 for high temperature ($350^{\circ} \mathrm{C}$ max.)

Verify wiring of the sensor

Regulation of the set-point $=\mathbf{8 0}$
It can be modified by using arrows "up" and "down".
By pushing F you go to parameters:

Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	0
S.tun	1,2
hPb	5,83
hlt	1,33
hdt	
\ldots	

InP	
$\ldots \ldots$	$30($ Pt100 $)$
tyP	1 (decimals num.)
\ldots	0 (min. sensor scale)
dP_S	850,0 (max sensor scale)
Lo.S	0 (offset of input correction)
Hi.S	0,0 (lower set-point range limit)
oFS	350,0 (upper set-point range limit)
Lo.L	
Hi.L	

Out	
A1.r	0
\ldots	3 (mode AL1 =inverse-relative-normal)
A1.t	
\ldots	2 (AL1)
r.. 1	18 (open)
rL.2	19 (close)
rL.3	0
rEL	9 (type of servocontrol command)
A.ty	12 (servocontrol running time: SQN72.4.../STA12.. $=12 ;$
Ac.t	SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in $\%$ of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
\ldots	6 (PID warm)
CtrL	1
AL.nr	1
but	0
diSP	1
Ld. 1	28
Ld. 2	20
Ld. 3	

Keep pushed \mathbf{F} until you visualize PASS, release \mathbf{F} and through the arrows set 99 , push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec .
The instrument will enter the "MAN" mode (see also "Ld1" switching on).
Through the arrows, "Open" and "Close" outputs are activated.
To come back to normal working keep the lower left key pushed for at least 5 sec .

Software switch off :

By keeping pushed keys Arrow up + F for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.
To restore keep pushed \mathbf{F} for more than 5 sec.

Set up for pressure transmitter 2 wires signal $4 \div 20 \mathrm{~mA}$

With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt

Verify wiring of the sensor
Impostazione set-point

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Set-point	1 bar	$1,5 \mathrm{bar}$	6 bar	6 bar	6 bar	6bar

To modify it directly use "up" and "down" arrows.
By pushing F you go to parameter:

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Hy.P	0,2bar	$0,5 \mathrm{bar}$	$0,5 \mathrm{bar}$	$0,8 \mathrm{bar}$	$1,25 \mathrm{bar}$	2bar
Hy.n	Obar	Obar	Obar	Obar	Obar	Obar

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	0
S.tun	5
hPb	1,33
hlt	0,33
hdt	
\ldots	

InP							
\ldots							
tyP			$44(4 \div 20 \mathrm{~mA})$				
\ldots			(
dP_S			2 (decimals num.)				
Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar	
Lo.S	0,00	0,00	0,00	0,00	0,00	0,00	min. sensor scale
Hi.S	1,60	3,00	10,00	16,00	25,00	40,00	max sensor scale
oFS	0	0	0	0	0	0	offset of input correction
Lo.L	0,00	0,00	0,00	0,00	0,00	0,00	lower set-point setting
Hi.L	1,60	3,00	10,00	16,00	25,00	40,00	upper set-point setting

Out	
A1.r	0
\ldots	3 (mode AL1 =inverse-relative-normal)
A1.t	
\ldots	2 (AL1)
rL.1	18 (open)
rL.2	19 (close)
rL.3	0
rEL	9 (type of servocontrol command)
A.ty	12 (servocontrol running time: SQN72.4.../STA12.. $=12 ;$
Ac.t	SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in \% of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
\ldots	6 (PID warm)
CtrL	1
AL.nr	1
but	0
diSP	1
Ld. 1	28
Ld.2	20
Ld.3	

Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec.
The instrument will enter the "MAN" mode (see also "Ld1" switching on).
Through the arrows, "Open" and "Close" outputs are activated.
To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off :

By keeping pushed keys Arrow up + F for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.
To restore keep pushed \mathbf{F} for more than 5 sec.

Set -up for thermocouples type $K_{\text {or }} \mathbf{J}$

Verify wiring of the sensor

Function indicators Indicates modes of operation	CINICHS CIE enfigas 600 V	Indication of output states OUT 1 (AL1); OUT 2 (OPEN); OUT 3 (CLOSED)
L1 MAN/AUTO $=$ OFF (automatic control)		
ON (manual control)		PV Display. Indication of process variable Error Indication: LO, HI, Sbr, Err $L O=$ the value of process variable is $<$ di LO_S $H I=$ the value of process variable is $>$ di HI_S Sbr= faulty sensor or input values higher than max. limits Err= PT100 third wire opened for PT100, PTC or input values lower than min. limits (i.e.: TC wrong connection)
L2 PRE-HEATING $=$ ON (running)		
L3 \quad SELFTUNING $=\mathrm{ON}$ (enabled Self) OFF (disabled Self)		
Automatic/Manual adjustment selection Active only when PV display visualises the process variable (button pressed for at least 5 sec .)		
		SV display: Indication of setpoint
		Function key Gives access to the various configuration phases .. Confirms change of set parameters and browses next or previous parameter (if Auto/Man key is pressed)
"Inc" and "Dec" key Press to increment (decrement) any numerical parameter $\boldsymbol{\bullet}$ Increment (decrement) speed is proportional to time key stays pressed •• The operation is not cyclic: once the maximum (minimum) value of a field is reached, the value will not change even if the key remains pressed.		

Regulation of the set-point $=\mathbf{8 0}$
It can be modified by using arrows "up" and "down".
By pushing F you go to parameters:

Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release \mathbf{F} and through the arrows set 99 , push \mathbf{F} and visualize Pro (protection code) default is 12, through the arrows set 128 and push \mathbf{F}, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	0
S.tun	1,2
hPb	5,83
hlt	1,33
hdt	
\ldots	

InP	
\ldots	2 (thermocouple $\left.\mathbf{K} 0 \div 1300^{\circ} \mathrm{C}\right) / 0$ (thermocouple $\mathbf{J} 0 \div 1000^{\circ} \mathrm{C}$)
tyP	
\ldots	0 (no decimal) $/ 1(1$ decimal)
dP_S	0 (min. sensor scale)
Lo.S	1300 (max sensor scale for tc $\mathbf{K}) / 1000$ (max sensor scale for tc \mathbf{J})
Hi.S	0 (offset of input correction)
oFS	0 (lower set-point range limit)
Lo.L	1300 (upper set-point range limit) per tc $\mathbf{K} / 1000$ for tc \mathbf{J}
Hi.L	

Out	
A1.r	0
\ldots	3 (mode AL1 =inverse-relative-normal)
A1.t	
\ldots	2 (AL1)
rL. 1	18 (open)
rL.2	19 (close)
rL.3	0
rEL	9 (type of servocontrol command)
A.ty	12 (servocontrol running time: SQN72.4.../STA12.. $=12 ;$
Ac.t	SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in $\%$ of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
\ldots	6 (PID warm)
CtrL	1
AL.nr	1
but	0
diSP	1
Ld.	28
Ld. 2	20
Ld.3	

Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec.
The instrument will enter the "MAN" mode (see also "Ld1" switching on).
Through the arrows, "Open" and "Close" outputs are activated.
To come back to normal working keep the lower left key pushed for at least 5 sec .

Software switch off :

By keeping pushed keys Arrow up + F for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.
To restore keep pushed \mathbf{F} for more than 5 sec .

RWF50.2x \& RWF50.3x

DEVICE INSTALLATION

Install the device using the relevant tools as shown in the figure.
To wire the device and sensors, follow the instructions on the burner wiring diagram.

FRONT PANEL

NAVIGATION MENU

RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow:

Set-point: set or modification:

When the burner is in stand-by, (safety loop open, that is terminals $3-4 / \mathrm{T} 1-\mathrm{T} 2$ on the 7 pole plug open) push the Enter button: on the lower display (green) Opr appears; push Enter again and in the same display SP1 appears. Push Enter again and the lower display (green SP1) flashes. Using the up and down arrows change the set-point on the upper display (red).Push Enter to confirm and push ESC more times to get the home position.

PID parameters set and modifications (see table below):

- Push Enter button, on the green display Opr appears; using the down arrow, scroll until group PArA is reached and push Enter.
- on the green display Pb1 e appears and on the red one the set parameter
- Push is sequence the down or up arrow the menu is scrolled.
- Push Enter to select and the arrows to choose the desired value. Enter to confirm.

Parameter	Display	Range	Factory setting	Remarks
Proportional band	PB.1	$1 \ldots 9999$ digit	10	Typical value for temperature
Derivative action	dt	$0 \ldots 9999$ sec.	80	Typical value for temperature
Integral action	rt	$0 \ldots 9999$ sec.	350	Typical value for temperature

(*)Parameters affected by setting of decimal place (ConF > dISP parameter dECP)

Setting the kind of sensor to be connected to the device:

- push the Enter button: on the lower display (green) Opr appears. Using the up and down arrows find ConF. Push Enter to confirm.
- Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm.
- You are inside InP1; the green display shows Sen1 (sensor type), while the red display shows the chosen sensor code
- Push Enter to enter the Sen1 parameter, then choose the desired sensor using the arrows. Push Enter to confirm and ESC to escape.
- Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below.

ConF > InP > $\operatorname{lnP1}$

Parameter	Value	Description
SEn1 type of sensor for analog input 1	1	Pt100 3 fili
	2	Pt100 2 fili
	3	Pt1000 3 fili
	4	Pt1000 2 fili
	5	Ni1000 3 fili
	6	Ni1000 2 fili
	7	$0 \div 135$ ohm
	15	$0 \div 20 \mathrm{~mA}$
	16	$4 \div 20 \mathrm{~mA}$
	17	$0 \div 10 \mathrm{~V}$
	18	$0 \div 5 \mathrm{~V}$
	19	$1 \div 5 \mathrm{~V}$
OFF1 sensor offset	-1999..0.. +9999	Using the measured value correction (offset), a measured value can be corrected to a certain degree, either up or down
$\begin{aligned} & \text { SCL1 } \\ & \text { scale low level } \end{aligned}$	-1999..0.. +9999	In the case of a measuring transducer with standard signal, the physical signal is assigned a display value here (for input ohm, mA, V)
$\mathrm{SCH} 1$ scale high level	-1999..100.. +9999	In the case of a measuring transducer with standard signal, the physical signal is assigned a display value here (for input ohm, mA, V)
dF1 digital filter	0...0,6... 100	Is used to adapt the digital 2nd order input filter (time in s; $0 \mathrm{~s}=$ filter off)
Unit temperature unit	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$1=$ degrees Celsius $2=$ degrees Fahrenheit

(bold = factory settings)

Remark:

RWF50.2 e RWF50.3 cannot be connected to thermocouples.
If thermocouples have to be connected, convert the signal to a 4-20 mA one and set the RWF accordingly.

ConF > Cntr

Parameter	Value	Description
CtYP controller type	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$	1 = 3-position controller (open-stop-close only RWF50.2) 2 = continuative action controller (only RWF50.3)
CACt control action	$\begin{aligned} & \hline 1 \\ & 0 \\ & \hline \end{aligned}$	1 = heating controller $0=$ cooling controller
SPL least value of the set-point range	-1999..0..+9999	set-point limitation prevents entry of values outside the defined range
SPH maximum value of the set-point range	-1999..100..+9999	set-point limitation prevents entry of values outside the defined range
olLo set-point limitation start, operation limit low	-1999.... +9999	lower working range limit
oLHi set-point limitation end, operation limit high	-1999.... +9999	upper working range limit

(bold = factory settings)

ConF > rAFC

Activation boiler shock termic protetion:
RWF50.. can activate the thermal shock protection only on sites where the set-point is lower than $250^{\circ} \mathrm{C}$ and according to rAL parameter.

Parameter	Value	Description
FnCT function	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	Choose type of range degrees/time $0=$ deactivated 1 = Kelvin degrees/minute 2 = Kelvin degrees/hour
rASL ramp rate	0,0 ... 999,9	Slope of thermal shock protection (only with functions 1 and 2)
toLP tolerance band ramp	0...9999	width of tolerance band (in K) about the set-point 0 = tolerance band inactive
rAL ramp limit	0... 250	Ramp limit. When this value is lower than the temperature setpoint, the RWF controls the output increasing the temp set point step by step according to rASL. If this is over the temp set point, the control is performed in cooling.

(bold = factory settings)

ConF > OutP (parameter under group only for RWF50.3)

Parameter	Value	Description
FnCt tipo di controllo	$\begin{array}{r} 1 \\ 4 \\ \hline \end{array}$	1 = analog input 1 doubling with possibility to convert (depending on par SiGn) $4=$ modulation controller
SiGn type of output signal	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { physical output signal (terminals A+, A-) } \\ & 0=0 \div 20 \mathrm{~mA} \\ & 1=4 \div 20 \mathrm{~mA} \\ & 2=0 \div 10 \mathrm{~V} \end{aligned}$
rOut Value when out of input range	0... 101	signal (in percent) when measurement range is crossed
oPnt zero point	-1999...0..+9999	value range of the output variable is assigned to a physical output signal Per default, the setting corresponds to $0 . . .100 \%$ angular positioning for the controller outputs (terminals A+, A-) (effective only with $\mathrm{FnCt}=1$)
End End value	-1999...100..+9999	value range of the output variable is assigned to a physical output signal Per default, the setting corresponds to $0 . . .100 \%$ angular positioning for the controller outputs (terminals A+, A-) (effective only with $\mathrm{FnCt}=1$)

(bold = factory settings)

ConF > binF

Parameter	Value	Description
bin1		0 = without function
digital inputs		1 = set-point changeover (SP1 / SP2)
(terminals DG - D1)	0	2 = set-point shift (Opr > dSP parameter = value of set-point
	1	modify)
	2	$4=$ changeover of operating mode
	4	open - modulating operation;
	close -2 stage operation.	

(bold = factory settings)
ConF > dISP

Parameter	Value	Description
diSU upper display (red)	$\begin{aligned} & 0 \\ & 1 \\ & 4 \\ & 6 \\ & 7 \end{aligned}$	display value for upper display: 0 = display power-off 1 = analog input value 4 = Controller's angular positioning $6=$ set-point value 7 = end value with thermal shock protection
diSL lower display (green)	$\begin{aligned} & 0 \\ & 1 \\ & 4 \\ & 6 \\ & 7 \end{aligned}$	display value for lower display: 0 = display power-off 1 = analog input value 4 = Controller's angular positioning 6 = set-point value 7 = end value with thermal shock protection
tout timeout	0..180.. 250	time (s) on completion of which the controller returns automatically to the basic display, if no button is pressed
dECP decimal point	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	$0=$ no decimal place 1 = one decimal place 2 = two decimal places
CodE level lockout	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	0 = no lockout 1 = configuration level lockout (ConF) 2 = Parameter and configuration level lockout (PArA \& ConF) 3 = keyboard lockout

(bold = factory settings)

Manual control :

- in order to manual change the burner load, while firing keep pushing the ESC button for more than 5 s ; on the lower green display Hand appears.
- using the UP and DOWN arrows, the load varies.
- Keep pushing the ESC button for getting the normal operation again.
- NB: every ime the device shuts the burner down (start led switched off - contact $1 \mathrm{~N}-1 \mathrm{P}$ open), the manual control is not active.

Device self-setting (auto-tuning):

If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request

Follow the below instructions:
push the UP and DOWN arrows for more than 5 s ; on the green lower display TUNE appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates PID parameters ($\mathbf{P b 1}$, $\mathbf{d t}$ and $\mathbf{r t}$). After the calculations, the TUNE is automatically deactivated and the device has already stored them. In order to stop the Auto-tuning function while it works, push again the UP and DOWN arrows for more than 5 s . The calculated PID parameters can be manually modified following the previously described instructions.

Display of software version :

SIEMENS

The software version is shown by pushing Enter + UP arrow on the upper display

Electric connection :

Matches terminals between RWF50.2 and RWF40.0x0

SIEMENS RWF50.2												
-	$\begin{aligned} & K Q \\ & \varnothing \end{aligned}$	$\begin{aligned} & \text { K2 } \\ & \varnothing \end{aligned}$	$\begin{aligned} & \text { K3 } \\ & \varnothing \end{aligned}$	$\begin{aligned} & 1 \mathrm{~N} \\ & \varnothing \end{aligned}$	$\begin{aligned} & 1 P \\ & \varnothing \end{aligned}$	\varnothing	$\stackrel{N}{\varnothing}$	G-	$\stackrel{G+}{\varnothing}$	$\begin{aligned} & 13 \\ & \varnothing \end{aligned}$	$\begin{aligned} & 12 \\ & \varnothing \end{aligned}$	$\begin{aligned} & 11 \\ & \varnothing \end{aligned}$

SIEMENS RWF40.0x0													
	$\begin{aligned} & Y 1 \\ & \varnothing \end{aligned}$	$\begin{aligned} & Y 2 \\ & \varnothing \end{aligned}$	$\begin{aligned} & \text { Q13 } \\ & \varnothing \end{aligned}$	$\begin{aligned} & \text { Q14 } \\ & \varnothing \end{aligned}$	$\begin{aligned} & \mathrm{L} 1 \\ & \varnothing \end{aligned}$	$\stackrel{N}{\varnothing}$	$\begin{aligned} & \mathrm{TE} \\ & \varnothing \end{aligned}$	$\begin{aligned} & \mathrm{U1} \\ & \varnothing \end{aligned}$	\varnothing	\varnothing	$\begin{aligned} & \text { M1 } \\ & \varnothing \end{aligned}$	$\begin{aligned} & 11 \\ & \varnothing \end{aligned}$	$\begin{aligned} & \mathrm{G} 1+ \\ & \varnothing \end{aligned}$

Parameters summarising for RWF50.2x:

Navigation menù	Conf					Conf			PArA						Opr
	Inp					Cntr		diSP							
	Inp1														
Types of probe	SEn1	OFF1	SCL1	SCH1	Unit	SPL	SPH	dECP	Pb. 1	dt	rt	tt	HYS1 (*)	HYS3 (*)	SP1 (*)
Siemens QAE2120...	6	0	needless	needless	1	30	95	1	10	80	350	(\#)	-5	5	$80^{\circ} \mathrm{C}$
Siemens QAM2120..	6	0	needless	needless	1	0	80	1	10	80	350	(\#)	-2,5	2,5	$40^{\circ} \mathrm{C}$
Pt1000 ($130^{\circ} \mathrm{C}$ max.)	4	0	needless	needless	1	30	95	1	10	80	350	(\#)	-5	5	$80^{\circ} \mathrm{C}$
Pt1000 (350 ${ }^{\circ} \mathrm{C}$ max.)	4	0	needless	needless	1	0	350	1	10	80	350	(\#)	-5	10	$80^{\circ} \mathrm{C}$
Pt100 ($130^{\circ} \mathrm{C}$ max.)	1	0	needless	needless	1	0	95	1	10	80	350	(\#)	-5	5	$80^{\circ} \mathrm{C}$
Pt100 $\left(350^{\circ} \mathrm{C}\right.$ max)	1	0	needless	needless	1	0	350	1	10	80	350	(\#)	-5	10	$80^{\circ} \mathrm{C}$
Probe $4 \div 20 \mathrm{~mA} \mathrm{/} \mathrm{0} ~ 1 ~ 1,6 \mathrm{bar}$	16	0	0	160	needless	0	160	0	5	20	80	(\#)	0	20	100 kPa
Probe $4 \div 20 \mathrm{~mA} / 0 \div 3 \mathrm{bar}$	16	0	0	300	needless	0	300	0	5	20	80	(\#)	0	20	200 kPa
Probe $4 \div 20 \mathrm{~mA} / 0 \div 10 \mathrm{bar}$	16	0	0	1000	needless	0	1000	0	5	20	80	(\#)	0	50	600 kPa
Probe $4 \div 20 \mathrm{~mA} / 0 \div 16 \mathrm{bar}$	16	0	0	1600	needless	0	1600	0	5	20	80	(\#)	0	80	600 kPa
Probe $4 \div 20 \mathrm{~mA} / 0 \div 25$ bar	16	0	0	2500	needless	0	2500	0	5	20	80	(\#)	0	125	600 kPa
Probe 4 $\div 20 \mathrm{~mA} \mathrm{/} \mathrm{0} ~+40$ bar	16	0	0	4000	needless	0	4000	0	5	20	80	(\#)	0	200	600 kPa
Siemens QBE2002 P4	17	0	0	400	needless	0	400	0	5	20	80	(\#)	0	20	200 kPa
Siemens QBE2002 P10	17	0	0	1000	needless	0	1000	0	5	20	80	(\#)	0	50	600 kPa
Siemens QBE2002 P16	17	0	0	1600	needless	0	1600	0	5	20	80	(\#)	0	80	600 kPa
Siemens QBE2002 P25	17	0	0	2500	needless	0	2500	0	5	20	80	(\#)	0	125	600 kPa
Siemens QBE2002 P40	17	0	0	4000	needless	0	4000	0	5	20	80	(\#)	0	200	600 kPa
Segnale 0 $\div 10 \mathrm{~V}$	17	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(\#)	to be fixed	to be fixed	to be fixed
Segnale 4 $\div 20 \mathrm{~mA}$	16	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(\#)	to be fixed	to be fixed	to be fixed

NOTE

(\#) tt - servo control run time
SQL33 ; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (secondi)
(*) * These values are factory set - values must be set during operation at the plant based on the real working temperature/pressure value.
WARNING: With pressure probes the parameters SP1, SCH, SCL, HYS1, HYS3 must be selected, and visualized in kPa (kilo Pascal). ($1 \mathbf{1 \mathrm { bar }} \equiv \underline{100.000 \mathrm{~Pa}} \equiv \underline{100 \mathrm{kPa}})$

APPENDIX: PROBES CONNECTION

To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location.
Measurement is taken based on design features (time constant) and according to specific operating conditions.With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements.

Ambient probes (or ambient thermostats)

Installation

The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by
foreign factors.

It's good to be admired ...even better to be effective
Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system.

Location

On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m , at least 1.5 m away from external sources of heat (or cold).

Installation position to be avoided

near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them.

Outside probes (weather)

Installation

In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance.

General rule: on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade.

Positions to be avoided

Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever roofs.
The sensor must not be painted (measurement error).

Duct or pipe sensors

Installing temperature sensors

For measuring outlet air:

- after delivery fan or
- after coil to be controlled, at a distance of at least 0,5 m

For measuring room temperature:

- before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator.

Bend 0.4 m sensor by hand (never use tools) as illustrated.

Use whole cross-section of duct, min. distance from walls 50 mm , radius of curvature 10 mm for 2 m or 6 m sensors.

Installing combined humidity sensors

As max. humidity limit sensor on outlet (steam humidifiers).

Installing pressure sensors

A - installation on ducts carrying fluids at max. temperature $80^{\circ} \mathrm{C}$
B - installation on ducts at temperature over $80^{\circ} \mathrm{C}$ and for refrigerants
C - installation on ducts at high temperatures:

- increase length of siphon
- place sensor at side to prevent it being hit by hot air coming from the pipe.

Installing differential pressure sensors for water

- Installation with casing facing down not allowed.-With temperature over $80^{\circ} \mathrm{C}$, siphons are needed.
- To avoid damaging the sensor, you must comply with the following instructions
when installing:
- make sure pressure difference is not greater than thevalue permitted by the sensor
- when there are high static pressures, make sure you insert shutoff valves A-B-C.

Putting into operation

Start disable
1=open C1=open C
$2=$ open $A 2=$ close B
$3=$ open B3=close A
4= close C

Immersion or strap-on sensors

Placing the probes (QAD22.../QAE21.../QAP21.../RCA...)

With pumps on outlet

with 3 ways valves / with 4 ways valves

Panel system / burner control

With pumps on return

with 3 ways valves / with 4 ways valves

Immersion probes installation

Sensors must be installed on the stretch of pipe in which fluid circulates all the time.
The rigid stem (sensing element doing the measuring) must be inserted by at least 75 mm and must face the direction of flow.
Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid.
Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.)

Installing QAD2.. strap-on sensors

Make sure fluid is circulating in the chosen location.
Eliminate insulation and paintwork (including rust inhibitor) on a min. 100 mm length of pipe.
Sensors come with straps for pipes up to 100 mm in diameter

Strap-on or immersion sensors?

QAD2.. strap-on sensors
Advantages :

- 10 sec. time constant
- Installed with system running (no plumbing work)
- Installation can be changed easily if it proves incorrect.

Limits:

- Suitable for pipe diameters max. 100 mm
- Can be affected by currents of air etc.

QAE2... immersion sensors
Advantages:

- Measure "mean" fluid temperature
- No external influence on measurement such as: currents of air, nearby pipes etc.
Limits:
- Time constant with sheath: 20 sec .
- Hard to change installation position if it proves incorrect.

Installing differential pressure probes for air

A - Control a filter (clogging)

B - Control a fan (upstream/downstream)

C - Measurement of difference in pressure between two ducts

$-(+)$
D - Measurement of difference in pressure between two rooms or of inside of duct and outside

Basic principles

Measuring dinamic pressure

$$
P d=\frac{y \vartheta^{2}}{2 g}
$$

y $\quad \mathrm{Kg} / \mathrm{m}^{3}$, specific weight of air m / s, air speed
g $\quad 9.81 \mathrm{~m} / \mathrm{s}^{2}$ gravity acceleration Pd mm C.A., dynamic pressure

Measuring total pressure

Spare parts

Description	Code
Modulator RWF50.2 (uscita a 3 punti - apri, fermo, chiudi)	2570148
Modulator RWF50.3 (uscita continua $0 \div 20 \mathrm{~mA}, 4 \div 20 \mathrm{~mA}, 0 \div 10 \mathrm{~V}$)	2570149
Temperature probe Siemens QAE2120.010A ($30 \div 130^{\circ} \mathrm{C}$)	2560101
Temperature probe Siemens QAM2120.040 ($-15 \div+50^{\circ} \mathrm{C}$)	2560135
Thermoresistor Pt1000 ø6mm L100mm ($30 \div 130^{\circ} \mathrm{C}$)	2560188
Thermoresistor Pt1000 ø10mm L200mm ($0 \div 350^{\circ} \mathrm{C}$)	2560103
Thermoresistor Pt100 ø10mm L200mm ($0 \div 350^{\circ} \mathrm{C}$)	2560145
Thermoresistor Pt100 ø8mm L85mm ($0 \div 120^{\circ} \mathrm{C}$)	25601C3
Pressure probe Siemens QBE2.. P4 (0 \div 4bar)	2560159
Pressure probe Siemens QBE2.. P10 ($0 \div 10 \mathrm{bar} /$ signal $0 \div 10 \mathrm{~V}$)	2560160
Pressure probe Siemens QBE2.. P16 ($0 \div 16 \mathrm{bar} /$ signal $0 \div 10 \mathrm{~V}$)	2560167
Pressure probe Siemens QBE2.. P25 ($0 \div 25 \mathrm{bar} /$ signal $0 \div 10 \mathrm{~V}$)	2560161
Pressure probe Siemens QBE2.. P40 ($0 \div 40 \mathrm{bar}$ / signal 0 $\div 10 \mathrm{~V}$)	2560162
Pressure probe Danfoss MBS 3200 P 1,6 ($0 \div 1,6 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	2560189
Pressure probe Danfoss MBS 3200 P 10 ($0 \div 10 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	2560190
Pressure probe Danfoss MBS 3200 P 16 ($0 \div 16 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	2560191
Pressure probe Danfoss MBS 3200 P 25 ($0 \div 25$ bar / signal $4 \div 20 \mathrm{~mA}$)	2560192
Pressure probe Danfoss MBS 3200 P 40 ($0 \div 40 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	2560193
Pressure probe Siemens 7MF1565-3BB00-1AA1 ($0 \div 1,6 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	25601A3
Pressure probe Siemens 7MF1565-3CA00-1AA1 ($0 \div 10 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	25601A4
Sonda di pressione Siemens 7MF1565-3CB00-1AA1 (0%16bar / signal	25601A5
Pressure probe Siemens 7MF1565-3CD00-1AA1 (0 $\div 25$ bar / signal 4 $\div 20 \mathrm{~mA}$)	25601A6
Pressure probe Siemens 7MF1565-3CE00-1AA1 ($0 \div 40 \mathrm{bar} /$ signal $4 \div 20 \mathrm{~mA}$)	25601A7
Pressure probe Gefran E3E B1V6 MV ($0 \div 1,6 \mathrm{bar}$ / segnale 4 $\div 20 \mathrm{~mA}$)	25601C4
Pressure probe Danfoss E3E B01D MV ($0 \div 10 \mathrm{bar}$ / segnale 4 $\div 20 \mathrm{~mA}$)	25601C5
Pressure probe Danfoss E3E B16U MV ($0 \div 16 \mathrm{bar}$ / segnale 4 $4 \div 20 \mathrm{~mA}$)	25601C6
Pressure probe Danfoss E3E B25U MV ($0 \div 25$ bar / segnale $4 \div 20 \mathrm{~mA}$)	25601C7
Pressure probe Danfoss E3E B04D MV ($0 \div 40 \mathrm{bar}$ / segnale 4 $\div 20 \mathrm{~mA}$) $)$	25601C8

Note: Specifications and data subject to change. Errors and omissions excepted.

KM3 Modulator

USER MANUAL

MOUNTING

DISPLAY AND KEYS

	Operator Mode	Editing Mode
\square	Access to: - Operator Commands (Timer, Setpoint selection ...) - Parameters - Configuration	Confirm and go to Next parameter
	Access to: - Operator additional information (Output value, running time ...)	Increase the displayed value or select the next element of the parameters list
	Access to: - Set Point	Decrease the displayed value or select the previous element
	Programmable key: Start the programmed function (Autotune, Auto/Man, Timer ...)	Exit from Operator commands/Parameter setting/Configuration

CONNECTIONS DIAGRAM

Probe connection:

- PT1000/NTC/PTC: between terminal 3 and 2
- PT 100: between terminal 3 and 2 with terminal 1
- Passive pressure probe 0/4-20 mA: between terminal 4 (+) e 1 (-) Note: out4 must be activated (IO4F must be setted to ON)
- Powered pressure probe 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive) Note: set IO4F to ON to activate Out4

Power supply connection:

- Neutral wire: terminal 9
- Phase: terminal 10 ($100 \ldots 240 \mathrm{Vac}$)
- Close terminals 15-16 to switch to the set point 2

Output connection:

- Channel 1: terminal 7 and 8 (burner on - off)
- Channel 2: terminal 11 and 12 (servomotor opens)
- Channel 3: terminal 13 and 14 (servomotor closes)

SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)

Push the $\boldsymbol{\square}$ button to enter into the setpoint configuration:

To return to normal mode, press the key for 3 seconds or wait the 10 s timeout

Operation example

LIMITED ACCESS LEVEL

Proceed as follows to change some parameters that are not visible in standard user mode:

Press the $\boldsymbol{\omega}$ key for 3 seconds

Password $=20$

Access to parameter:

$\boldsymbol{\Delta}$	Increase the displayed value
$\boldsymbol{\nabla}$	Decrease the displayed value
$\boldsymbol{\omega}$	Confirm and go to next parameter

Param	Description	Values	Default
SEnS	Input type	$\begin{array}{\|l\|} \hline \text { Pt1 }=\text { RTD Pt100 } \\ \text { Pt10 }=\text { RTD Pt1000 } \\ 0.20=0 . .20 \mathrm{~mA} \\ 4.20=4 . .20 \mathrm{~mA} \text { Pressure probe } \\ 0.10=0 . .10 \mathrm{~V} \\ 2.10=2 . .10 \mathrm{~V} \\ \text { crAL }=\text { Thermocouple } \mathrm{K} \end{array}$	Depends on the probe
SP	Set point 1	SPLL ... SPLH	See page 7
AL1	AL1 threshold	AL1L... AL1H (E.U.)	
HAL1	AL1 hysteresis	1... 9999 (E.U.)	
Pb	Proportional band	1... 9999 (E.U.)	
ti	Integral time	0 (oFF) ... 9999 (s)	
td	Derivative time	0 (oFF) ... 9999 (s)	
Str.t	Servomotor stroke time	5...1000 seconds	
db.S	Servomotor dead band	0...100\%	
SPLL	Minimum set point value	-1999 ... SPHL	
SPHL	Maximum set point value	SPLL ... 9999	
dp	Decimal point position	0... 3	
SP 2	Set point 2	SPLL...SPLH	60
A.SP	Selection of the active set point	"SP" ... " nSP"	SP

To exit the parameter setting procedure press the key (for 3 s) or wait until the timeout expiration (about 30 seconds)
Probe parameters configuration MODULATORE ASCON KM3

Parameter Group	inP						AL1		rEG					SP		
Parameter	Sens	dp	SSC	FSc	unit	$\begin{gathered} \text { IO4.F } \\ (* *) \\ \hline \end{gathered}$	AL1 (***)	HAL1 (***)	$\begin{aligned} & \mathrm{Pb} \\ & \text { (***) } \end{aligned}$	$\begin{gathered} \mathrm{ti} \\ (* * *) \end{gathered}$	$\begin{aligned} & \text { td } \\ & (* * *) \end{aligned}$	Str.t	db.S	SPLL	SPHL	$\begin{aligned} & \hline \text { SP } \\ & (* * *) \end{aligned}$
Probes		Dec Point	Scale Min	Scale Max			Off	On	p	-	d	servo time s	Band Mo.	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{Min} \end{aligned}$	$\begin{aligned} & \hline \text { SP } \\ & \mathrm{Max} \\ & \hline \end{aligned}$	Set point
Pt1000 ($130^{\circ} \mathrm{C}$ max)	Pt10	1			${ }^{\circ} \mathrm{C}$	on	5	10	10	350	1	*	5	30	95	80
Pt1000 ($350^{\circ} \mathrm{C}$ max)	PT10	1			${ }^{\circ} \mathrm{C}$	on	10	10	10	350	1	*	5	0	350	80
Pt100 ($130^{\circ} \mathrm{C}$ max)	PT1	1			${ }^{\circ} \mathrm{C}$	on	5	10	10	350	1	*	5	0	95	80
Pt100 ($350^{\circ} \mathrm{C}$ max)	Pt1	1			${ }^{\circ} \mathrm{C}$	on	10	10	10	350	1	*	5	0	350	80
Pt100 ($0 \div 100^{\circ} \mathrm{C} 4 \div 20 \mathrm{~mA}$)	4.20	1	0	100		on	5	10	10	350	1	*	5	0	95	80
Thermocouple K ($1200^{\circ} \mathrm{C}$ max)	crAL	0			${ }^{\circ} \mathrm{C}$	on	20	25	10	350	1	*	5	0	1200	80
Thermocouple $\mathrm{J}\left(1000^{\circ} \mathrm{C} \mathrm{max}\right)$	J	0			${ }^{\circ} \mathrm{C}$	on	20	25	10	350	1	*	5	0	1000	80
4-20mA / 0-1,6barPressure probe	4.20	0	0	160		on	20	20	5	120	1	*	5	0	160	100
4-20mA/ 0-10bar Pressure probe	4.20	0	0	1000		on	50	50	5	120	1	*	5	0	1000	600
4-20mA/ 0-16bar Pressure probe	4.20	0	0	1600		on	80	80	5	120	1	*	5	0	1600	600
4-20mA/ 0-25bar Pressure probe	4.20	0	0	2500		on	125	125	5	120	1	*	5	0	2500	600
4-20mA / 0-40bar Pressure probe	4.20	0	0	4000		on	200	200	5	120	1	*	5	0	4000	600
QBE2002 / 0-25bar Pressure probe	0.10	0	0	2500		On	125	125	5	120	1	*	5	0	2500	600

CONFIGURATION

How to access configuration level

The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions).

1. Push the button for more than 5 seconds. The upper display will show PASS while the lower display will show 0.
2. Using $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ buttons set the programmed password.

According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section.
a. Enter " 30 " as password to view all the configuration parameters
b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv $=\mathbf{A}$ or Liv $=\mathbf{O}$ will be editable.
c. Leave the password blank to edit "user level" parameters, that are identified by attribute Liv=0
3. Push the \quad button. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: ${ }^{-1}$. In other words the upper display will show: ${ }^{-1} \mathrm{inP}$ (group of the Input parameters).

The instrument is in configuration mode. To press more than 5 seconds, the instrument will return to the "standard display.
Keyboard functions during parameter changing:

	Operator Mode Whe the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group.		
	Allows to increase the value of the selected parameter.		
	Allows to decrease the value of the selected parameter.		Short presses allow you to exit the current group of parameters and select a new group. A long press
:---			
terminates the configuration procedure (the instrument returns to the normal display).			

Configuration Parameters

inP GROUP - input confiuration					
Liv	N°	Param	Description	Values	Default
A	1	SEnS	Input type	$\begin{array}{\|l\|} \hline \text { Pt1 }=\text { RTD Pt100 } \\ \text { Pt10 }=\text { RTD Pt1000 } \\ 0.20=0 . .20 \mathrm{~mA} \\ 4.20=4 . .20 \mathrm{~mA} \text { Pressure probe } \\ 0.10=0 . .10 \mathrm{~V} \\ 2.10=2 . .10 \mathrm{~V} \\ \text { crAL }=\text { Thermocouple } \mathrm{K} \\ \hline \end{array}$	Depends on the probe
A	2	dp	Decimal point position	0... 3	$\begin{aligned} & \hline \text { See page } \\ & 7 \end{aligned}$
A	3	SSc	Initial scale read-out for linear inputs (avaiable only if SEnS parameter is not equal to Pt 1 , Pt10, crAL values)	-1999... 9999	0
C	4	FSc	Full scale read-out for linear input inputs (avaiable only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999... 9999	Depends on the probe
C	5	unit	Unit of measure (present only in the case of temperature probe)	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
C	6	Fil	Digital filter on the measured value	0 (= OFF)... 20.0 s	1.0
C	7	inE	Selection of the Sensor Out of Range type that will enable the safety output value	$\begin{array}{\|l\|} \hline \text { or }=\text { Over range } \\ \text { ou = Under range } \\ \text { our = over e under range } \\ \hline \end{array}$	or

C	8	oPE	Safety output value	-100... 100	
C	9	io4.F	I/O4 function selection	on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12... 24 VDC	on
C	10	diF1	Digital input 1 function	```oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, \(6=\) HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, \(10=\) Timer Run/Hold, 11 = Timer Run/Reset, \(12=\) Timer Run/Reset with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Hold, 16 = Program Run/Hold, 17 = Program Run/Reset, \(18=\) Sequential SP selection, 19 = SP1 - SP2 selection, \(20=\) SP1... SP4 binary selection, \(21=\) Digital inputs in parallel```	19
C	12	di.A	Digital Inputs Action (DI2 only if configured)	0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action $2=$ DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action	0

Out GROUP- Output parameters

Liv	N°	Param	Description	Values	Default
C	14	01F	Out 1 function	AL = Alarm output	AL
C	15	01AL	Initial scale value of the analog retransmission	-1999 ... Ao1H	1
C	18	01Ac	Out 1 action	```dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED```	rEUr.r
C	19	02F	Out 2 function	H.rEG = Heating output	H.rEG
C	21	o2Ac	Out 2 action	```dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED```	dir
C	22	03F	Out 3 function	H.rEG = Heating output	H.rEG
C	24	o3Ac	Out 3 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir

AL1 GROUP - Alarm 1 parameters								Values	Default
Liv	\mathbf{N}°	Param	Descrizione	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the					
C	28	AL1t	Tipo allarme AL1						

				windows SE. $\mathrm{br}=$ Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi $=$ Relative band alarm in alarm inside the band	
C	29	Ab1	Alarm 1 function	```\[0 . .15 \] \[+1=\text { Not active at power up } \] \[+2=\text { Latched alarm (manual reset) } \] +4 = Acknowledgeable alarm \[+8=\text { Relative alarm not active at set point change } \]```	0
C	30	AL1L	-- For High and low alarms, it is the low limit of the AL1 threshold; -- For band alarm, it is low alarm threshold	-1999... AL1H (E.U.)	-199.9
C	31	AL1H	-- For High and low alarms, it is the high limit of the AL1 threshold; -- For band alarm, it is high alarm threshold	AL1L... 9999 (E.U.)	999.9
0	32	AL1	AL1 threshold	AL1L... AL1H (E.U.)	See page 7
0	33	HAL1	AL1 hysteresis	1... 9999 (E.U.)	See page 7
C	34	AL1d	AL1 delay	0 (oFF)... 9999 (s)	oFF
C	35	AL1o	Alarm 1 enabling during Stand-by mode and out of range conditions	0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition	1

GRUPPO AL2 - parametri allarme 2					
Liv	N°	Param	Description	Values	Default
C	36	AL2t	Alarm 2 type	nonE = Alarm not used LoAb = Absolute low alarm $\mathrm{HiAb}=$ Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo $=$ Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	SE.br
C	37	Ab2	Alarm 2 function	0... 15 $+1=$ Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm $+8=$ Relative alarm not active at set point change	0
C	42	AL2d	AL2 hysteresis	0 (oFF)... 9999 (s)	oFF
C	43	AL2o	Alarm 2 enabling during Stand-by mode and out of range conditions	0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition	0

AL3 Group - alarm 3 parameters

Liv	\mathbf{N}°	Param	Description	Values	Default
	44	AL3t	Alarm 3 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	

LbA Group - Loop break alarm						
Liv	\mathbf{N}°	Param	Descrizione	Values	Default	
C	52	LbAt	LBA time	Da 0 (oFF) a 9999 (s)	oFF	

rEG Group - Control parameters					
Liv	N°	Param	Description	Values	Default
C	56	cont	Control type	Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis $n r=$ Heat/Cool ON/OFF control with neutral zone $3 \mathrm{Pt}=$ Servomotor control (available only when Output 2 and Output 3 have been ordered as " M ")	3pt
C	57	Auto	Autotuning selection	$-4=$ Oscillating auto-tune with automaticrestart at power up and after all point change $-3=$ Oscillating auto-tune with manual start $-2=$ Oscillating -tune with auto-matic start at the first power up only $-1=$ Oscillating auto-tune with auto-matic restart at every power up $0=$ Not used 1 = Fast auto tuning with automatic restart at every power up $2=$ Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start $4=$ FAST auto-tune with automatic restart at power up and after set point change $5=$ Evo-tune with automatic restart at every power up $6=$ Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start $8=$ Evo-tune with automatic restart at power up and after a set point change	7
C	58	tunE	Manual start of the Autotuning	$\begin{aligned} & \text { oFF = Not active } \\ & \text { on = Active } \end{aligned}$	oFF

C	59	SELF	Self tuning enabling	no = The instrument does not perform the self- tuning YES $=$ The instrument is performing the self- tuning	No
A	62	Pb	Proportional band	$1 \ldots 9999$ (E.U.)	See page 7
A	63	ti	Integral time	$0($ oFF) ... 9999 (s)	See page 7
A	64	td	Derivative time	$0($ oFF) ... 9999 (s)	See page 7
C	65	Fuoc	Fuzzy overshoot control	$0.00 \ldots 2.00$	1
C	69	rS	Manual reset (Integral pre-load)	$-100.0 \ldots+100.0(\%)$	0.0
A	70	Str.t	Servomotor stroke time	$5 \ldots 1000$ seconds	See page 7
A	71	db.S	Servomotor dead band	$0 \ldots 100 \%$	5
C	72	od	Delay at power up	$0.00(\mathrm{oFF}) \ldots 99.59(\mathrm{hh} . \mathrm{mm})$	oFF

SP Group - Set point parameters

Liv	N°	Param	Description	Values	Default
C	76	nSP	Number of used set points	1... 4	2
A	77	SPLL	Minimum set point value	-1999 ... SPHL	$\begin{array}{\|c\|} \hline \text { See } \\ \text { page } 7 \end{array}$
A	78	SPHL	Maximum set point value	SPLL ... 9999	$\begin{array}{\|l\|} \hline \text { See } \\ \text { page } 7 \\ \hline \end{array}$
0	79	SP	Set point 1	SPLL ... SPLH	See page 7
C	80	SP 2	Set point 2	SPLL ... SPLH	60
	83	A.SP	Selection of the active set point	"SP" ... " nSP"	SP
C	84	SP.rt	Remote set point type	RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc $=$ The value will be scaled on the input range and this value will be used as remote SP	trin
C	85	SPLr	Local/remote set point selection	$\begin{aligned} & \text { Loc = Local } \\ & \text { rEn = Remote } \end{aligned}$	Loc
C	86	SP.u	Rate of rise for POSITIVE set point change (ramp UP)	0.01... 99.99 (inF) Eng. units per minute	inF
C	87	SP.d	Rate of rise for NEGATIVE set point change (ramp DOWN)	0.01... 99.99 (inF) Eng. units per minute	inF

PAn Group - Operator HMI

Liv	\mathbf{N}°	Param	Description	Values	Default
C	118	PAS2	Level 2 password (limited access level)	oFF (Level 2 not protected by password) $1 \ldots 200$	20
C	119	PAS3	Level 3 password (complete configuration level)	$3 \ldots 300$ codice)	$201 \ldots 400$
C	120	PAS4	Password livello (livello configurazione a C	121	uSrb
button function during RUN TIME	nonE $=$ No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode	tunE			

SEr Group - Serial link parameter

Liv	\mathbf{N}°	Param	Description	Values	Default
C	131	Add	Instrument address	-- oFF $--1 \ldots 254$	1
C	132	bAud	baud rate	$1200=1200$ baud $2400=2400$ baud $9600=9600$ baud $19.2=19200$ baud $38.4=38400$ baud	
C	133	trSP	Selection of the value to be retransmitted (Master)	nonE $=$ Retransmission not used (the instrument is a slave) rSP $=$ The instrument becomes a Master and retransmits the operative set point PErc $=$ The instrument become a Master and it retransmits the power output	nonE

con Group - Consumption parameters

Liv	N°	Param	Description	Values	Default
C	134	Co.tY	Count type	oFF = Not used 1 = Instantaneous power (kW) $2=$ Power consumption (kW/h) 3 = Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program. A new program execution will reset the value $4=$ Total worked days: number of hours the instrument is turned ON divided by 24 . 5 = Total worked hours: number of hours the instrument is turned ON. $6=$ Total worked days with threshold: number of hours the instrument is turned ON divided by 24 , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 7 = Total worked hours with threshold: number of hours the instrument is turned ON , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. $8=$ Totalizer of control relay worked days: number of hours the control relay has been in ON condition, divided by 24. 9 = Totalizer of control relay worked hours: number of hours the control relay has been in ON condition. $10=$ Totalizer of control relay worked days with threshold: number of hours the control relay has been in ON condition divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 11 = Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job.	oFF
C	138	t.Job	Worked time (not resettable)	0... 9999 days	0

cAL Group - User calibration group

Liv	\mathbf{N}°	Param	Description	Values	Default
C	139	AL.P	Adjust Low Point	From -1999 to (AH.P -10$)$ in engineering units	0
C	140	AL.o	Adjust Low Offset	$-300 \ldots+300($ E.U. $)$	0
C	141	AH.P	Adjust High Point	From (AL.P +10$)$ to 9999 engineering units	999.9
C	142	AH.o	Adjust High Offset	$-300 \ldots+300$	0

OPERATIVE MODES

When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters.

At power ON the instrument can start in one of the following mode depending on its configuration:
Automatic Mode In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value.

Manual Mode (OPLO): In Manual mode the the upper display shows the measured value while the lower display shows the power output The lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made.

Stand by Mode (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero.

We define all the above described conditions as "Standard Display".
As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected.

AUTOMATIC MODE

Keyboard function when the instrument is in Auto mode:

	Modo Operatore
	Allows entry into parameter modification procedures
	Allows you to start the "Direct set point modification" function (see below).
	Allows you to display the "additional informations" (see below).
	Performs the action programmed by [121] uSrb (CPbutton function during RUN TIME) parameter

Additional information

This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available.

1. When the instrument is showing the "standard display" push button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action
2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below:
100 where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2)..
3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter:

日G4.

4. Push button again. When the wattmeter function is running the lower display will show U followed by the measured energy..
5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time.
6. Push button. The instrument returns to the "standard display".

Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display..

Direct set point modification

This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress.

1. Push button. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value.
2. By and buttons, assign to this parameter the desired value
3. Do not push any button for more than 5 second or push the button. In both cases the instrument memorize the new value and come back to the "standard display".

Manual mode

This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ buttons.

In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H 100 (100% output power with reverse action) to C100 (100\% output power with direct action).

Notes:

- During manual mode, the alarms are operative.
- If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode.
- If you set manual modes during self-tune execution, the self- tune function will be aborted.
- During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally..

STAND-BY MODE

This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY".
Notes:

- During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting.
- If you set stand by mode during program execution, the program will be aborted.
- If you set stand by mode during self-tune execution, the self- tune function will be aborted.
- During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.
- When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed).

AUTOTUNE (EVOTUNE)

Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press button for 3 seconds.

ERROR MESSAGES

The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications:
Over-range: 0000
Under-range ப.ேப.L.

The sensor break will be signalled as an out of range:
Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively.

To check the out of span Error condition, proceed as follows:

1. Check the input signal source and the connecting line.
2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration.
3. If no error is detected, send the instrument to your supplier to be checked.

List of possible errors

ErAT Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message.
ouLd Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate.

NoAt Auto-tune not finished within 12 hours.
ErEP Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier.

RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier.
Errt Possible problem of the calibration memory. When this error is detected, send the instrument to your supplier.

FACTORY RESET

Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON).

The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows:

1. Press the \quad button for more than 5 seconds. The upper display will show PASS while the lower display shows 0;
2. Using $\boldsymbol{\Delta}$ and \boldsymbol{b} buttons set the value -481;
3. Push $\boldsymbol{\omega}$ button;
4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON.

The procedure is complete.
Note: The complete list of the default parameters is available in Chapter "Configuration".

KM3 Modulator

USER MANUAL

MOUNTING

DISPLAY AND KEYS

	Operator Mode	Editing Mode
\square	Access to: - Operator Commands (Timer, Setpoint selection ...) - Parameters - Configuration	Confirm and go to Next parameter
	Access to: - Operator additional information (Output value, running time ...)	Increase the displayed value or select the next element of the parameters list
	Access to: - Set Point	Decrease the displayed value or select the previous element
	Programmable key: Start the programmed function (Autotune, Auto/Man, Timer ...)	Exit from Operator commands/Parameter setting/Configuration

CONNECTIONS DIAGRAM

Probe connection:

- PT1000/NTC/PTC: between terminal 3 and 2
- PT 100: between terminal 3 and 2 with terminal 1
- Passive pressure probe 0/4-20 mA: between terminal 4 (+) e 1 (-) Note: out4 must be activated (IO4F must be setted to ON)
- Powered pressure probe 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive) Note: set IO4F to ON to activate Out4

Power supply connection:

- Neutral wire: terminal 9
- Phase: terminal 10 ($100 \ldots 240 \mathrm{Vac}$)
- Close terminals 15-16 to switch to the set point 2

Output connection:

- Channel 1: terminal 7 and 8 (burner on - off)
- Channel 2: terminal 11 and 12 (servomotor opens)
- Channel 3: terminal 13 and 14 (servomotor closes)

SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)

Push the $\boldsymbol{\square}$ button to enter into the setpoint configuration:

To return to normal mode, press the key for 3 seconds or wait the 10 s timeout

Operation example

LIMITED ACCESS LEVEL

Proceed as follows to change some parameters that are not visible in standard user mode:

Press the $\boldsymbol{\omega}$ key for 3 seconds

Password $=20$

Access to parameter:

$\boldsymbol{\Delta}$	Increase the displayed value
$\boldsymbol{\nabla}$	Decrease the displayed value
$\boldsymbol{\omega}$	Confirm and go to next parameter

Param	Description	Values	Default
SEnS	Input type	$\begin{array}{\|l\|} \hline \text { Pt1 }=\text { RTD Pt100 } \\ \text { Pt10 }=\text { RTD Pt1000 } \\ 0.20=0 . .20 \mathrm{~mA} \\ 4.20=4 . .20 \mathrm{~mA} \text { Pressure probe } \\ 0.10=0 . .10 \mathrm{~V} \\ 2.10=2 . .10 \mathrm{~V} \\ \text { crAL }=\text { Thermocouple } \mathrm{K} \end{array}$	Depends on the probe
SP	Set point 1	SPLL ... SPLH	See page 7
AL1	AL1 threshold	AL1L... AL1H (E.U.)	
HAL1	AL1 hysteresis	1... 9999 (E.U.)	
Pb	Proportional band	1... 9999 (E.U.)	
ti	Integral time	0 (oFF) ... 9999 (s)	
td	Derivative time	0 (oFF) ... 9999 (s)	
Str.t	Servomotor stroke time	5...1000 seconds	
db.S	Servomotor dead band	0...100\%	
SPLL	Minimum set point value	-1999 ... SPHL	
SPHL	Maximum set point value	SPLL ... 9999	
dp	Decimal point position	0... 3	
SP 2	Set point 2	SPLL...SPLH	60
A.SP	Selection of the active set point	"SP" ... " nSP"	SP

To exit the parameter setting procedure press the key (for 3 s) or wait until the timeout expiration (about 30 seconds)
Probe parameters configuration MODULATORE ASCON KM3

Parameter Group	inP						AL1		rEG					SP		
Parameter	Sens	dp	SSC	FSc	unit	$\begin{gathered} \text { IO4.F } \\ (* *) \\ \hline \end{gathered}$	AL1 (***)	HAL1 (***)	$\begin{aligned} & \mathrm{Pb} \\ & \text { (***) } \end{aligned}$	$\begin{gathered} \mathrm{ti} \\ (* * *) \end{gathered}$	$\begin{aligned} & \text { td } \\ & (* * *) \end{aligned}$	Str.t	db.S	SPLL	SPHL	$\begin{aligned} & \hline \text { SP } \\ & (* * *) \end{aligned}$
Probes		Dec Point	Scale Min	Scale Max			Off	On	p	-	d	servo time s	Band Mo.	$\begin{aligned} & \mathrm{SP} \\ & \mathrm{Min} \end{aligned}$	$\begin{aligned} & \hline \text { SP } \\ & \mathrm{Max} \\ & \hline \end{aligned}$	Set point
Pt1000 ($130^{\circ} \mathrm{C}$ max)	Pt10	1			${ }^{\circ} \mathrm{C}$	on	5	10	10	350	1	*	5	30	95	80
Pt1000 ($350^{\circ} \mathrm{C}$ max)	PT10	1			${ }^{\circ} \mathrm{C}$	on	10	10	10	350	1	*	5	0	350	80
Pt100 ($130^{\circ} \mathrm{C}$ max)	PT1	1			${ }^{\circ} \mathrm{C}$	on	5	10	10	350	1	*	5	0	95	80
Pt100 ($350^{\circ} \mathrm{C}$ max)	Pt1	1			${ }^{\circ} \mathrm{C}$	on	10	10	10	350	1	*	5	0	350	80
Pt100 ($0 \div 100^{\circ} \mathrm{C} 4 \div 20 \mathrm{~mA}$)	4.20	1	0	100		on	5	10	10	350	1	*	5	0	95	80
Thermocouple K ($1200^{\circ} \mathrm{C}$ max)	crAL	0			${ }^{\circ} \mathrm{C}$	on	20	25	10	350	1	*	5	0	1200	80
Thermocouple $\mathrm{J}\left(1000^{\circ} \mathrm{C} \mathrm{max}\right)$	J	0			${ }^{\circ} \mathrm{C}$	on	20	25	10	350	1	*	5	0	1000	80
4-20mA / 0-1,6barPressure probe	4.20	0	0	160		on	20	20	5	120	1	*	5	0	160	100
4-20mA/ 0-10bar Pressure probe	4.20	0	0	1000		on	50	50	5	120	1	*	5	0	1000	600
4-20mA/ 0-16bar Pressure probe	4.20	0	0	1600		on	80	80	5	120	1	*	5	0	1600	600
4-20mA/ 0-25bar Pressure probe	4.20	0	0	2500		on	125	125	5	120	1	*	5	0	2500	600
4-20mA / 0-40bar Pressure probe	4.20	0	0	4000		on	200	200	5	120	1	*	5	0	4000	600
QBE2002 / 0-25bar Pressure probe	0.10	0	0	2500		On	125	125	5	120	1	*	5	0	2500	600

CONFIGURATION

How to access configuration level

The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions).

1. Push the button for more than 5 seconds. The upper display will show PASS while the lower display will show 0.
2. Using $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ buttons set the programmed password.

According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section.
a. Enter " 30 " as password to view all the configuration parameters
b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv $=\mathbf{A}$ or Liv $=\mathbf{O}$ will be editable.
c. Leave the password blank to edit "user level" parameters, that are identified by attribute Liv=0
3. Push the \quad button. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: ${ }^{-1}$. In other words the upper display will show: ${ }^{-1} \mathrm{inP}$ (group of the Input parameters).

The instrument is in configuration mode. To press more than 5 seconds, the instrument will return to the "standard display.
Keyboard functions during parameter changing:

	Operator Mode Whe the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group.		
	Allows to increase the value of the selected parameter.		
	Allows to decrease the value of the selected parameter.		Short presses allow you to exit the current group of parameters and select a new group. A long press
:---			
terminates the configuration procedure (the instrument returns to the normal display).			

Configuration Parameters

inP GROUP - input confiuration					
Liv	N°	Param	Description	Values	Default
A	1	SEnS	Input type	$\begin{array}{\|l\|} \hline \text { Pt1 }=\text { RTD Pt100 } \\ \text { Pt10 }=\text { RTD Pt1000 } \\ 0.20=0 . .20 \mathrm{~mA} \\ 4.20=4 . .20 \mathrm{~mA} \text { Pressure probe } \\ 0.10=0 . .10 \mathrm{~V} \\ 2.10=2 . .10 \mathrm{~V} \\ \text { crAL }=\text { Thermocouple } \mathrm{K} \\ \hline \end{array}$	Depends on the probe
A	2	dp	Decimal point position	0... 3	$\begin{aligned} & \hline \text { See page } \\ & 7 \end{aligned}$
A	3	SSc	Initial scale read-out for linear inputs (avaiable only if SEnS parameter is not equal to Pt 1 , Pt10, crAL values)	-1999... 9999	0
C	4	FSc	Full scale read-out for linear input inputs (avaiable only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999... 9999	Depends on the probe
C	5	unit	Unit of measure (present only in the case of temperature probe)	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
C	6	Fil	Digital filter on the measured value	0 (= OFF)... 20.0 s	1.0
C	7	inE	Selection of the Sensor Out of Range type that will enable the safety output value	$\begin{array}{\|l\|} \hline \text { or }=\text { Over range } \\ \text { ou = Under range } \\ \text { our = over e under range } \\ \hline \end{array}$	or

C	8	oPE	Safety output value	-100... 100	
C	9	io4.F	I/O4 function selection	on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12... 24 VDC	on
C	10	diF1	Digital input 1 function	```oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, \(6=\) HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, \(10=\) Timer Run/Hold, 11 = Timer Run/Reset, \(12=\) Timer Run/Reset with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Hold, 16 = Program Run/Hold, 17 = Program Run/Reset, \(18=\) Sequential SP selection, 19 = SP1 - SP2 selection, \(20=\) SP1... SP4 binary selection, \(21=\) Digital inputs in parallel```	19
C	12	di.A	Digital Inputs Action (DI2 only if configured)	0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action $2=$ DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action	0

Out GROUP- Output parameters

Liv	N°	Param	Description	Values	Default
C	14	01F	Out 1 function	AL = Alarm output	AL
C	15	01AL	Initial scale value of the analog retransmission	-1999 ... Ao1H	1
C	18	01Ac	Out 1 action	```dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED```	rEUr.r
C	19	02F	Out 2 function	H.rEG = Heating output	H.rEG
C	21	o2Ac	Out 2 action	```dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED```	dir
C	22	03F	Out 3 function	H.rEG = Heating output	H.rEG
C	24	o3Ac	Out 3 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir

AL1 GROUP - Alarm 1 parameters								Values	Default
Liv	\mathbf{N}°	Param	Descrizione	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the					
C	28	AL1t	Tipo allarme AL1						

				windows SE. $\mathrm{br}=$ Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi $=$ Relative band alarm in alarm inside the band	
C	29	Ab1	Alarm 1 function	```\[0 . .15 \] \[+1=\text { Not active at power up } \] \[+2=\text { Latched alarm (manual reset) } \] +4 = Acknowledgeable alarm \[+8=\text { Relative alarm not active at set point change } \]```	0
C	30	AL1L	-- For High and low alarms, it is the low limit of the AL1 threshold; -- For band alarm, it is low alarm threshold	-1999... AL1H (E.U.)	-199.9
C	31	AL1H	-- For High and low alarms, it is the high limit of the AL1 threshold; -- For band alarm, it is high alarm threshold	AL1L... 9999 (E.U.)	999.9
0	32	AL1	AL1 threshold	AL1L... AL1H (E.U.)	See page 7
0	33	HAL1	AL1 hysteresis	1... 9999 (E.U.)	See page 7
C	34	AL1d	AL1 delay	0 (oFF)... 9999 (s)	oFF
C	35	AL1o	Alarm 1 enabling during Stand-by mode and out of range conditions	0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition	1

GRUPPO AL2 - parametri allarme 2					
Liv	N°	Param	Description	Values	Default
C	36	AL2t	Alarm 2 type	nonE = Alarm not used LoAb = Absolute low alarm $\mathrm{HiAb}=$ Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo $=$ Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	SE.br
C	37	Ab2	Alarm 2 function	0... 15 $+1=$ Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm $+8=$ Relative alarm not active at set point change	0
C	42	AL2d	AL2 hysteresis	0 (oFF)... 9999 (s)	oFF
C	43	AL2o	Alarm 2 enabling during Stand-by mode and out of range conditions	0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition	0

AL3 Group - alarm 3 parameters

Liv	\mathbf{N}°	Param	Description	Values	Default
	44	AL3t	Alarm 3 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	

LbA Group - Loop break alarm						
Liv	\mathbf{N}°	Param	Descrizione	Values	Default	
C	52	LbAt	LBA time	Da 0 (oFF) a 9999 (s)	oFF	

rEG Group - Control parameters					
Liv	N°	Param	Description	Values	Default
C	56	cont	Control type	Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis $n r=$ Heat/Cool ON/OFF control with neutral zone $3 \mathrm{Pt}=$ Servomotor control (available only when Output 2 and Output 3 have been ordered as " M ")	3pt
C	57	Auto	Autotuning selection	$-4=$ Oscillating auto-tune with automaticrestart at power up and after all point change $-3=$ Oscillating auto-tune with manual start $-2=$ Oscillating -tune with auto-matic start at the first power up only $-1=$ Oscillating auto-tune with auto-matic restart at every power up $0=$ Not used 1 = Fast auto tuning with automatic restart at every power up $2=$ Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start $4=$ FAST auto-tune with automatic restart at power up and after set point change $5=$ Evo-tune with automatic restart at every power up $6=$ Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start $8=$ Evo-tune with automatic restart at power up and after a set point change	7
C	58	tunE	Manual start of the Autotuning	$\begin{aligned} & \text { oFF = Not active } \\ & \text { on = Active } \end{aligned}$	oFF

C	59	SELF	Self tuning enabling	no = The instrument does not perform the self- tuning YES $=$ The instrument is performing the self- tuning	No
A	62	Pb	Proportional band	$1 \ldots 9999$ (E.U.)	See page 7
A	63	ti	Integral time	$0($ oFF) ... 9999 (s)	See page 7
A	64	td	Derivative time	$0($ oFF) ... 9999 (s)	See page 7
C	65	Fuoc	Fuzzy overshoot control	$0.00 \ldots 2.00$	1
C	69	rS	Manual reset (Integral pre-load)	$-100.0 \ldots+100.0(\%)$	0.0
A	70	Str.t	Servomotor stroke time	$5 \ldots 1000$ seconds	See page 7
A	71	db.S	Servomotor dead band	$0 \ldots 100 \%$	5
C	72	od	Delay at power up	$0.00(\mathrm{oFF}) \ldots 99.59(\mathrm{hh} . \mathrm{mm})$	oFF

SP Group - Set point parameters

Liv	N°	Param	Description	Values	Default
C	76	nSP	Number of used set points	1... 4	2
A	77	SPLL	Minimum set point value	-1999 ... SPHL	$\begin{array}{\|c\|} \hline \text { See } \\ \text { page } 7 \end{array}$
A	78	SPHL	Maximum set point value	SPLL ... 9999	$\begin{array}{\|l\|} \hline \text { See } \\ \text { page } 7 \\ \hline \end{array}$
0	79	SP	Set point 1	SPLL ... SPLH	See page 7
C	80	SP 2	Set point 2	SPLL ... SPLH	60
	83	A.SP	Selection of the active set point	"SP" ... " nSP"	SP
C	84	SP.rt	Remote set point type	RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc $=$ The value will be scaled on the input range and this value will be used as remote SP	trin
C	85	SPLr	Local/remote set point selection	$\begin{aligned} & \text { Loc = Local } \\ & \text { rEn = Remote } \end{aligned}$	Loc
C	86	SP.u	Rate of rise for POSITIVE set point change (ramp UP)	0.01... 99.99 (inF) Eng. units per minute	inF
C	87	SP.d	Rate of rise for NEGATIVE set point change (ramp DOWN)	0.01... 99.99 (inF) Eng. units per minute	inF

PAn Group - Operator HMI

Liv	\mathbf{N}°	Param	Description	Values	Default
C	118	PAS2	Level 2 password (limited access level)	oFF (Level 2 not protected by password) $1 \ldots 200$	20
C	119	PAS3	Level 3 password (complete configuration level)	$3 \ldots 300$ codice)	$201 \ldots 400$
C	120	PAS4	Password livello (livello configurazione a C	121	uSrb
button function during RUN TIME	nonE $=$ No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode	tunE			

SEr Group - Serial link parameter

Liv	\mathbf{N}°	Param	Description	Values	Default
C	131	Add	Instrument address	-- oFF $--1 \ldots 254$	1
C	132	bAud	baud rate	$1200=1200$ baud $2400=2400$ baud $9600=9600$ baud $19.2=19200$ baud $38.4=38400$ baud	
C	133	trSP	Selection of the value to be retransmitted (Master)	nonE $=$ Retransmission not used (the instrument is a slave) rSP $=$ The instrument becomes a Master and retransmits the operative set point PErc $=$ The instrument become a Master and it retransmits the power output	nonE

con Group - Consumption parameters

Liv	N°	Param	Description	Values	Default
C	134	Co.tY	Count type	oFF = Not used 1 = Instantaneous power (kW) $2=$ Power consumption (kW/h) 3 = Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program. A new program execution will reset the value $4=$ Total worked days: number of hours the instrument is turned ON divided by 24 . 5 = Total worked hours: number of hours the instrument is turned ON. $6=$ Total worked days with threshold: number of hours the instrument is turned ON divided by 24 , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 7 = Total worked hours with threshold: number of hours the instrument is turned ON , the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. $8=$ Totalizer of control relay worked days: number of hours the control relay has been in ON condition, divided by 24. 9 = Totalizer of control relay worked hours: number of hours the control relay has been in ON condition. $10=$ Totalizer of control relay worked days with threshold: number of hours the control relay has been in ON condition divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 11 = Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job.	oFF
C	138	t.Job	Worked time (not resettable)	0... 9999 days	0

cAL Group - User calibration group

Liv	\mathbf{N}°	Param	Description	Values	Default
C	139	AL.P	Adjust Low Point	From -1999 to (AH.P -10$)$ in engineering units	0
C	140	AL.o	Adjust Low Offset	$-300 \ldots+300($ E.U. $)$	0
C	141	AH.P	Adjust High Point	From (AL.P +10$)$ to 9999 engineering units	999.9
C	142	AH.o	Adjust High Offset	$-300 \ldots+300$	0

OPERATIVE MODES

When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters.

At power ON the instrument can start in one of the following mode depending on its configuration:
Automatic Mode In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value.

Manual Mode (OPLO): In Manual mode the the upper display shows the measured value while the lower display shows the power output The lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made.

Stand by Mode (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero.

We define all the above described conditions as "Standard Display".
As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected.

AUTOMATIC MODE

Keyboard function when the instrument is in Auto mode:

	Modo Operatore
	Allows entry into parameter modification procedures
	Allows you to start the "Direct set point modification" function (see below).
	Allows you to display the "additional informations" (see below).
	Performs the action programmed by [121] uSrb (CPbutton function during RUN TIME) parameter

Additional information

This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available.

1. When the instrument is showing the "standard display" push button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action
2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below:
100 where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2)..
3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter:

日G4.

4. Push button again. When the wattmeter function is running the lower display will show U followed by the measured energy..
5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time.
6. Push button. The instrument returns to the "standard display".

Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display..

Direct set point modification

This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress.

1. Push button. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value.
2. By and buttons, assign to this parameter the desired value
3. Do not push any button for more than 5 second or push the button. In both cases the instrument memorize the new value and come back to the "standard display".

Manual mode

This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ buttons.

In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H 100 (100% output power with reverse action) to C100 (100\% output power with direct action).

Notes:

- During manual mode, the alarms are operative.
- If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode.
- If you set manual modes during self-tune execution, the self- tune function will be aborted.
- During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally..

STAND-BY MODE

This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY".
Notes:

- During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting.
- If you set stand by mode during program execution, the program will be aborted.
- If you set stand by mode during self-tune execution, the self- tune function will be aborted.
- During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.
- When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed).

AUTOTUNE (EVOTUNE)

Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press button for 3 seconds.

ERROR MESSAGES

The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications:
Over-range: 0000
Under-range ப.ேப.L.

The sensor break will be signalled as an out of range:
Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively.

To check the out of span Error condition, proceed as follows:

1. Check the input signal source and the connecting line.
2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration.
3. If no error is detected, send the instrument to your supplier to be checked.

List of possible errors

ErAT Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message.
ouLd Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate.

NoAt Auto-tune not finished within 12 hours.
ErEP Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier.

RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier.
Errt Possible problem of the calibration memory. When this error is detected, send the instrument to your supplier.

FACTORY RESET

Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON).

The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows:

1. Press the \quad button for more than 5 seconds. The upper display will show PASS while the lower display shows 0;
2. Using $\boldsymbol{\Delta}$ and \boldsymbol{b} buttons set the value -481;
3. Push $\boldsymbol{\omega}$ button;
4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON.

The procedure is complete.
Note: The complete list of the default parameters is available in Chapter "Configuration".

$\left.\frac{-\sim}{2.5}\right|_{\operatorname{sc~} 2.6} ^{-}=-\frac{-}{\operatorname{sc} 2.6}$ on-D

Data	23/02/2000	PREC.	
Revisione	10	1	2
Dis. N.	- 0401	$\begin{gathered} \hline \text { SEGUE } \\ 3 \end{gathered}$	$\begin{array}{\|c} \hline \text { TOTALE } \\ 6 \end{array}$

SERVOCOMANDO SERRANDA ARIA AIR DAMPER ACTUATOR
SQM40.265
ALTA FIAMMA SOSTA EACCENSIONE STAND-BY AND IGNITION BASSA FIAMMA
LOW FLAME
CONSENSO ALLA PARTENZA
INPUT TO START

Data	$23 / 02 / 2000$	PREC.	FOGLIO
Revisione	10	4	5
Dis. N. $07-0401$	SEGUE	TOTALE	
		6	6

[^0]: Key
 1 Light oil pump
 2 Light oil solenoid valve
 Nozzle
 4 Servocontrol
 5 Adjusting cam
 6 pressure gauge
 7 Pressure regulator
 8 One-way valve

[^1]: 1 Set to the ON position the switch A on the control panel of the burner.
 2 Check the control box is not in the lockout position (light B must be off); in such a case reset it by the reset pushbutton C.
 3 Check the series of thermostats (or pressure switches) sends the burner the signal to operate.
 4 The startup sequence begins: the control box ignites the fan motor and energises the ignition transformer as well (signalled by the light \mathbf{H} on the burner control panel).
 5 At the end of the pre-purge stage, the light oil solenoid valve EVG1 is energised (signalled by the lamp G on the control panel) and the burner is on.
 6 The ignition transformer is energized for few seconds after the ignition of the flame (post-ignition time) and at the end of this time is de-energised (light H off).
 7 After the ignition the servocontrol moves to the high flame position for some seconds, then the operation begins and the burner switches to high flame or to low flame, according to the plant demand.
 8 The high/low flame operation is showed by the F LED turning on/off.

