

HTP1030 VS HTP1080 VS

Bruciatori industriali misti gas-gasolio a controllo elettronico (LMV5x)

MANUALE DI INSTALLAZIONE - USO - MANUTENZIONE

BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ

AVVERTENZE

IL MANUALE DI INSTALLAZIONE, USO E MANUTENZIONE COSTITUISCE PARTE INTEGRANTE ED ESSENZIALE DEL PRODOTTO E DEVE ESSERE CONSEGNATO ALL'UTILIZZATORE.

LE AVVERTENZE CONTENUTE IN QUESTO CAPITOLO SONO DEDICATE SIA ALL'UTILIZZATORE CHE AL PERSONALE CHE CURERA' L'INSTALLAZIONE E LA MANUTENZIONE DEL PRODOTTO.

L'UTILIZZATORE TROVERA' ULTERIORI INFORMAZIONI SUL FUNZIONAMENTO E SULLE LIMITAZIONI D'USO NELLA 2ª PARTE DI QUESTO MANUALE CHE RACCOMANDIAMO DI LEGGERE CON ATTENZIONE.

CONSERVARE CON CURA IL PRESENTE MANUALE PER OGNI ULTERIORE CONSULTAZIONE.

AVVERTENZE GENERALI

- L'installazione deve essere effettuata in ottemperanza alle norme vigenti, secondo le istruzioni del costruttore e da personale professionalmente qualificato.
- Per personale professionalmente qualificato si intende quello avente competenza tecnica nel settore di applicazione dell'apparecchio (civile o industriale) e in particolare, i centri assistenza autorizzati dal costruttore.
- Un'errata installazione può causare danni a persone, animali o cose, per i quali il costruttore non è responsabile.
- Dopo aver tolto ogni imballaggio assicurarsi dell'integrità del contenuto.

In caso di dubbio non utilizzare l'apparecchio e rivolgersi al fornitore.

Gli elementi dell'imballaggio (gabbia di legno, chiodi, graffe, sacchetti di plastica, polistirolo espanso, ecc.) non devono essere lasciati alla portata dei bambini in quanto potenziali fonti di pericolo.

- Prima di effettuare qualsiasi operazione di pulizia o di manutenzione, disinserire l'apparecchio dalla rete di alimentazione, agendo sull'interruttore dell'impianto e/o attraverso gli appositi organi di intercettazione.
- Non ostruire le griglie di aspirazione o di dissipazione.
- In caso di guasto e/o di cattivo funzionamento dell'apparecchio, disattivarlo, astenendosi da qualsiasi tentativo di riparazione o di intervento diretto

Rivolgersi esclusivamente a personale professionalmente qualificato.

L'eventuale riparazione dei prodotti dovrà essere effettuata solamente da un centro di assistenza autorizzato dalla casa costruttrice utilizzando esclusivamente ricambi originali.

Il mancato rispetto di quanto sopra può compromettere la sicurezza dell'apparecchio.

Per garantire l'efficienza dell'apparecchio e per il suo corretto funzionamento è indispensabile fare effettuare da personale professionalmente qualificato la manutenzione periodica attenendosi alle indicazioni del costruttore.

- Allorchè si decida di non utilizzare più l'apparecchio, si dovranno rendere innocue quelle parti suscettibili di causare potenziali fonti di pericolo:
- Se l'apparecchio dovesse essere venduto o trasferito ad un altro proprietario se si dovesse traslocare e lasciare l'apparecchio, assicurarsi sempre che il presente libretto accompagni l'apparecchio, in modo che possa essere consultato dal nuovo proprietario e/o dall'installatore;
- Per tutti gli apparecchi con optionals o kit (compresi quelli elettrici), si dovranno utilizzare solo accessori originali.
- Questo apparecchio dovrà essere destinato all'uso per il quale è stato espressamente previsto. Ogni altro uso è da considerarsi improprio e quindi pericoloso.

E' esclusa qualsiasi responsabilità contrattuale ed extra contrattuale del costruttore per i danni causati da errori nell'installazione e nell'uso, e comunque da inosservanza delle istruzioni date dal costruttore stesso.

1) AVVERTENZE PARTICOLARI PER BRUCIATORI

- Il bruciatore deve essere installato in locale adatto con aperture minime di ventilazione secondo quanto prescritto dalle norme vigenti e comunque sufficienti ad ottenere una perfetta combustione.
- Devono essere utilizzati solo bruciatori costruiti secondo le norme vigenti.
- Questo bruciatore dovrà essere destinato solo all'uso per il quale è stato espressamente previsto.
- Prima di collegare il bruciatore accertarsi che i dati di targa siano corrispondenti a quelli della rete di alimentazione (elettrica, gas, gasolio o altro combustibile).
- Non toccare le parti calde del bruciatore. Queste, normalmente situate in vicinanza della fiamma e dell'eventuale sistema di preriscaldamento del combustibile, diventano calde durante il funzionamento e permangono tali anche dopo l'arresto del bruciatore.

Allorchè si decida di non utilizzare in via definitiva il bruciatore, si dovranno far effettuare da personale professionalmente qualificato le sequenti operazioni:

- disinserire l'alimentazione elettrica staccando il cavo di alimentazione dall'interruttore generale;
- b) chiudere l'alimentazione del combustibile attraverso la valvola manuale di intercettazione asportando i volantini di comando dalla loro sede.

Avvertenze particolari

- Accertarsi che chi ha eseguito l'installazione del bruciatore lo abbia fissato saldamente al generatore di calore in modo che la fiamma si generi all'interno della camera di combustione del generatore stesso.
- Prima di avviare il bruciatore, e almeno una volta all'anno, far effettuare da personale professionalmente qualificato le seguenti operazioni:
- a) tarare la portata di combustibile del bruciatore secondo la potenza richiesta dal generatore di calore;
- regolare la portata d'aria comburente per ottenere un valore di rendimento di combustione almeno pari al minimo imposto dalle norme vigenti:
- c) eseguire il controllo della combustione onde evitare la formazione di incombusti nocivi o inquinanti oltre i limiti consen-titi dalle norme vigenti:
- d) verificare la funzionalità dei dispositivi di regolazione e di sicurezza;
- e) verificare la corretta funzionalità del condotto di evacuazione dei prodotti della combustione;
- controllare al termine delle regolazioni che tutti i sistemi di bloccaggio meccanico dei dispositivi di regolazione siano ben serrati;
- g) accertarsi che nel locale caldala siano presenti anche le istruzioni relative all'uso e manutenzione del bruciatore.
- In caso di arresto di blocco, sbloccare l'apparecchiatura premendo l'apposito pulsante di RESET. Nell'eventualità di un nuovo arresto di blocco, interpellare l'Assistenza Tecnica, senza effettuare ulteriori tentativi.
- La conduzione e la manutenzione devono essere effettuate esclusivamente da personale professionalmente qualificato, in ottemperanza alle disposizioni vigenti.

2) AVVERTENZE GENERALI IN FUNZIONE DEL TIPO DI ALIMENTAZIONE

2a) ALIMENTAZIONE ELETTRICA

- La sicurezza elettrica dell'apparecchio è raggiunta soltanto quando lo stesso è correttamente collegato a un'efficace impianto di messa a terra, eseguito come previsto dalle vigenti norme di sicurezza.
- E' necessario verificare questo fondamentale requisito di sicurezza.
 In caso di dubbio, richiedere un controllo accurato dell'impianto elettrico da parte di personale professionalmente qualificato, poché il costruttore non è responsabile per eventuali danni causati dalla mancanza di messa a terra dell'impianto.
- Far verificare da personale professionalmente qualificato che l'impianto elettrico sia adeguato alla potenza massima assorbita dall'apparecchio, indicata in targa, accertando in particolare che la sezione dei cavi dell'impianto sia idonea alla potenza assorbita dall'apparecchio.
- Per l'alimentazione generale dell'apparecchio dalla rete elettrica, non è consentito l'uso di adattatori, prese multiple e/o prolunghe.
- Per l'allacciamento alla rete occorre prevedere un interruttore onnipolare come previsto dalle normative di sicurezza vigenti.
- L'uso di un qualsiasi componente che utilizza energia elettrica comporta l'osservanza di alcune regole fondamentali quali:
 - non toccare l'apparecchio con parti del corpo bagnate o umide e/o a piedi nudi
 - non tirare i cavi elettrici
 - non lasciare esposto l'apparecchio ad agenti atmosferici (pioggia, sole, ecc.) a meno che non sia espressamente previsto
- non permettere che l'appparecchio sia usato da bambini o da persone inesperte.
- Il cavo di alimentazione dell'apparecchio non deve essere sostituito

dall'utente. In caso di danneggiamento del cavo, spegnere l'apparecchio, e, per la sua sostituzione, rivolgersi esclusivamente a personale professionalmente qualificato.

Allorchè si decida di non utilizzare l'apparecchio per un certo periodo, è opportuno spegnere l'interruttore elettrico di alimentazione a tutti i componenti dell'impianto che utilizzano energia elettrica (pompe, bruciatore, ecc.).

2b) ALIMENTAZIONE CON GAS, GASOLIO, O ALTRI COMBUSTIBILI

Avvertenze generali

- L'installazione del bruciatore deve essere eseguita da per-sonale professionalmente qualificato e in conformità alle norme e disposizioni vigenti, poiché un'errata installazione può causare danni a persone, animali o cose, nei confronti dei quali il costruttore non può essere considerato responsabile.
- Prima dell'installazione, si consiglia di effettuare una accu-rata pulizia interna di tutte le tubazioni dell'impianto di adduzione del combustibile onde rimuovere eventuali residui che potrebbero compromettere il buon funzionamento del bruciatore.
- Per la prima messa in funzione del bruciatore, far effettuare da personale professionalmente qualificato le seguenti verifiche:
- a il controllo della tenuta interna ed esterna dell'impianto di adduzione del combustibile;
- b) la regolazione della portata del combustibile secondo la potenza richiesta dal bruciatore;
- c) che il bruciatore sia alimentato dal tipo di combustibile per il quale è predisposto;
- d) che la pressione di alimentazione del combustibile sia compresa nei valori riportati in targhetta;
- e) che l'impianto di alimentazione del combustibile sia dimensionato per la portata necessaria al bruciatore e che sia dotato di tutti i dispositivi di sicurezza e controllo prescritti dalle norme vigenti.
- Allorchè si decida di non utilizzare il bruciatore per un certo periodo, chiudere il rubinetto o i rubinetti di alimentazione del combustibile.

Avvertenze particolari per l'uso del gas

Far verificare da personale professionalmente qualificato:

- a) che la linea di adduzione e la rampa gas siano conformi alle norme e prescrizioni vigenti.
- b) che tutte le connessioni gas siano a tenuta.
- c) che le aperture di aerazione del locale caldaia siano dimensionate in modo da garantire l'afflusso di aria stabilito dalle normative vigenti e comunque sufficienti ad ottenere una perfetta combustione.
- Non utilizzare i tubi del gas come messa a terra di apparecchi elettrici.
- Non lasciare il bruciatore inutilmente inserito quando lo stesso non è utilizzato e chiudere sempre il rubinetto del gas.
- In caso di assenza prolungata dell'utente, chiudere il rubi-netto principale di adduzione del gas al bruciatore.

Avvertendo odore di gas:

- a) non azionare interruttori elettrici, il telefono o qualsiasi altro oggetto che possa provocare scintille;
- b) aprire immediatamente porte e finestre per creare una corrente d'aria che purifichi il locale;
- c) chiudere i rubinetti del gas;
- d) chiedere l'intervento di personale professionalmente qualificato.
- Non ostruire le aperture di aerazione del locale dove è installato un apparecchio a gas, per evitare situazioni pericolose quali la formazione di miscele tossiche ed esplosive.

Utilizzo manometri olio:In genere, i manometri sono equipaggiati con una valvola manuale. Aprire la valvola solo per effettuare la lettura e chiuderla immediatamente dopo.

DIRETTIVE E NORME APPLICATE

Bruciatori di gas

Direttive europee:

- 2009/142/CE (Direttiva gas);
- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE (Direttiva Compatibilità Elettromagnetica).

Norme armonizzate:

- UNI EN 676 (Bruciatori di gas);- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare) parte I: Requisiti generali;
- EN 50165 Equipaggiamento elettrico degli apparecchi non elettrici per uso domestico e similare. Prescrizioni di sicurezza.
- EN 60335-2-102 Sicurezza degli apparecchi elettrici d'uso domestico e similare. Parte II: norme particolari per apparecchi aventi bruciatori a gas, gasolio e combustibile solido provvisti di connessioni elettriche.

Bruciatori di gasolio

Direttive europee:

- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE(Direttiva Compatibilità Elettromagnetica).

Norme armonizzate:

- UNI EN 267 (Bruciatori di gasolio ad aria soffiata);
- CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare) parte I: Requisiti generali:
- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- EN 50165 Equipaggiamento elettrico degli apparecchi non elettrici per uso domestico e similare. Prescrizioni di sicurezza.

Norme nazionali

- UNI 7824- Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova.

Bruciatori di olio combustibile

Direttive europee:

- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE(Direttiva Compatibilità Elettromagnetica).

Norme armonizzate

- CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare) - parte I: Requisiti generali;
- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- EN 50165 Equipaggiamento elettrico degli apparecchi non elettrici per uso domestico e similare. Prescrizioni di sicurezza.

Norme nazionali:

- UNI 7824- Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova.

Bruciatori misti gas-gasolio

Direttive europee:

- 2009/142/CE (Direttiva gas);
- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE (Direttiva Compatibilità Elettromagnetica).

Norme armonizzate:

- UNI EN 676 (Bruciatori di gas);
- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- UNI EN 267 (Bruciatori di gasolio ad aria soffiata);
- CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare) parte I: Requisiti generali;
- EN 50165 Equipaggiamento elettrico degli apparecchi non elettrici per uso domestico e similare. Prescrizioni di sicurezza.

Norme nazionali

- UNI 7824- Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova.

Bruciatori misti gas-olio combustibile

Direttive europee

- 2009/142/CE (Direttiva gas);
- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE (Direttiva Compatibilità Elettromagnetica).

Direttive armonizzate

- CEI EN 60335-1(Sicurezza degli apparecchi elettrici d' uso domestico e similare) parte I: Requisiti generali;
- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- EN 50165 Equipaggiamento elettrico degli apparecchi non elettrici per uso domestico e similare. Prescrizioni di sicurezza.

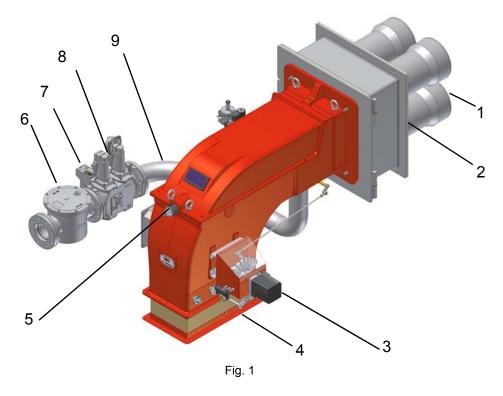
Direttive nazionali

- UNI 7824- Bruciatori monoblocco di combustibili liquidi a polverizzazione. Caratteristiche e metodi di prova.

Bruciatori industriali

Direttive europee

- 2009/142/CE (Direttiva gas);
- 2006/95/CE (Direttiva Bassa Tensione);
- 2004/108/CE (Direttiva Compatibilità Elettromagnetica).


Direttive armonizzate

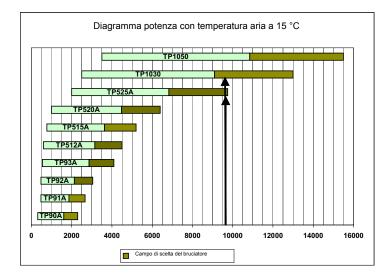
- EN 55014-1(Compatibilità-Requisiti elettromagnetici degli elettrodomestici, degli attrezzi elettrici e di simili apparecchi)
- UNI EN 746-2 (Apparecchiature di processo termico industriale, Requisiti di sicurezza per la combustione e per la movimentazione ed il trattamento dei combustibili)
- EN 50165 (Requisiti di sicurezza impianti elettrici)

PARTE I - CARATTERISTICHE TECNICHE

1.0 CARATTERISTICHE GENERALI

I bruciatori industriali della serie TP sono studiati per applicazioni nelle quali le potenze al focolare impongano l'utilizzo di ventilatori di gandi dimensioni oppure in presenza di preriscaldatori dell'aria comburente, oppure quando sia necessario spostare la sorgente principale di rumore in zone insonorizzate.

- 4 Testa di combustione
- 5 Boccaglio
- 6 Servocomando
- 7 Flangia soffietto per installazione ventilatore
- 8 Ghiera regolazione testa di combustione
- 9 Filtro gas
- 10 Controllo tenuta
- 11 Gruppo Valvole gas
- 12 Rampa gas


1.1 Scelta del bruciatore

Il bruciatore e i relativi componenti vanno scelti in funzione di vari parametri, quali:

- Combustibile
- Potenza al focolare del generatore
- Tipo di caldaia
- Tipo di camera di combustione
- Temperatura o pressione del fluido termovettore
- Temperatura aria comburente
- Posizione canale di alimentazione aria comburente
- Pressione in camera di combustione
- Altitudine sul livello del mare alla quale va installato il bruciatore
- Rampa gas (solo Gas e misti)
- Gruppo spinta (solo per bruciatori ad olio combustibile, gasolio e misti)

- Ventilatore aria comburente
- Quadro elettrico a bordo o separato

Si tenga presente inoltre che i bruciatori con quadro a bordo vengono prodotti di serie con un grado di protezione elettrica IP40. Per protezioni diverse, contattare l'Ufficio Tecnico dell'azienda costruttrice.

Dati necessari:

- Potenza al focolare del generatore;
- Temperatura aria comburente;
- Altitudine sul livello del mare;
- Pressione o temperatura del generatore.

Esempio:

- Potenza al focolare del generatore: 9600 kW
- Temperatura aria comburente: 15 °C
- Altitudine sul livello del mare: 0 m

Fig. 2

Analizzare il diagramma riepilogativo in Fig. 2, in modo da individuare quale o quali bruciatori rientrano in questa fascia di potenza (9600 kW). Una volta individuati i tipi di bruciatori, si sceglie quello più adatto in base a motivi tecnici e economici.

I motivi tenici possono essere riassunti nel maggiore rapporto di modulazione (minori accensioni, minore consumo, minori oscillazioni della temperatura e della pressione del generatore).

Verifica del corretto diametro della rampa gas

Per verificare il corretto diametro della rampa gas, è necessario conoscere la pressione del gas disponibile a monte delle valvole gas del bruciatore. A questa pressione, quindi, si deve sottrarre la pressione in camera di combustione. Il dato risultante, sarà denominato pgas. Tracciare, ora, una retta verticale in corrispondenza del valore di potenza del generatore di calore (nell'esempio, 600 kW), riportato in ascissa, fino ad incontrare la curva di pressione in rete corrispondente al diametro della rampa montata nel bruciatore in esame (DN65, nell'esempio). Dal punto di intersezione, tracciare una retta orizzontale fino a ritrovare, in ordinata, il valore di pressione necessaria a sviluppare la potenza richiesta dal generatore. Il valore letto, dovrà essere uguale o inferiore al valore pgas, calcolato in precedenza.

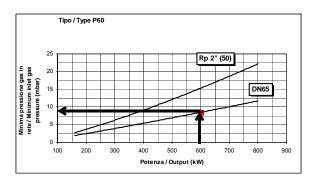
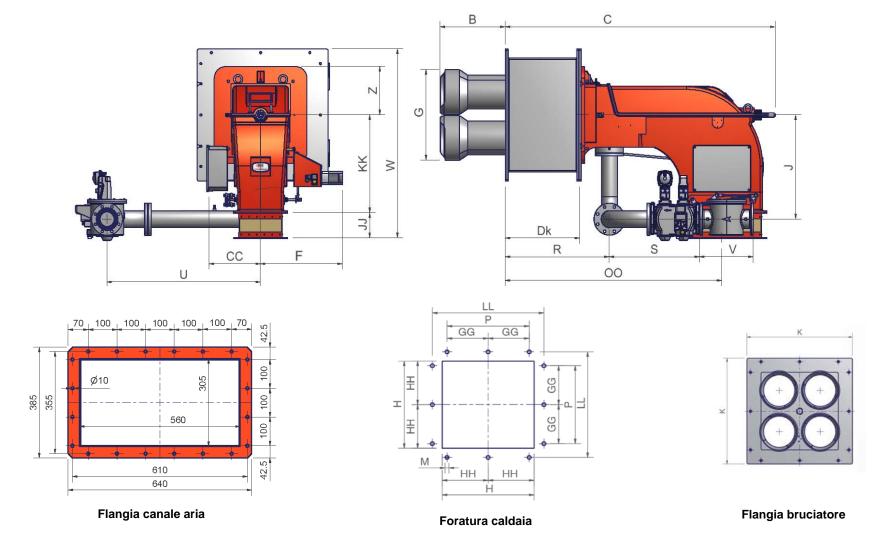


Fig. 3

1.2 Identificazione dei Bruciatori

I bruciatori vengono identificati con tipi e modelli. L'identificazione dei modelli è descritta di seguito.

Tipo HTP1030 Modello M PR	R. S. *IT. VS. 1. 80							
(1) (2) (3)	(4) (5) (6) (7) (8)							
(1) BRUCIATORE TIPO	HTP1030 - HTP1080							
(2) COMBUSTIBILE	MG - Gas naturale-gasolio							
(3) REGOLAZIONE Versioni disponibili	PR - Progressivo MD - Modulante							
(4) BOCCAGLIO	S - Standard							
(5) PAESE DI DESTINAZIONE	* Vedere targa dati (IT= Italia)							
(6) VERSIONI SPECIALI	VS - Drago							
(7) EQUIPAGGIAMENTO (versioni	1 = 2 valvole + controllo di tenuta							
disposibili)	8 = 2 valvole + controllo di tenuta+pressostato gas di massima							
(8) DIAMETRO RAMPA	80 = DN80 100 = DN100 125 = DN125							


Dati tecnici

BRUCIATORE TIPO		HTP1030	HTP1080			
Potenza	min - max kW	2550-13300	4500-19000			
Combustibile		Gas natura	le-gasolio			
Categoria gas		(vedi paragrafo	o successivo)			
Portata gas	min max.(Stm ³ /h)	270-1376	476-2010			
Densità gasolio	kg/m³	84	0			
Viscosità gasolio	cSt@ 40°C	2 - 7	7.4			
Portata gasolio	minmax. kg/h	215 - 1095	380 - 1600			
Alimentazione elettrica		400V 3	N~ 50			
Potenza motore pompa	kW	5.:	5			
Potenza elettrica totale	kW	6				
Protezione		IP40				
Tipo di regolazione		Progressivo	- Modulante			
Pressione gas		(vedi N	lota2)			
Rampa gas 80	Ø Valvole / Attacchi	80 / DN80 -				
Rampa gas 100	Ø Valvole / Attacchi	100 / DN100				
Rampa gas 125	Ø Valvole / Attacchi	125 / D	N125			
Peso approssimato	kg	30	0			
Temperatura di funzionamento	°C	-10 ÷	+50			
Temperatura di immagazzinamento	°C	-20 ÷	+60			
Tipo di servizio*		Conti	inuo			

Nota1:	tutte le portate gas sono in Stm^3/h (pressione assoluta 1013 mbar e temperatura 15° C) e valgono per Gas G20 (potere calorifico inferiore $H_i = 34.02 \text{ MJ/Stm}^3$)
Nota2:	Pressione gas massima = 500 mbar (con valvole Siemens VGD).
	Pressione gas minima = vedi curve

1.3 Categorie gas e paesi di applicazione

CATEGORIA GAS		PAESE																							
I _{2H}	АТ	ES	GR	SE	FI	ΙE	HU	IS	NO	CZ	DK	GB	IT	PT	CY	EE	LV	SI	МТ	SK	BG	LT	RO	TR	СН
l _{2E}	LU	PL	1	1	-	-	1	1	-	-	1	-	-	-	-	1	ı	1	-	-	1	-	1	1	-
I _{2E(R)B}	BE	1	1	1	-	-	-	-	-	-	1	-	-	-	-	1	ı	-	-	-	-	-	1	1	-
I _{2L}	NL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2ELL}	DE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
l _{2Er}	FR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	DN	В	Cmin	Cmax	CC	Dk	F	G	GG	Н	НН	J	JJ	K	KK	LL	M	00	Р	R	S	U	V	W	Ζ
HTP1030	80	435	1320	1621	348÷383	340	450÷670	560	275	600	300	710	175	750	665	700	16	1000	550	200	736	1092	322	1170	330
HTP1030	100	435	1320	1621	348÷383	340	450÷670	560	275	600	300	710	175	750	665	700	16	1000	550	200	642	1092	382	1170	330
HTP1030	125	435	1320	1621	348÷383	340	450÷670	560	275	600	300	710	175	750	665	700	16	1000	550	200	754	1192	480	1170	330
HTP1080	100	422	1320	1621	348÷383	540	450÷670	700	350	750	375	710	175	900	665	850	16	1000	700	200	642	1092	382	1170	330
HTP1080	125	422	1320	1621	348÷383	540	450÷670	700	350	750	375	710	175	900	665	850	16	1000	700	200	754	1192	480	1170	330

GRUPPO SPINTA SU TELAIO SEPARATO

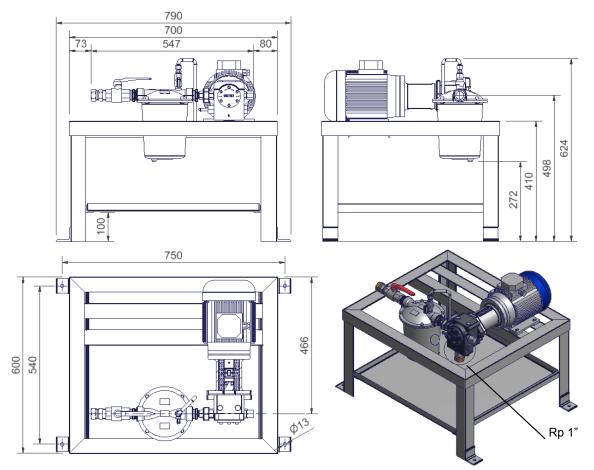


Fig. 4 Dimensioni di ingombro massimo del gruppo spinta (taglia bruciatore, fino a 520. Motore pompa < 4kW)

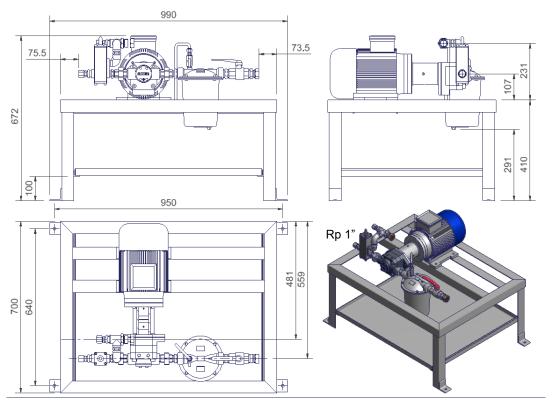


Fig. 5 Dimensioni di ingombro massimo del gruppo spinta (taglia bruciatore, da 525. Motore pompa ≥ 4kW)

COMPONENTI A BORDO BRUCIATORE

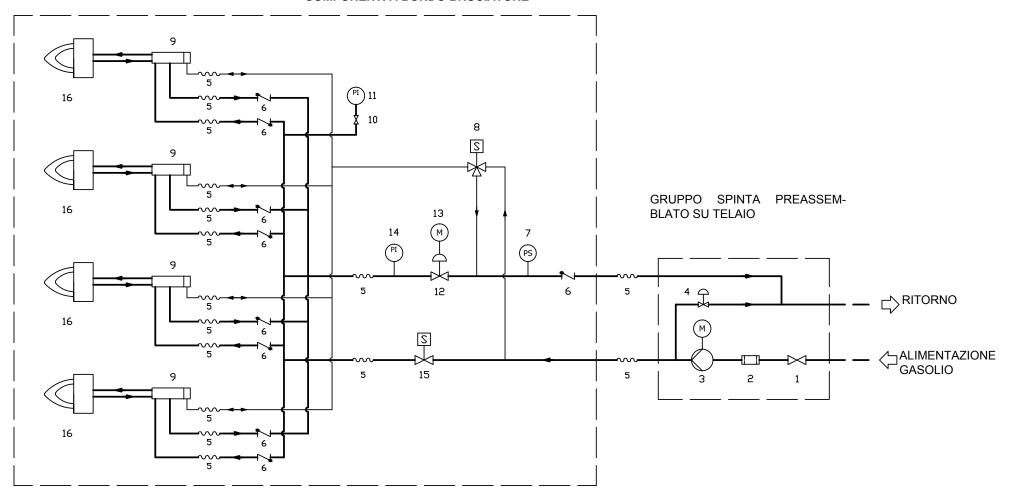


Fig. 6 Schema idraulico bruciatore (variante 1)

COMPONENTI A BORDO BRUCIATORE

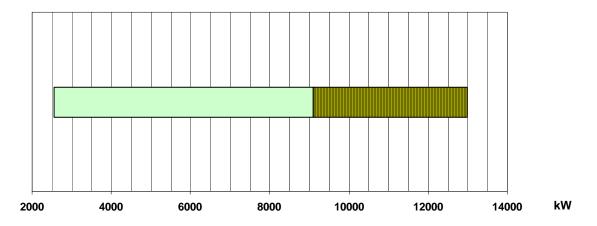
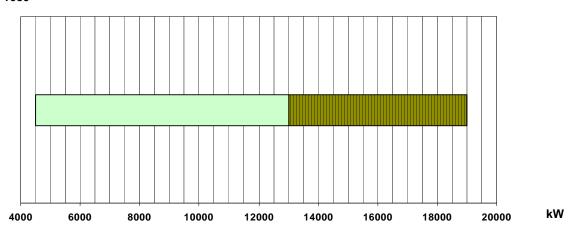
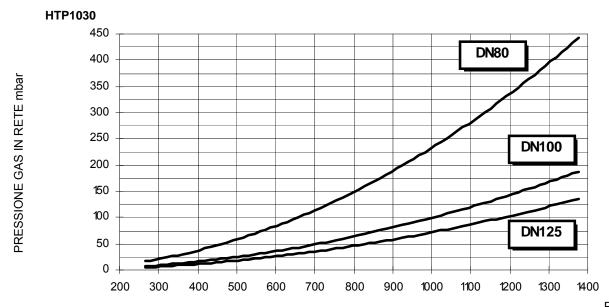



Fig. 7 Schema idraulico bruciatore (variante 2)

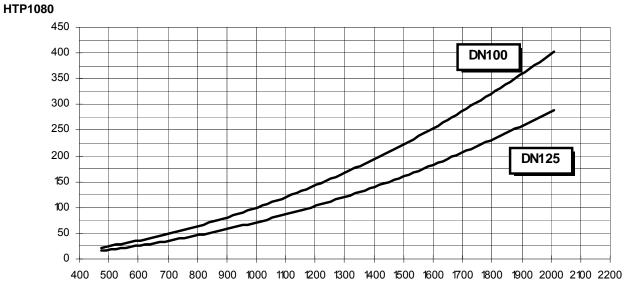

	LEGENDA
1	Rubinetto manuale
2	Filtro gasolio
3	Pompa e motore
4	Regolatore di portata
5	Flessibile
6	Valvola di non ritorno
7	Pressostato di massima
8	Elettrovalvola a 3 vie
9	Lancia
10	Rubinetto portamanometro (optional)
11	Manometro (optional)
12	Regolatore di pressione
13	Servocomando
14	Manometro
15	Elettrovalvola
16	Testa di combustione

1.5 Campi di lavoro

HTP1030


HTP1080

Campo di scelta del bruciatore


Per ottenere la potenza in kcal/h, moltiplicare il valore di potenza in kW per 860.

I dati sono riferiti a condizioni standard: pressione atmosferica pari a 1013 mbar, temperatura ambiente pari a 15° C.

Portata gas Stm³/h

PRESSIONE GAS IN RETE mbar

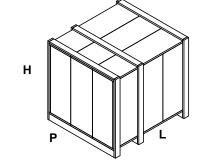
Portata gas Stm³/h

Attenzione: in ascissa è riportato il valore della portata gas, in ordinata il corrispondente valore di pressione in rete al netto della pressione in camera di combustione. Per conoscere la pressione minima in ingresso rampa, necessaria per ottenere la portata gas richiesta, bisogna sommare la pressione in camera di combustione al valore letto in ordinata.

PARTE II: INSTALLAZIONE

2.0 MONTAGGI E ALLACCIAMENTI

2.1 Imballaggio

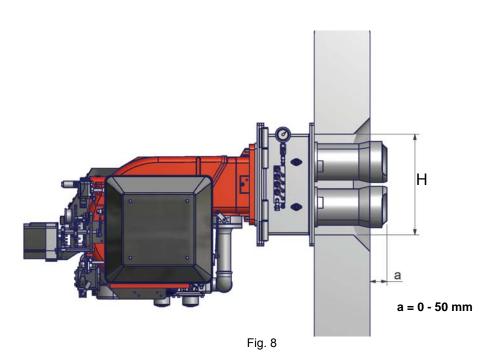

I bruciatori vengono consegnati in gabbie di legno di dimensioni:

HTP1030: 2180 mm x 1180 mm x 1210 mm (L x P x H) **HTP1080:** 2180 mm x 1580 mm x 1560 mm (L x P x H)

Tali imballi temono l'umidità e non sono adatti per essere impilati.

All'interno di ciascun imballo sono inseriti:

- 1 bruciatore con rampa gas staccata;
- 1 guarnizione da interporre tra il bruciatore e la caldaia;
- 2 flessibili olio;
- 1 filtro olio;
- 1 busta contenente questo manuale



Per eliminare l'imballo del bruciatore, seguire le procedure previste dalle leggi vigenti sullo smaltimento dei materiali.

2.2 Montaggio del bruciatore alla caldaia

Per montare il bruciatore alla caldaia, procedere nel modo seguente:

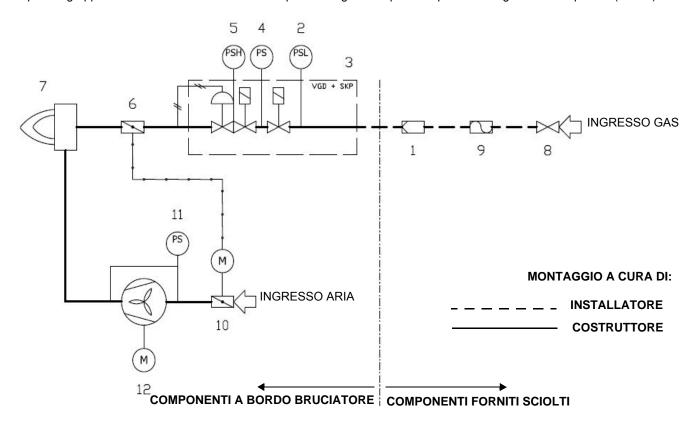
- 1 posizionare, in corrispondenza del foro sulla parete frontale della caldaia, i prigionieri secondo la dima di foratura descritta al paragrafo "Dimensioni di ingombro";
- 2 posizionare la guarnizione sulla flangia del bruciatore;
- 3 montare il bruciatore alla caldaia;
- 4 fissarlo con i dadi ai prigionieri della caldaia secondo lo schema riportato in Fig. 8.
- 5 Terminato il montaggio del bruciatore alla caldaia, sigillare lo spazio tra il boccaglio e la pigiata refrattaria, con apposito materiale isolante (cordone in fibra resistente alla temperatura o cemento refrattario).

2.3 Sollevamento e movimentazione del bruciatore

ATTENZIONE! Le operazioni di sollevamento e movimentazione devono essere condotte da personale specializzato ed addestrato per la movimentazione dei carichi. Qualora queste operazioni non siano effettuate correttamente, permane il rischio residuo di rovesciamento e caduta della macchina.

Per la movimentazione utilizzare mezzi con portata adeguata al peso da sostenere (consultare il paragrafo "Caratteristiche tecniche")."

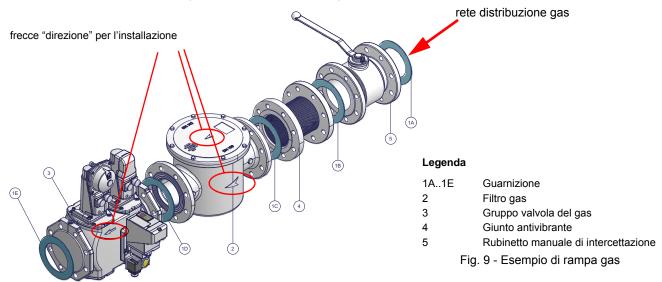
Il bruciatore è provvisto di golfari per il sollevamento.


2.4 Collegamento delle rampe gas

Gli schemi seguenti mostrano i componenti inclusi nella fornitura insieme al bruciatore e quelli forniti dall'installatore. Gli schemi sono conformi alle norme di legge.

ATTENZIONE: PRIMA DI ESEGUIRE I COLLEGAMENTI ALLA RETE DI DISTRIBUZIONE DEL GAS, ACCERTARSI CHE LE VALVOLE MANUALI DI INTERCETTAZIONE SIANO CHIUSE. LEGGERE ATTENTAMENTE IL CAPITOLO "AVVERTENZE" DEL PRESENTE MANUALE.

Rampa con gruppo valvole VGD con stabilizzatore di pressione gas incorporato + pressostato gas controllo perdite (PGCP)



Legenda

	RAMPA GAS PRINCIPALE		RAMPA ARIA COMBURENTE
1	Filtro	10	Serranda aria con servocomando
2	Pressostato - PGMIN	11	Pressostato aria - PA
3	Valvole di sicurezza con regolatore di pressione	12	Ventilatore con motore elettrico
4	Pressostato controllo di tenuta - PGCP		
5	Pressostato - PGMAX (*opzione)		
6	Valvola a farfalla		
7	Bruciatore principale		
8	Valvola di arresto manuale (*opzione)		
9	Giunto antivibrante (*opzione)		

2.5 Assemblaggio della rampa del gas

Per assemblare la rampa principale del gas, procedere nel modo seguente:

- 1) nel caso di giunti flangiati: interporre tra un componente e l'altro, una guarnizione (n. 1A..1E Fig. 9) compatibile con il gas utilizzato,
- 2) fissare tutti i componenti con le viti, secondo gli schemi riportati, rispettando la direzione di montaggio di ogni elemento.

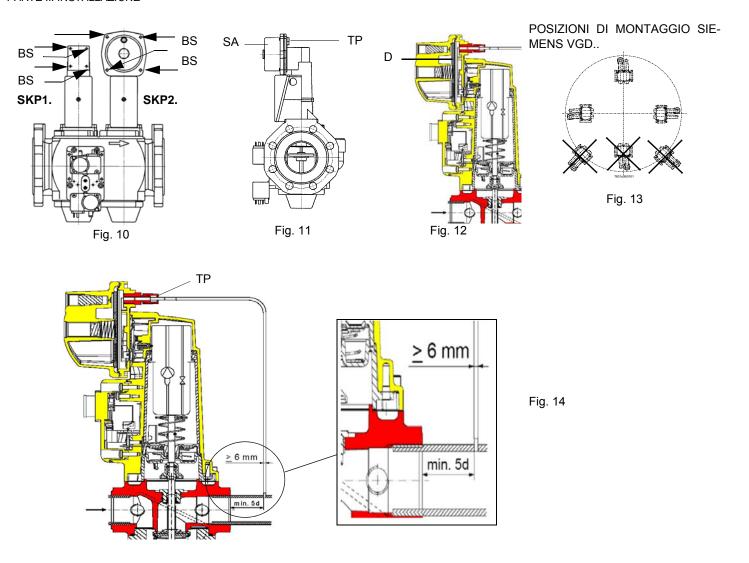
NOTA: Il giunto antivibrante, il rubinetto di intercettazione e le guarnizioni non fanno parte della fornitura standard.

ATTENZIONE: una volta montata la rampa secondo lo schema riportato in Fig. 9, deve essere effettuata la prova di tenuta del circuito gas, secondo le modalità previste dalla normativa vigente.

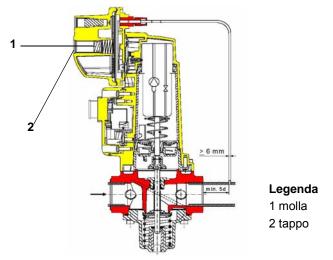
Vengono di seguito riportate le procedure di installazione dei gruppi valvole utilizzati nelle diverse rampe.

2.6 Valvole gas Siemens VGD20.. e VGD40.. - Versione con SKP2.. (stabilizzatore di pressione incorporato)

Montaggio


- Per montare le valvole gas doppie VGD.., sono necessarie 2 flange (per il mod. VGD20.. le flange sono filettate);
- per impedire l'ingresso di corpi estranei nella valvola, montare dapprima le flange;
- sulla tubazione, pulire le parti assemblate e successivamente montare la valvola;
- la direzione del flusso di gas deve seguire la freccia sul corpo della valvola;
- assicurarsi che i bulloni sulle flange siano accuratamente serrati;
- verificare che le connessioni di tutti i componenti siano a tenuta;
- assicurarsi che gli O-ring siano correttamente posizionati tra le flange e la valvola (solo per VGD20..);
- assicurarsi che le guarnizioni siano correttamente posizionate tra le flange (solo per VGD40..).
- Collegare il tubetto di riferimento pressione gas (TP in figura tubo fornito sciolto con diametro esterno da 8 mm) agli appositi raccordi posti sulla tubazione gas, dopo le valvole gas: la pressione del gas deve essere acquisita ad una distanza pari o superiore a
 circa 5 volte il diametro nominale della tubazione.
- Lasciare libero lo sfiato in atmosfera (SA in figura). Qualora la molla installata non soddisfi le esigenze di regolazione, interpellare i nostri centri di assistenza per l'invio di una molla opportuna.

Attenzione: il diaframma D dell'SKP2 deve essere verticale (vedi Fig. 12).



ATTENZIONE: la rimozione delle 4 viti BS danneggia irreparabilmente gli apparecchi!

2.7 Campo di regolazione della pressione

Il campo di regolazione della pressione, a valle del gruppo valvole, varia in base al tipo di molla in dotazione al gruppo valvole.

Attuatore Siemens SKP

Valvole Siemens VGD con SKP:

Campo di lavoro (mbar)	0 - 22	15 - 120	100 - 250
Colore molla	neutra	gialla	rossa

Una volta installata la rampa del gas, eseguire i collegamenti elettrici dei suoi componenti: gruppo valvole, pressostati e controllo di tenuta.

ATTENZIONE: una volta montata la rampa secondo lo schema riportato in Fig. 9, deve essere effettuata la prova di tenuta del circuito gas, secondo le modalità previste dalla normativa vigente.

2.8 Schemi esemplificativi di impianti di alimentazione gasolio

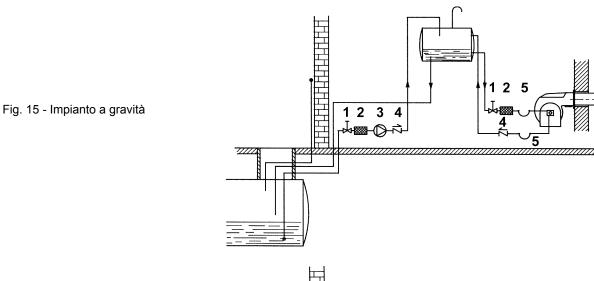


Fig. 16 - Impianto ad anello

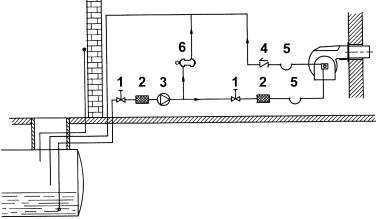
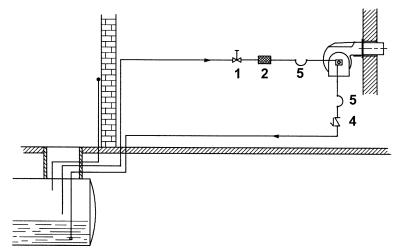
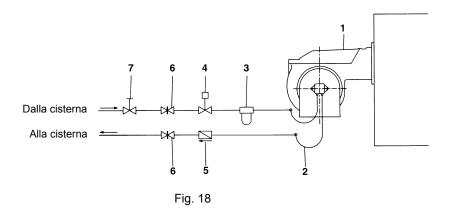



Fig. 17 - Impianto in aspirazione


Legenda

- 1 Valvola manuale di intercettazione
- 2 Filtro gasolio
- 3 Pompa di alimentazione gasolio
- 4 Valvola di non ritorno
- 5 Flessibili gasolio
- 6 Valvola di sfioro

NOTA: negli impianti a gravità e ad anello, inserire un dispositivo di intercettazione automatica (vedere n. 4 - "" on page 20).

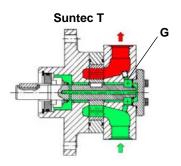
2.9 Schema di installazione tubazioni gasolio

Legenda

- 1 Bruciatore
- 2 Tubi flessibili (a corredo)
- 3 Filtro combustibile (a corredo)
- 4 Dispositivo di intercettazione automatica (*)
- 5 Valvola di non ritorno (*)
- 6 Saracinesca
- 7 Saracinesca a chiusura rapida (esterna ai locali serbatoio e caldaia)

(*) Richiesto in Italia, solo negli impianti con alimentazione per gravità, a sifone o a circolazione forzata. Se il dispositivo installato è una elettrovalvola, installare un temporizzatore per ritardarne la chiusura. Il collegamento diretto del dispositivo di intercettazione automatica (4) senza temporizzatore può causare la rottura della pompa.

Le pompe utilizzate possono essere installate sia in sistemi monotubo sia in quelli bitubo.


Sistema monotubo: viene utilizzato un unico tubo che, partendo immediatamente sopra il fondo del serbatoio, raggiunge l'entrata della pompa. Dalla pompa, il fluido in pressione viene convogliato all'ugello: una parte esce dall'ugello mentre il resto del fluido ritorna alla pompa. In questo sistema, se è presente il grano di by-pass, esso dovrà essere tolto e l'attacco opzionale di ritorno, sul corpo pompa, dovrà essere chiuso con tappo cieco.

Sistema bitubo: viene utilizzato un tubo che collega il serbatoio con l'attacco di ingresso della pompa, come nel sistema monotubo, e di un secondo tubo che dall'attacco di ritorno della pompa si collega, a sua volta, al serbatoio. Tutto l'olio in eccesso ritorna, così, al serbatoio: l'installazione può, quindi, essere considerata auto-spurgante. Se presente, il grano di by-pass interno deve essere inserito per evitare che aria e combustibile passino attraverso la pompa.

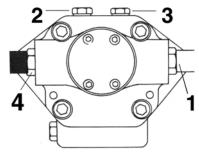
I bruciatori escono dalla fabbrica predisposti per l'alimentazione con impianto a due tubi.

Per alimentazione con impianto monotubo (consigliabile nel caso di alimentazione a gravità) è possibile eseguire la trasformazione, nel modo descritto sopra. Per passare dal un sistema monotubo a un sistema bitubo, si deve inserire il grano di by-pass in corrispondenza di **G** (pompa con rotazione antioraria - guardando l'albero).

Attenzione: la modifica del senso di rotazione della pompa ne comporta la variazione di tutti i collegamenti.

Spurgo

Nelle installazioni bitubo lo spurgo è automatico: avviene attraverso una scanalatura di scarico ricavata nel pistone.


Nelle installazioni monotubo, occorre allentare una delle prese di pressione della pompa finchè l'aria non sia uscita dall'impianto.

2.10 Utilizzo delle pompe combustibile

- Se il tipo di installazione è monotubo, verificare che all'interno del foro di ritorno non sia presente il grano di by-pass. In questo caso infatti la pompa non funzionerebbe correttamente e potrebbe danneggiarsi.
- Non aggiungere al combustibile altre sostanze additive, così da evitare la formazione di composti che alla lunga possano andare a
 depositarsi tra i denti dell'ingranaggio, bloccandolo.
- Dopo il riempimento della cisterna, attendere prima di avviare il bruciatore. Questo dà il tempo ad eventuali impurità in sospensione di depositarsi sul fondo anziché essere aspirate dalla pompa.
- Quando si avvia la pompa per la prima volta e si prevede il funzionamento a secco per un periodo di tempo considerevole (ad

- esempio a causa di un lungo condotto di aspirazione), iniettare dell'olio lubrificante dalla presa di vuoto.
- Durante il fissaggio dell'albero del motore all'albero della pompa, prestare attenzione a non obbligare quest'ultimo in senso assiale o laterale, per evitare usure eccessive del giunto, rumore e sovraccarichi di sforzo sull'ingranaggio.
- Le tubazioni non devono contenere aria. Evitare pertanto attacchi rapidi, usando di preferenza raccordi filettati o a tenuta meccanica. Sigillare con un sigillante smontabile adatto, le filettature di raccordo, i gomiti e le giunzioni. Limitare al minimo indispensabile il numero delle connessioni in quanto sono tutte potenziali sorgenti di perdita.
- Evitare l'utilizzo di Teflon nel collegamento dei flessibili di aspirazione, ritorno e mandata, così da evitare una possibile messa in circolo di particelle che si depositerebbero sui filtri della pompa o dell'ugello, limitandone l'efficacia. Privilegiare raccordi con OR, oppure tenute meccaniche (ad ogiva o con rondelle di rame o alluminio).
- Prevedere sempre un filtro esterno nella tubazione di aspirazione a monte della pompa.

Suntec T	
Campo viscosità	3 - 75 cSt
Temperatura olio	0 - 150 °C
Pressione entrata minima	- 0.45 bar per evitare la formazione di gas
Pressione entrata massima	5 bar
Velocità	3600 rpm max.
1 1.	<u> </u>

Legenda

- 1 Entrata G3/4
- 2 Attacco manometro G1/4
- 3 Attacco vacuometro per misura depressione in entrata G1/4
- 4 Alla valvola di regolazione pressione G3/4

N.B. Pompa con rotazione "C".

2.11 Regolatore di pressione Suntec TV

Regolazione della pressione in mandata

Rimuovere il dado cieco 1 e la guarnizione 2, svitare il dado di bloccaggio 4.

Per aumentare la pressione, girare la vite di regolazione 3 in senso orario. Per ridurre la pressione, girare la vite in senso antiorario.

Avvitare il dado di bloccaggio 4, rimontare la guarnizione 2 ed il dado cieco 1.

Legenda

- 1 Dado cieco
- 2 Guarnizione
- 3 Vite di regolazione
- 4 Dado di bloccaggio
- 5 Guarnizione

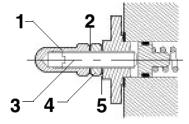
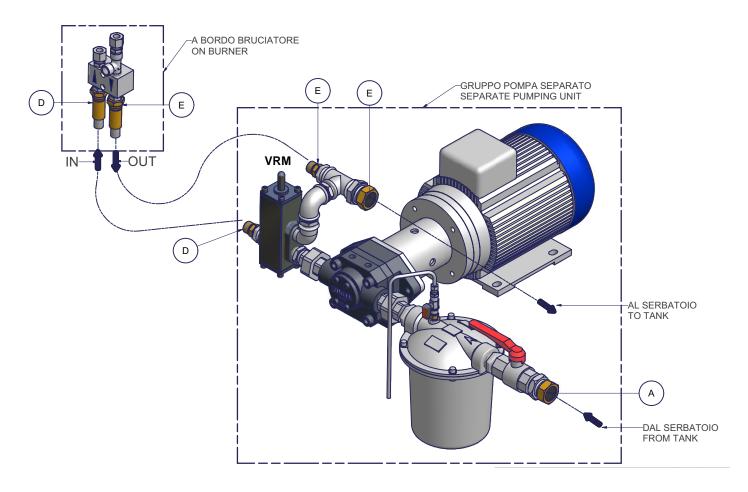


Fig. 19


2.12 Collegamento dei flessibili

Per collegare i flessibili alla pompa procedere nel seguente modo, a seconda del modello di pompa in dotazione:

- 1 togliere i tappi di chiusura dei condotti di ingresso (A) e ritorno (R) sulla pompa;
- 2 avvitare i dadi girevoli dei due flessibili alla pompa, facendo **attenzione a non invertire l'ingresso con il ritorno**: osservare attentamente le frecce stampate sulla pompa che indicano l'ingresso e il ritorno (vedi paragrafo precedente).

2.13 Installazione del bruciatore al gruppo di alimentazione olio Suntec T+TV

Per collegare il bruciatore al gruppo di alimentazione dell'olio, seguire lo schema di collegamento riportato in figura: l'olio, proveniente dalla cisterna, viene spinto dalla pompa all'interno del bruciatore. Il regolatore di pressione fa in modo che il combustibile giunga all'ugello alla pressione richiesta, mentre l'olio in eccesso ritorna alla cisterna. Per variare la pressione in mandata, agire sulla vite di regolazione **VRM** del regolatore di pressione di mandata.

ATTENZIONE: i tappi di plastica non sono a tenuta ma servono solamente per il trasporto. I flessibili, tra pompa e bruciatore, sono quelli indicati in etichetta come "Flessibile alta pressione olio". Il flessibile indicato come "Flessibile bassa pressione" in etichetta, va collegato a monte filtro.

2.14 Collegamenti elettrici

Rispettare le regole fondamentali di sicurezza, assicurarsi del collegamento all'impianto di messa a terra, non invertire i collegamenti di fase e neutro, prevedere un interruttore differenziale magneto-termico adeguato per l'allacciamento alla rete.

ATTENZIONE: Prima di eseguire i collegamenti elettrici, assicurarsi di posizionare l'interruttore dell'impianto in posizione OFF e accertarsi che l'interruttore principale del bruciatore sia in posizione 0 (OFF - spento). Leggere attentamente il capitolo "AVVERTENZE", alla sezione "Alimentazione elettrica".

Per l'esecuzione dei collegamenti, consultare gli schemi elettrici allegati.

ATTENZIONE: il bruciatore viene fornito con un ponte elettrico tra i morsetti 6 e 7, nel caso di collegamento del termostato alta/bassa fiamma, rimuovere tale ponte prima di collegare il termostato.

IMPORTANTE: Collegando i fili elettrici di alimentazione alla morsettiera MA del bruciatore, assicurarsi che il filo di terra sia più lungo dei conduttori di fase e neutro.

2.15 Rotazione motore ventilatore e motore pompa

Dopo aver completato il collegamento elettrico del bruciatore, ricordarsi di verificare la rotazione del motore.

Il motore deve ruotare nel senso indicato sulla carcassa. In caso di rotazione errata invertire l'alimentazione trifase e riverificare la rotazione del motore.

3.0 REGOLAZIONI

ATTENZIONE: prima di avviare il bruciatore, assicurarsi che le valvole manuali di intecettazione siano aperte e controllare che il valore di pressione a monte della rampa sia conforme ai valori riportati nel paragrafo "Dati tecnici". Assicurarsi, inoltre, che l'interruttore generale di alimentazione sia chiuso.

ATTENZIONE: Durante le operazioni di taratura fare attenzione a non far funzionare il bruciatore con portata d'aria insufficiente (pericolo di formazione di monossido di carbonio); nel caso ciò avvenisse ridurre lentamente il gas fino a rientrare nei valori di combustione normali.

ATTENZIONE: LE VITI SIGILLATE NON DEVONO ESSERE ASSOLUTAMENTE ALLENTATE! SE CIÒ AVVENISSE, LA GARANZIA SUL COMPONENTE DECADREBBE IMMEDIATAMENTE!

3.1 Curve di pressione del gas in testa di combustione in funzione della portata

Le curve sono applicabili per pressione = 0 mbar in camera di combustione!

Le curve di pressione in testa di combustione in funzione della portata gas, sono valide nel caso di bruciatore correttamente regolato (percentuale di O_2 residuo nei fumi come da tabella "Parametri di combustione consigliati" e CO entro i limiti di norma). In questo stadio, la testa di combustione, la farfalla del gas e il servocomando sono alla massima apertura. Fare riferimento alla Fig. 20, che indica il modo corretto per misurare la pressione del gas, tenendo conto dei valori di pressione in camera di combustione, rilevati dal manometro o dalle caratteristiche tecniche della caldaia/utilizzo.

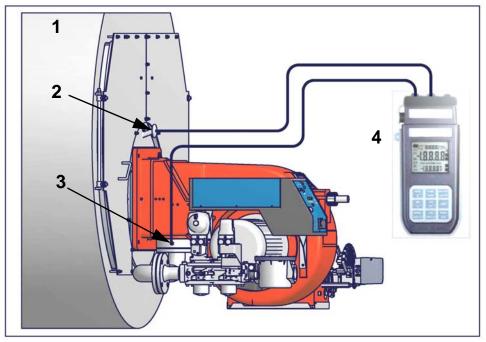
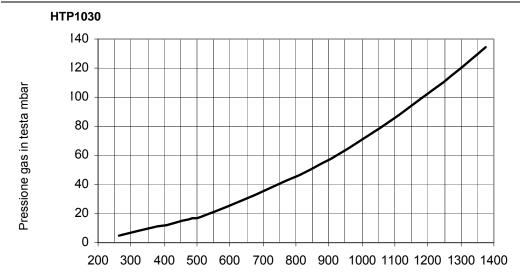


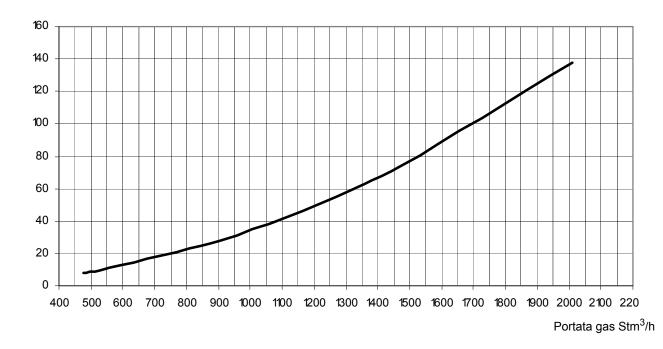
Fig. 20

Legenda


- 1 Generatore
- 2 Presa di pressione in camera di combustione
- 3 Presa di pressione gas valvola a farfalla
- 4 Manometro differenziale

3.2 Misura della pressione del gas in testa di combustione

Inserire le sonde relative agli ingressi del manometro: una nella presa di pressione della camera di combustione per rilevare il dato di pressione in camera di combustione e l'altra nella presa di pressione gas della valvola a farfalla del bruciatore, per rilevare la pressione nella testa di combustione. In base alla pressione differenziale, così rilevata, si ricava il dato relativo alla portata gas massima: utilizzando i grafici delle curve pressione-portata in testa di combustione al paragrafo successivo, dal dato relativo alla pressione in testa (riportato in ordinata) si ricava il valore della portata bruciata in Stm³/h, riportata in ascissa. I dati ricavati devono essere utilizzati per la regolazione della portata del gas.


NOTA: LE CURVE PRESSIONE - PORTATA SONO PURAMENTE INDICATIVE; PER UNA CORRETTA REGOLAZIONE DELLA PORTATA GAS, FARE RIFERIMENTO ALLA LETTURA DEL CONTATORE.

3.3 Curve pressione in testa di combustione - portata gas

Portata gas Stm³/h

HTP1080

 $\mathbf{\Lambda}$

Pressione gas in testa mbar

IMPORTANTE! l'eccesso di aria di combustione va regolato secondo i parametri consigliati riportati nella seguente tabella:

Parametri di combustione consigliati								
Combustibile	CO ₂ Consigliato (%)	O ₂ Consigliato (%)						
Gas naturale	9 ÷ 10	3 ÷ 4.8						
Gasolio	11.5 ÷ 13	2.9 ÷ 4.9						

3.5 Filtro Gas

I filtri per gas fermano le particelle di polvere portate dal gas e proteggono gli elementi in pericolo (es.: valvole bruciatori, contatori e regolatori) da un rapido intasamento. Il filtro è normalmente posizionato a monte di tutti gli organi di regolazione e intercettazione.

3.6 Regolazione - descrizione generale

La regolazione delle portate di aria e di combustibile si esegue prima alla massima potenza ("alta fiamma"): consultare il manuale LMV5.. allegato.

- Verificare che i parametri di combustione rientrino nei limiti consigliati.
- Verificare la portata misurandola al contatore o, nel caso non fosse possibile, verificando la pressione in testa di combustione con un manometro differenziale, come descritto al paragrafo "Curve di pressione del gas in testa di combustione in funzione della portata"
- Successivamente, regolare la combustione definendo i punti della curva "rapporto gas/aria" (consultare il manuale LMV5.. allegato).
- Stabilire la potenza della bassa fiamma al fine di evitare che la potenza in bassa fiamma sia troppo elevata oppure che la temperatura dei fumi sia troppo bassa da causare condensazioni nel camino.

3.7 Procedura di avviamento

- 1 Accendere il bruciatore.
- 2 L'apparecchiatura LMV esegue il ciclo di test del sistema: sul display dell'AZL è visualizzato il messaggio System Test (Test di sistema); al termine della fase di test viene visualizzata la pagina principale e il sistema va in sosta (con la catena di sicurezza aperta) in attesa del consenso all'avvio (standby fase 12 del programma)

Setpoint	80°C
ValEffet	78°C
Combstib.	GAS
Standby	12

Visualizzazione principale

- 3 controllare il senso di rotazione del motore ventilatore (vedere paragrafo relativo);
- 4 avviare il sistema, facendo in modo che le catene di sicurezza inviino il segnale di consenso all'avviamento;
- 5 comincia il ciclo di combustione: il display visualizzerà i vari stadi di funzionamento
- Preventilazione (fase 30 del programma)
- Andare in posizione di accensione (fase 36 del programma)
- Posizione di accensione (fase 38 del programma)
- Consenso combustibile (si aprono le elettrovalvole del combustibile)
- Fiamma (viene generata la fiamma)
- Andare in carico minimo (il servocomando si muove verso la posizione di bassa fiamma).

NOTA: I simboli C e A, in basso sul display, indicano rispettivamente la posizione di apertura del combustibile e dell'aria.

Una volta eseguito il ciclo di accensione, verrà visualizzata la schermata principale:

Setpoint	80°C
ValEffet	78°C
Carico	24%
Fiamma	60%

Visualizzazione principale

Set point: valore di set-point impostato per la temperatura

Val effet.: valore di temperatura/pressione effettivo
Carico: percentuale di carico (potenza del bruciatore)
Fiamma: percentuale di corrente rilevazione fiamma.

Dalla pagina principale si passa alla seconda pagina premendo ENTER:

Comb.	0.0	Aria	1.8
Au1		CF	0.0
Au2		O2	
Au3		Car	0.0

Visualizzazione secondaria

Comb.: indica la posizione (in gradi) del servocomando relativo al combustibile.

Air: indica la posizione (in gradi) del servocomando relativo all'aria.

Au1..3: ausiliari.

CF: valore in % sulla frequenza massima dell'inverter

O2: percentuale di ossigeno

Car: percentuale di carico, cioé potenza sviluppata dal bruciatore.

Premendo ENTER si ritorna alla pagina principale.

Per accedere al menù principale, dalla visualizzazione principale, premere ESC due volte:

Visualizza stato Funzionamento FunzionManuale **Parametri e Visual.**

Menù principale

Premendo ESC una sola volta si accede direttamente al sottomenù Visualizza Stato, prima voce del menù principale:

FunzionamNormale Stato/Reset StoricoErrori StoricoBlocchi

il menù Visualizza Stato prevede le seguenti voci:

- **FunzionamNormale:** selezionando questa voce e premendo ENTER si ha la visualizzazione iniziale, premere ESC per tornare al menù principale.
- Stato/Reset: mostra l'errore di sistema o avaria in corso/ rappresenta la funzione di reset per un blocco (lockout).
- Storico Errori: selezionando questa voce con il tasto ENTER, verrà visualizzato lo storico delle ultime 21 avarie occorse.
- Storico Blocchi: selezionando questa voce con il tasto ENTER, verrà visualizzato lo storico degli ultimi 9 blocchi occorsi con data e ora.
- AllarmAtt/Disatt: attiva/disattiva la sirena in caso di allarme.

•	8 S			_		:
~ .	~ ~	·TO	rır	_	nrr	nrı

Per visualizzare lo Storico Errori, selezionare questa voce e premere ENTER. Il messaggio visualizzato sarà del tipo:

1 Classe:	05Gas
-----------	-------

cod.	BF	Fase:	10
Diag.:	00	Pot:	0.0
Nr. avv.			88

intervallato dal messaggio di errore del tipo:

Regolazione e controllo O2 disattivato automaticamente

per visualizzare le altre pagine dello storico, premere i tasti freccia.

Per uscire dallo storico errori, premere ESC.

3.9 Storico blocchi

Per visualizzare lo **Storico Blocchi**, selezionare questa voce e premere ENTER. Il messaggio visualizzato sarà del tipo:

1	10.08.07		13.47
C:71	D:00	F:	12
Nr. avv.			88
Potenz.	0.0		Gas

intervallato dal messaggio di errore del tipo:k

Blocco manuale è stato azionato

per visualizzare le altre pagine dello storico, premere i tasti freccia.

Per uscire dallo storico blocchi, premere ESC.

3.10 Impostazione del set-point di temperatura

Per impostare il set-point di temperatura, ossia la temperatura di lavoro del generatore, procedere nel modo seguente. Dalla pagina principale, accedere al menù principale premendo ESC due volte.

Visualizza stato
Funzionamento
FunzionManuale
Parametri e Visual.

tramite i tast freccia, selezionare "Params&Visual" e premere ENTER: verrà visualizzata la schermata di richiesta password:

Accesso senza PW
Access con HF
Accesso con OEM
Access con LS

selezionare, tramite i tasti freccia, la voce "Accesso senza PW" (accesso senza password - livello utente) e confermare con ENTER.

PARTE II: INSTALLAZIONE

Gli altri livelli di accesso richiedono una password riservata al Centro assistenza, al Costruttore, ecc.

Il menù visualizzato con accesso senza password è il seguente:

ControlloBruciat.
CammaElettronica
Monitor.Regol.O2
RegolatCarico

Selezionare la voce "RegolatCarico" (REGOLATORE CARICO) e premere ENTER: verrà visualizzato il menù

ParamRegolat.
Configurazione
Adattamento
VersioneSoftware

Selezionare" Param.Regolat." (Parametri del regolatore) e premere ENTER: verrà visualizzato:

SelezParamRegol.
PassoMinServom.
CostTmpFiltrSW
SetpointW1

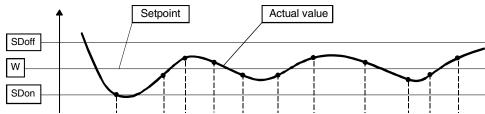
Selezionare **SetPointW1**, tramite i tasti freccia e premere ENTER:

SetpointW1	
Att:	90°
Nuov:	90°

Att: indica il valore di set-point già impostato, per cambiare il valore utilizzare i tasti freccia (il range disponibile va da 0° a 95°C).

Una volta impostato il nuovo set-point, confermare con ENTER, altrimenti per uscire senza variazioni premere ESC.

Premere ESC per uscire dalla programmazione del set-point dopo avere confermato il valore impostato con ENTER.


Att: indica il valore di set-point già impostato, per cambiare il valore utilizzare i tasti freccia.

NOTA: Il range disponibile dipende dal sensore utilizzato; l'unità di misura della grandezza rilevata e i relativi limiti sono vincolati da parametri di livello "Service".

Una volta impostato il nuovo set-point, confermare con ENTER, altrimenti per uscire senza variazioni premere ESC.

Premere ESC per uscire dalla programmazione del set-point dopo avere confermato il valore impostato con ENTER.

Dopo avere impostato il valore di temperatura set-point W1, impostare i valori del "termostato limite di accensione" (SDon) e del "termostato limite di spegnimento" (SDOff).

Per impostare questi valori, selezionare con le frecce la voce DiffIntervModOn (SDOn), scorrendo verso il basso il menù "RegolCarico"; premere ENTER

verrà visualizzato:

DiffIntervModOn	
Att:	1.0%
Nuov:	1.0%

Per deafult il valore di questo parametro è 1%: cioé, il bruciatore riaccenderà ad una temperatura inferiore dell'1% rispetto al set-point. Modificare il dato tramite i tasti freccia. Premere ENTER per confermare poi ESC per uscire. Oppure premere solamente ESC per uscire senza modificare il dato.

Selezionare, quindi, sempre con le frecce, la voce DiffIntervModOff (SDOff), scorrendo verso il basso il menù "RegolCarico"; premere ENTER.

SetpointW1
SetpointW2
DiffIntervModOn
DiffIntervModOff

verrà visualizzato:

DiffIntervModOff	
Att:	10.0%
Nuov:	10.0%

Per deafult il valore di questo parametro è 10%: cioé, il bruciatore si spegnerà ad una temperatura superiore del 10% rispetto al setpoint.

Premere ENTER per confermare poi ESC per uscire. Oppure premere solamente ESC per uscire senza modificare il dato. Premere ESC fino a visualizzare il menù

ControlloBruciat.	
CammaElettronica	
Monitor.Regol.O2	
RegolatCarico	

scorrere questo menù verso il basso fino a selezionare la voce "AZL"

RegolatCarico
AZL
Servomotori
Modulo Inverter

confermare con ENTER:

Tempi	
Lingua	
FormatoData	
UnitàFisiche	

Tempi: permette di impostare il funzionamento "Estate / Inverno" e il fuso orario (EU - Europa; USA - Stati Uniti)

Estate/Inve	rno		
Fuso EU/U	S		

selezionare la modalità Estate/Inverno desiderata e confermare con ENTER; premere ESC per uscire. Impostare il fuso orario nello stesso modo.

Lingua: permette di impostare la lingua

Lingua	
Att:	English
Nuov:	Italiano

selezionare la lingua desiderata e confermare con ENTER; premere ESC per uscire.

FormatoData: permette di impostare il formato data DD-MM-YY (giorno-mese-anno) oppure MM-DD-YY (mese-giorno-anno)

FormatoData	
Att:	DD-MM-YY
Nuov:	MM-DD-YY

selezionare il formato desiderato e confermare con ENTER; premere ESC per uscire. **UnitàFisiche:** permette di impostare le unità di misura di temperatura e pressione

UnitàTemperatura		
UnitaPressione		

Unità di temperatura impostabili: °C o °F Unità di pressione impostabili: bar o psi.

- selezionare l'unità desiderata confermare con ENTER; premere ESC per uscire.
- impostare l'unità di temperatura e pressione e confermare con ENTER; premere ESC per uscire.

_

3.11 Blocco del sistema

In caso di blocco del sistema, verrà visualizzato il messaggio:

1	10.08.07		13.47
C:71	D:00	F:	12
Nr. avv.			88
Potenz.	0.0		Gas

contattare il centro di Assistenza Tecnica e comunicare i dati del messaggio.

3.12 Partenza a freddo

Quando il generatore non deve subire stress termici, si deve attivare la funzione "Cold Start" (Partenza a freddo), che può essere già stata abilitata dal Centro Servizi (accesso tramite password riservata).

Se tale funzione è stata abilitata, all'accensione del bruciatore verrà visualizzato il messaggio "Thermal Schock Protection Activated" (Protezione shock termico attivata). Se, invece, la funziona non è abilitata, , dopo l'accensione, il bruciatore aumenterà rapidamente il

carico in base alla richiesta dell'utenza e, se necessario, fino alla massima potenza.

3.13 Modalita' manuale

Per by-passare la protezione termica o per non lasciare lavorare il bruciatore alla massima potenza dopo l'accensione, è prevista la modalità MANUALE. Per selezionare la modalità manuale, utilizzare i tasti freccia SELECT per posizionarsi in corrispondenza della voce FunzionManuale (Funzionamento manuale)e premere ENTER:

Visualizza stato
Funzionamento
FunzionManuale
Parametri e Visual.

Le voci da impostare sono le seguenti:

SelezCarico	
Autom/Man/Spento	

SelezCarico: imposta la percentuale di carico desiderata

SelezCarico	
Att:	0.0%
Nuov:	20.0%

impostare la percentuale desiderata e confermare con ENTER; premere ESC per uscire. Selezionare ora la voce "Autom/Manual/Spento"::

SelezCarico	
Autom/Man/Spento	

Autom/Man/Spento	
Att:	Automatico
Nuov:	Bruciat On

sono disponibili tre impostazioni:

Automatico: funzionamento automatico Bruciat on: funzionamento manuale Bruciat off: bruciatore in stand-by

Impostando la modalità "Bruciat On" il bruciatore non segue le impostazioni del modulatore e della sonda, ma si fissa sul carico impostato.

Attenzione: se si imposta "Bruciat Off" il bruciatore rimane in stand-by.

Attenzione: in modalità manuale (Bruciat On) le soglie di sicurezza sono impostate dal Centro Assistenza.

Per maggiori dettagli consultare i manuali allegati per LMV5x.

3.14 Taratura pressostato aria

Procedere con la taratura del pressostato aria come segue:

- Togliere il coperchio di plastica trasparente.
- Dopo aver completato le tarature di aria e combustibile, accendere il bruciatore.
- Con il bruciatore in bassa fiamma, ruotare lentamente la ghiera di regolazione VR in senso orario (per aumentare la pressione di taratura) fino ad ottenere il blocco del bruciatore, leggere il valore di pressione sulla scala e reimpostarlo ad un valore inferiore del 15% circa.
- Ripetere il ciclo di accensione del bruciatore e controllare che funzioni correttamente.
- Rimontare il coperchio trasparente sul pressostato.

3.15 Taratura pressostato gas di minima

Per la taratura del pressostato gas procedere come segue:

- Assicurarsi che il filtro sia pulito.
- Togliere il coperchio di plastica trasparente.
- Con il bruciatore in funzione alla massima potenza, misurare la pressione del gas sulla presa di pressione del pressostato.
- Chiudere lentamente la valvola manuale di intercettazione a monte pressostato (vedi diagramma installazione rampe gas), fino a
 riscontrare una riduzione della pressione del 50% rispetto al valore letto in precedenza. Controllare che non aumenti il valore di CO
 nei fumi: se il valore di CO è superiore ai limiti di legge, aprire lentamente la valvola di intercettazione fino a rientrare nei suddetti
 limiti.
- Verificare che il bruciatore funzioni regolarmente.
- Ruotare la ghiera di regolazione del pressostato in senso orario (per aumentare la pressione), fino allo spegnimento del bruciatore.
- Aprire completamente la valvola manuale di intercettazione
- Rimontare il coperchio trasparente.

3.16 Taratura pressostato gas di massima (dove presente)

Per la taratura procedere come segue, a seconda della posizione di montaggio del pressostato di massima:

- 1 togliere il coperchio di plastica trasparente del pressostato.
- 2 se il pressostato di massima è montato a monte delle valvole del gas: misurare la pressione del gas in rete con fiamma spenta; impostare, sulla ghiera di regolazione **VR**, il valore letto aumentato del 30%.
- Se, invece, il pressostato di massima è montato dopo il gruppo "regolatore-valvole gas" e prima della valvola a farfalla: accendere il bruciatore, regolarlo secondo la procedura riportata ai precedenti paragrafi. Misurare, quindi, la pressione del gas alla portata di esercizio, dopo il gruppo "regolatore-valvole gas" e prima della valvola a farfalla; impostare, sulla ghiera di regolazione VR, il valore letto, aumentato del 30%.
- 4 rimontare il coperchio di plastica trasparente.

3.17 Pressostato gas controllo perdite PGCP (con apparecchiatura di controllo Siemens LDU/Siemens LMV)

- Togliere il coperchio di plastica trasparente sul pressostato.
- Regolare il pressostato PGCP allo stesso valore impostato per il pressostato gas di minima pressione.
- Rimontare il coperchio di plastica trasparente.

Fig. 21

3.18 Bruciatori modulanti

Per regolare i bruciatori modulanti, servirsi del selettore **CMF** presente sul pannello di controllo del bruciatore (vedi figura), invece di utilizzare il termostato **TAB** come descritto nella regolazione dei bruciatori progressivi. Procedere alla regolazione come descritto nei paragrafi precedenti, facendo attenzione all'impiego del selettore **CMF**.

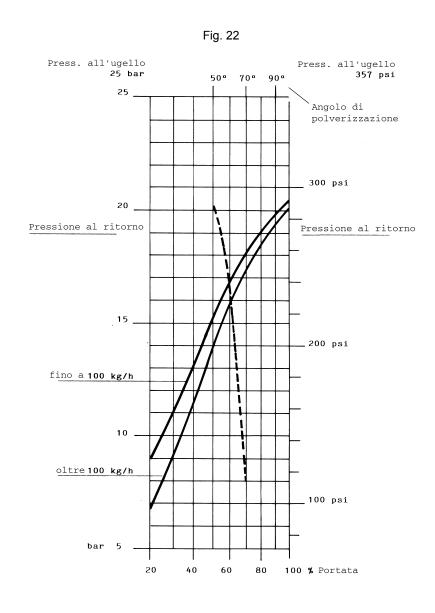
La posizione del selettore determina gli stadi di funzionamento: per portare il bruciatore in alta fiamma, porre il selettore CMF a 1, per portarlo in bassa fiamma porre **CMF** a 2.

Per fare ruotare il settore variabile si deve porre il selettore CMF a 1 oppure 2 e poi portarlo a 0.

CMF = 0 servocomando fermo nella posizione in cui si trova

CMF = 1 funzionamento alta fiamma

CMF = 2 funzionamento bassa fiamma


CMF = 3 funzionamento automatico

3.19 Procedura di regolazione per il funzionamento a gasolio

La portata del gasolio viene regolata scegliendo un ugello (del tipo a riflusso) di dimensione adatta alla potenza della caldaia/utilizzo e tarando le pressioni di mandata e di ritorno secondo i valori riportati in tabella e nel diagramma di Fig. 22 (per la lettura delle pressione consultare i paragrafi successivi).

UGELLO	PRESSIONE ALIMENTAZIONE UGELLO bar	PRESSIONE RITORNO ALTA FIAMMA bar	PRESSIONE RITORNO BASSA FIAMMA bar
FLUIDICS WR2 / BERGONZO B / BERGONZO C	25	20	7 (consigliato)

	PORTATA kg/h	
DIMENSIONE	Min	Max
40	13	40
50	16	50
60	20	60
70	23	70
80	26	80
90	30	90
100	33	100
115	38	115
130	43	130
145	48	145
160	53	160
180	59	180
200	66	200
225	74	225
250	82	250
275	91	275
300	99	300
330	109	330
360	119	360
400	132	400
450	148	450
500	165	500
550	181	550
600	198	600
650	214	650
700	231	700
750	250	750
800	267	800

-----Angolo di polverizzazione in funzione della pressione di ritorno _____ Portata %

Tab. 1

Esempio: l'80% della portata nominale dell'ugello, si ottiene, per ugelli oltre i 100 kg/h, con circa 18 bar di pressione al ritorno (vedi diagramma in Fig. 22Fig. 22).

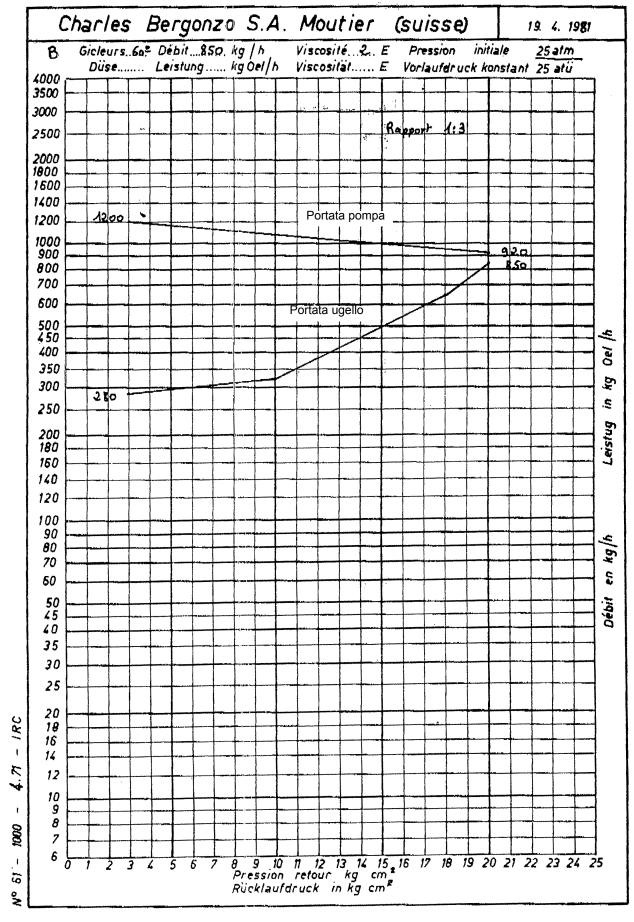
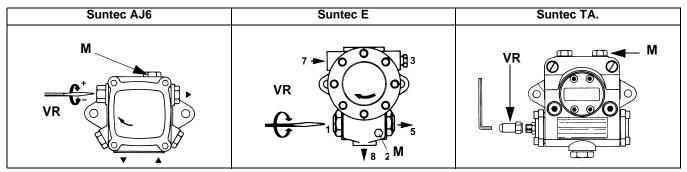
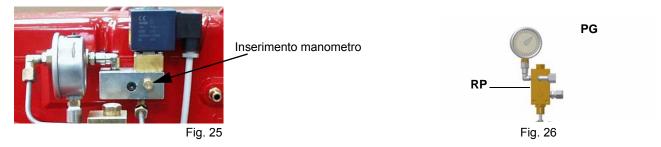


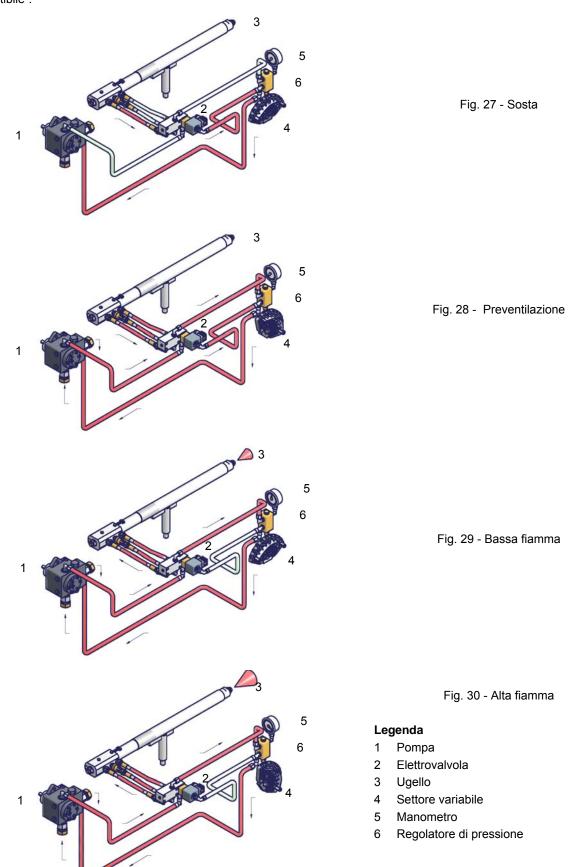
Fig. 23 - Ugello Bergonzo - Esempio con ugello da 850 kg/h

3.20 Regolazione della portate olio

- Dopo avere eseguito la taratura per il funzionamento a gas, spegnere il bruciatore e selezionare il funzionamento a olio combustibile (OIL) tramite il selettore **CM** (presente sul pannello di controllo del bruciatore).
- 2 Azionare la pompa dell'olio agendo sul relativo contattore **CP** (vedi figura): verificare il senso di rotazione del motore pompa e tenere premuto per alcuni secondi finché il circuito dell'olio non si carica;

3 sfiatare l'aria dall'attacco (**M)** manometro della pompa (Fig. 24), allentando leggermente il tappo, senza toglierlo; quindi rilasciare il contattore.


Fig. 24

- 4 Per l'impostazione delle curve di rapporto combustibile/aria, consultare il manuale LMV allegato.
- La pressione di alimentazione ugello è già pre-tarata in fabbrica e non deve essere cambiata. Solo se necessario, regolare la pressione di alimentazione (vedi relativo paragrafo) nel modo seguente: inserire un manometro nella posizione indicata in Fig. 25 agire sulla vite di regolazione VR della pompa (vedi Fig. 24) fino ad ottenere una pressione all'ugello pari a 20 bar (ugelli Monarch o ugelli Bergonzo;

3.21 Circuito gasolioCircuito olio

Il combustibile, alla pressione stabilita tramite il regolatore di pressione in mandata, viene spinto dalla pompa 1 all'ugello 3. L'elettrovalvola 2 blocca l'immissione di combustibile nella camera di combustione. L'ugello a riflusso è alimentato a pressione costante, mentre la pressione sulla linea di ritorno è regolata dal regolatore, a sua volta azionato dal servocomando tramite una camma a profilo variabile. La portata di olio non combusto ritorna alla cisterna tramite il circuito di ritorno. La quantità di combustibile da bruciare viene regolata tramite il servocomando del bruciatore seguendo le modalità descritte al paragrafo successivo "Regolazione della portata di aria e combustibile".

PARTE III: FUNZIONAMENTO

LIMITAZIONI D'USO: FARE RIFERIMENTO AL CAPITOLO "AVVERTENZE" ALL'INIZIO DI QUESTO MANUALE.

ATTENZIONE: prima di avviare il bruciatore, assicurarsi che le valvole manuali di intecettazione siano aperte e controllare che il valore di pressione a monte della rampa sia conforme ai valori riportati nel paragrafo "Dati tecnici". Assicurarsi, inoltre, che l'interruttore generale di alimentazione sia chiuso.

- Selezionare il combustibile agendo sul commutatore del quadro di comando del bruciatore.
 ATTENZIONE: nel caso si selezioni il combustibile gasolio, accertarsi che i rubinetti di intercettazione della linea di alimentazione e di ritorno siano aperti.
- Controllare che l'apparecchiatura non sia in blocco (spia accesa), eventualmente sbloccarla agendo sul pulsante di reset.
- Verificare che la serie di termostati (o pressostati) dia il consenso di funzionamento al bruciatore.

Funzionamento gas

Verificare che la pressione di alimentazione del gas sia sufficiente.

NOTA: nel caso di bruciatori equipaggiati con controllo di tenuta Dungs VPS504 la fase di preventilazione inizia solo dopo il completamento del controllo di tenuta delle valvole gas con esito positivo.

Poichè la preventilazione deve avvenire con la massima portata d'aria, l'apparecchiatura di controllo comanda l'apertura del servocomando e solo quando viene raggiunta la posizione di massima apertura inizia il conteggio del tempo di preventilazione.

- Al termine del tempo di preventilazione il servocomando si porta in posizione di completa chiusura (posizione di accensione gas) e, appena questa è raggiunta, viene inserito il trasformatore di accensione (segnalato dalla spia sul pannello grafico); si aprono le valvole del gas pilota e del gas principale.
- Pochi secondi dopo l'apertura delle valvole, il trasformatore di accensione viene escluso dal circuito e la spia si spegne.
- Il bruciatore risulta così acceso, contemporaneamente il servocomando si porta verso la posizione di alta fiamma, dopo alcuni secondi, inizia il funzionamento a 2 stadi e il bruciatore si porta automaticamente in alta o in bassa fiamma a seconda delle richiesta dell'impianto.

Il funzionamento in alta/bassa fiamma è segnalato dall'accensione/spegnimento della corrispondente spia sul pannello di controllo.

3.22 Funzionamento gasolio

- Si avvia il motore del ventilatore ed ha inizio la fase di preventilazione. Poichè la preventilazione deve avvenire con la massima portata d'aria, l'apparecchiatura di controllo comanda l'apertura del servocomando e solo quando viene raggiunta la posizione di massima apertura, inizia il conteggio del tempo di preventilazione.
- Al termine del tempo di preventilazione, il servocomando si porta in posizione di accensione gasolio e, appena questa è raggiunta, viene inserito il trasformatore di accensione (segnalato dalla spia L sul pannello grafico); successivamente si aprono le valvole del gas pilota e del gasolio. Pochi secondi dopo l'apertura della valvole, il trasformatore di accensione viene escluso dal circuito e la spia corrispondente si spegne.
- Il bruciatore risulta così acceso, contemporaneamente il servocomando si porta verso la posizione di alta fiamma, dopo alcuni secondi, inizia il funzionamento a 2 stadi e il bruciatore si porta automaticamente in alta o in bassa fiamma a seconda delle richiesta dell'impianto. Il funzionamento in alta/bassa fiamma è segnalato dall'accensione/spegnimento della corrispondente spia sul pannello di controllo.

PARTE IV: MANUTENZIONE

Almeno un volta all'anno eseguire le operazioni di manutenzione riportate nel seguito. Nel caso di servizio stagionale si raccomanda di eseguire la manutenzione alla fine di ogni stagione di riscaldamento; nel caso di servizio continuativo la manutenzione va eseguita ogni 6 mesi.

ATTENZIONE! TUTTI GLI INTERVENTI SUL BRUCIATORE DEVONO ESSERE EFFETTUATI CON L'INTERRUTTORE ELETTRICO GENERALE APERTO E VALVOLE MANUALI DI INTERCETTAZIONE DEL COMBUSTIBILE CHIUSE.

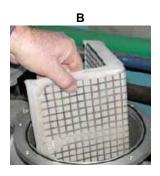
ATTENZIONE: LEGGERE SCRUPOLOSAMENTE LE AVVERTENZE RIPORTATE ALL'INIZIO DEL MANUALE.

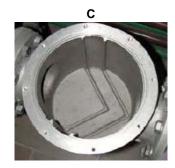
4.0 OPERAZIONI PERIODICHE

- Pulizia ed esame cartuccia filtro gas, in caso di necessità sostituirla (vedere paragrafi successivi).
- Controllo e pulizia della cartuccia del filtro gasolio, se necessario sostituirla.
- Pulizia ed esame del filtro all'interno della pompa combustibile: per assicurare il corretto funzionamento della pompa è consigliabile
 la pulizia del filtro almeno una volta all'anno. Per togliere il filtro è indispensabile rimuovere il coperchio, svitando le quattro viti con
 una chiave brugola. Durante il rimontaggio fare attenzione che i piedini di sostegno del filtro siano rivolti verso il corpo pompa. Se possibile sostituire la guarnizione del coperchio. Prevedere sempre un filtro esterno nella tubazione di aspirazione a monte della pompa.
- Controllo dei flessibili gasolio per possibili perdite.
- Smontaggio esame e pulizia testa di combustione.
- Esame elettrodi di accensione, pulizia, eventuale registrazione e se necessario sostituzione.
- Esame e pulizia accurata della fotocellula UV rilevazione fiamma, se necessario sostituzione. In caso di dubbio verificare il circuito di rilevazione dopo aver rimesso in funzione il bruciatore.
- Smontaggio e pulizia dell'ugello gasolio (Importante: per la pulizia usare solventi e non oggetti metallici); alla fine delle operazioni di manutenzione, dopo avere ripristinato il bruciatore, accenderlo e verificare la forma della fiamma; nel dubbio che il funzionamento non sia regolare, sostituire l'ugello. Quando il bruciatore viene usato intensamente è raccomandabile sostituire l'ugello all'inizio di ogni stagione di servizio, come misura preventiva.
- Pulizia ed ingrassaggio di leve e parti rotanti.

ATTENZIONE: se, durante le operazioni di manutenzione, si rendesse necessario smontare le parti costituenti la rampa del gas, ricordarsi di eseguire, una volta rimontata la rampa, la prova di tenuta secondo le modalità previste dalle normative vigenti.

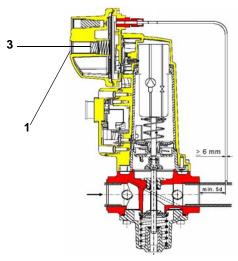
4.1 Manutenzione del filtro gas




ATTENZIONE: prima di aprire il filtro chiudere la valvola di intercettazione del gas a valle e sfiatare; assicurarsi, inoltre, che al suo interno non vi sia gas in pressione.

Per pulire o sostituire il filtro gas procedere nel modo seguente:

- 1 togliere il coperchio svitando le viti di bloccaggio (A);
- 2 smontare la cartuccia filtrante (B), pulirla con acqua e sapone, soffiarla con aria compressa (o sostituirla se necessario)
- 3 rimontare la cartuccia nella posizione iniziale controllando che sia sistemata tra le apposite guide e che non ostacoli il montaggio del coperchio;
- 4 facendo attenzione che l'o-Ring sia sistemato nell'apposita cava (C), richiudere il coperchio bloccandolo con le apposite viti (A).



4.2 Sostituzione della molla del gruppo valvole

Per sostituire la molla in dotazione al gruppo valvole, procedere nel modo seguente:

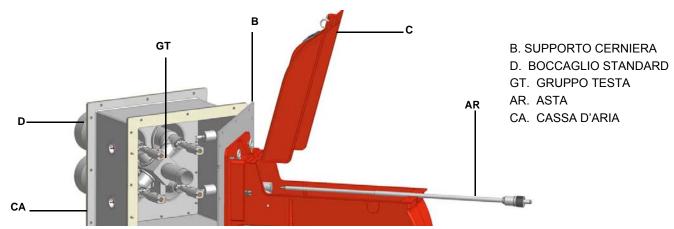
- 1 Svitare con cautela il cappuccio di protezione 1 e l'anello torico 2
- 2 Togliere la molla di "taratura valore nominale" 3 dal corpo 4.
- 3 Sostituire la molla 3.
- 4 Introdurre con cautela la molla. Fare attenzione al corretto montaggio! Introdurre nel corpo per prima la parte della molla di diametro minore.
- 5 Introdurre l'anello torico 2 nel coperchio e riavvitarlo.

Incollare la targhetta di specificazione della molla sulla targhetta d'identificazione.

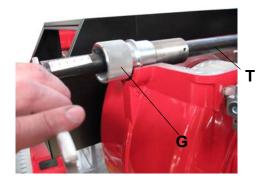
Attuatore Siemens SKP

4.3 Manutenzione del filtro gasolio

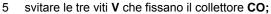
Per eseguire la manutenzione del filtro combustibile, procedere nel modo seguente:

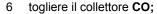

- 1 intercettare il tratto interessato;
- 2 svitare la vaschetta.
- 3 togliere la cartuccia filtrante, lavarla con benzina, se necessario, sostituirla; controllare gli O-ring di tenuta: se necessario sostituirli;
- 4 rimontare la vaschetta e rimettere in funzione la linea.

4.4 Estrazione della testa di combustione


Per smontare il gruppo-testa di combustione, si deve procedere nel modo seguente:

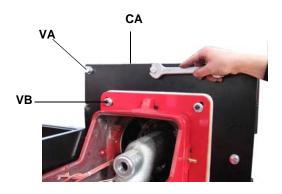
1 svitare le quattro viti di fissaggio che fissano la calotta C dal resto del bruciatore: togliere la calotta


- 2 svitare i grani che fissano la ghiera G di regolazione testa
- 3 svitare il tubo **T** di regolazione testa

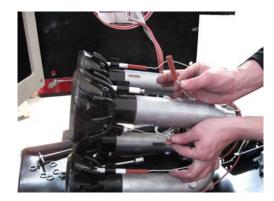


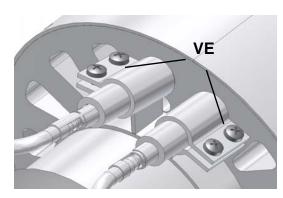


4 spingere in avanti il tubo e quindi estrarlo tirandolo verso di sé;

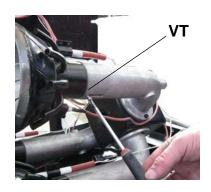


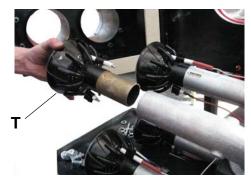
- s sostituire il cavo CE e procedere la riassemblaggio del bruciatore seguendo la procedura in oridne inverso.
- Se, invece deve essere eseguito un intervento di manutezione sulle teste di combustione, dopo avere estratto il collettore CO, procedere nel modo seguente:


- 10 svitare le otto viti VA che fissano la cassa d'aria CA;
- 11 aprire la cassa d'aria CA;



estrarre il gruppo teste come indicato nelle figura seguente;ATTENZIONE: non togliere le viti di fissaggio della flangia bruciatore VB!





- sostituire i cavi, se danneggiati, ripettando la sequenza delle testa di combustione indicata dalle lettere presenti sui cavi degli elettrodi; per rimuovere gli elettrodi, allentare le viti di fissaggio **VE**;
- 13 estrarre gli elettrodi E sfilandoli dai supporti; sostituire gli elettrodi se danneggiati;

14 per estrarre la testa di combustione T togliere le viti di fissaggio VT;

- 15 estrarre la testa di combustione: per pulire la testa di combustione aspirare le impurità mentre per rimuovere incrostazioni utilizzare una spazzola metallica;
- 16 serie 90 per sostituire i boccagli procedere nel modo seguente: svitare i grani di fissaggio VB ed estrarre il boccaglio danneggiato

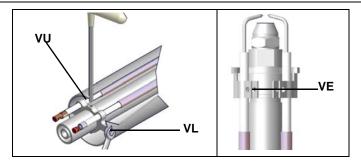
per sostituirlo.

17 per sostituire i boccagli dall'esterno, procedere nel modo seguente: svitare i grani di fissaggio **VB** ed estrarre il boccaglio danneggiato per sostituirlo. Per sostituire i boccagli dall'interno procedere nel modo seguente: svitare le viti **VM** ed estrarre la piastra boccagli; procedere alla sostituzione del/dei boccagli danneggiati.

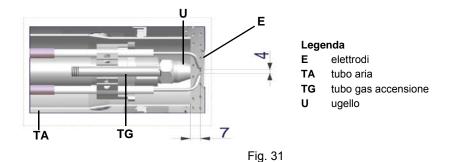
Per il rimontaggio, seguire le operazioni in ordine inverso, facendo attenzione alle quote degli elettrodi.

ATTENZIONE: nel rimontare il collettore ricordarsi di inserire l'anello "O". Durante la fase di centraggio delle teste, non fissare completamente le viti alla base del collettore. Fissarle dopo il centraggio. Non toccare le viti della cerniera e della flangia del bruciatore.

Estrazione della lancia, sostituzione dell'ugello e degli elettrodi



ATTENZIONE: per non compromettere il funzionamento del bruciatore, evitare il contatto degli elettrodi con parti metalliche (testa, boccaglio, ecc). Controllare la posizione degli elettrodi dopo ogni intervento di manutenzione sulla testa di combustione. Controllare, inoltre, che l'ugello sia allinetato con l'estremità del tubo dell'aria **TA** - vedi Fig. 31).


Per estrarre la lancia, procedere nel modo seguente:

- 1 estrarre la testa di combustione come indicato al paragrafo precedente:
- 2 estrarre la lancia e il gruppo elettrodi, dopo avere allentato la vite VL: controllare la lancia, se necessario sostituirla;
- 3 dopo avere estratto la lancia, per sostituire l'ugello, svitarlo dalla sua sede e procedere alla sostituzione;
- 4 per sostituire gli elettrodi, svitare le viti di fissaggio **VE** dei due elettrodi e sfilarli: inserire i nuovi elettrodi e prestare attenzione alle quote indicate in mm a pagina 43; procedere al rimontaggio seguendo la procedura inversa.

4.5 Attenzione: per regolare la posizione dell'ugello rispetto al tubo dell'aria (Fig. 31), agire sulla vite VU, dopo avere bloccato la vite VL (figura sotto). **Regolazione posizione degli elettrodi e dell'ugello**

Regolare la posizione degli elettrodi e dell'ugello, rispettando le quote indicate in Fig. 31.

Rispettare le quote riportate in figura..

4.6 Pulizia e sostituzione della fotocellula di rilevazione

La durata della fotocellula è di ca. 10000 ore di funzionamento (ca. 1 anno) a max. 50°C, trascorse le quali occorre sostituirla.

Per pulire/sostituire la fotocellula di rilevazione procedere nel seguente modo:

- 1 togliere tensione all'impianto;
- 2 interrompere l'alimentazione del combustibile;
- 3 estrarre, tirando, la fotocellula dalla sua sede come mostrato in figura;
- 4 pulire il bulbo se sporco, facendo attenzione a non toccarlo con le mani nude;
- 5 se necessario, sostituire il bulbo
- 6 reinserire la fotocellula nel suo alloggiamento.

4.7 Controllo della corrente di rilevazione

Per misurare il segnale di rilevazione seguire lo schema in figura. Se il segnale non rientra nei valori indicati, verificare la posizione della fotocellula, i contatti elettrici ed eventualmente sostituirla.

Apparecchiatura di controllo fiamma	Minimo segnale di ionizzazione
LMV5	3.5 Vdc

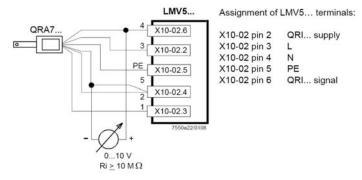
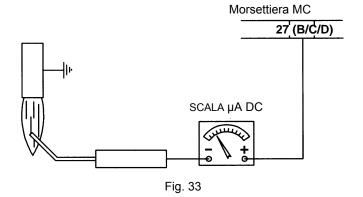



Fig. 32

Apparecchiatura di controllo fiamma	Minimo segnale di ionizzazione
Krom Schroeder IFW15	1 μΑ

Apparecchiatura di controllo fiamma	Minimo segnale di ionizzazione
Siemens LFE	150µA

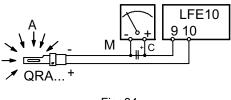


Fig. 34 Рис. 35

4.8 Fermo stagionale

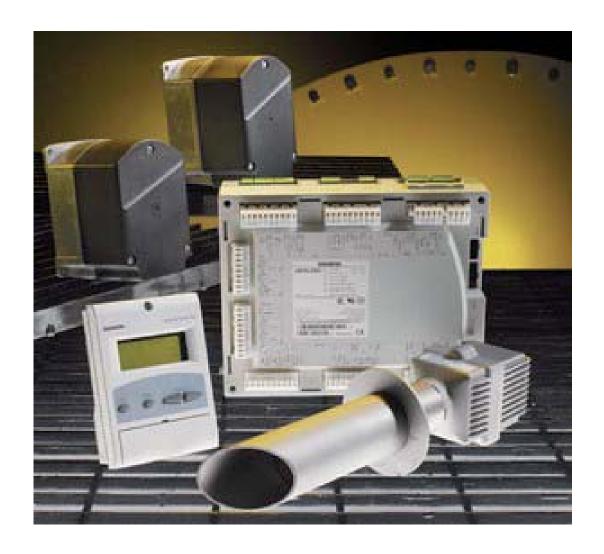
Per spegnere il bruciatore nel periodo di fermo stagionale, procedere nel modo seguente:

- 1 portare l'interruttore generale del bruciatore in posizione 0 (OFF spento)
- 2 staccare la linea di alimentazione elettrica
- 3 chiudere il rubinetto del combustibile della linea di distribuzione.

Smaltimento del bruciatore

In caso di rottamazione del bruciatore, seguire le procedure previste dalle leggi vigenti sullo smaltimento dei materiali.

5.0 TABELLA GUASTI - RIMEDI


CAUSA / RIMEDIO	NON PARTE	CONTINUA A FARE IL PRELAVAGGIO	NON SI ACCENDE E VA IN BLOCCO	NON SI ACCENDE E RIPETE IL CICLO	ACCENDE E RIPETE IL CICLO	NON PASSA IN ALTA FIAMMA	VA IN BLOCCO DURANTE IL FUNZIONAMENTO	SI SPEGNE E RIPETE IL CICLO DURANTE IL FUNZIONAMENTO
	2	CONT	NON	NON RIP	SI ACCE	NON	VA IN BI IL FU	SI SPE CICL FUN
INTERRUTTORE GENERALE APERTO	•							
MANCANZA DI GAS	•							
PRESSOSTATO DI MASSIMA DIFETTOSO	•							
TERMOSTATO DIFETTOSO	•							
INTERVENTO RELE TERMICO	•							
FUSIBILI AUSILIARI INTERROTTI	•							
PRESSOSTATO ARIA DIFETTOSO	•		•				•	
APPARECCHIATURA CONTROLLO FIAMMA DIFETTOSA	•	•	•				•	
SERVOCOMANDO DIFETTOSO		•						
PRESSOSTATO ARIA STARATO O DIFETTOSO							•	
PRESSOSTATO GAS STARATO O DIFETTOSO			•	•	•			•
TRASFORMATORE DI ACCENSIONE GUASTO			•					
FARFALLA GAS STARATA			•					
STABILIZZATORE DI PRESSIONE GAS DIFETTOSO			•	•	•			•
TERMOSTATO ALTA-BASSA FIAMMA DIFETTOSO						•		
FOTOCELLULA UV SPORCA O DIFETTOSA							•	

C.I.B. UNIGAS S.p.A.
Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY
Tel. +39 049 9200944 - Fax +39 049 9200945/9201269
web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

Siemens LMV5x

Manuale assistenza tecnica

Attenzione:

Per evitare lesioni alle persone, e danni alle cose o all'ambiente, rispettare le sequenti avvertenze e leggere attentamente le noti sequenti.

Personale tecnico qualificato

Con "personale tecnico qualificato" si fa riferimento ad operatori qualificati per installare, montare, commissionare, gestire e mantenere il sistema LMV5 insieme ai prodotti del bruciatore e della caldaia.

Il personale deve avere le qualifiche necessarie per svolgere queste attività, ad esempio:

Formato e autorizzato a energizzare e disattivare, circuiti e apparecchiature secondo le norme di sicurezza applicabili.

Formato e istruito secondo gli ultimi standard correlati (secondo normativa vigente).

Note di attenzione:

L'installazione deve essere effettuata in ottemperanza alle norme vigenti, secondo le istruzioni del costruttore e da personale professionalmente qualificato

Per personale professionalmente qualificato si intende quello avente competenza tecnica nel settore di applicazione dell'apparecchio (civile o industriale) e in particolare, i centri assistenza autorizzati dal costruttore.

Un'errata installazione può causare danni a persone, animali o cose, per i quali il costruttore non è responsabile.

Dopo aver tolto ogni imballaggio assicurarsi dell'integrità del contenuto.

In caso di dubbio non utilizzare l'apparecchio e rivolgersi al fornitore.

Gli elementi dell'imballaggio (gabbia di legno, chiodi, graffe, sacchetti di plastica, polistirolo espanso, ecc.) non devono essere lasciati alla portata dei bambini in quanto potenziali fonti di pericolo.

Prima di effettuare qualsiasi operazione di pulizia o di manutenzione, disinserire l'apparecchio dalla rete di alimentazione, agendo sull'interruttore dell'impianto e/o attraverso gli appositi organi di intercettazione.

Non ostruire le griglie di aspirazione o di dissipazione.

In caso di guasto e/o di cattivo funzionamento dell'apparecchio, disattivarlo, astenendosi da qualsiasi tentativo di riparazione o di intervento diretto. Rivolgersi esclusivamente a personale professionalmente qualificato.

L'eventuale riparazione dei prodotti dovrà essere effettuata solamente da un centro di assistenza autorizzato dalla casa costruttrice utilizzando esclusivamente ricambi e accessori originali.

Il mancato rispetto di quanto sopra può compromettere la sicurezza dell'apparecchio.

Per garantire l'efficienza dell'apparecchio e per il suo corretto funzionamento è indispensabile fare effettuare da personale professionalmente qualificato la manutenzione periodica attenendosi alle indicazioni del costruttore.

Allorchè si decida di non utilizzare più l'apparecchio, si dovranno rendere innocue quelle parti suscettibili di causare potenziali fonti di pericolo

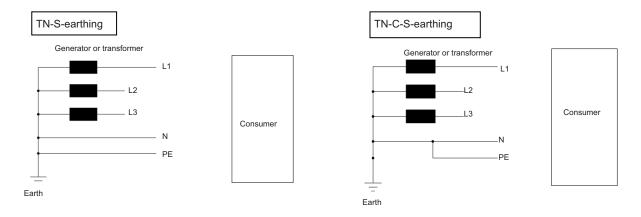
Se l'apparecchio dovesse essere venduto o trasferito ad un altro proprietario se si dovesse traslocare e lasciare l'apparecchio, assicurarsi sempre che il presente libretto accompagni l'apparecchio, in modo che possa essere consultato dal nuovo proprietario e/o dall'installatore;

Questo apparecchio dovrà essere destinato all'uso per il quale è stato espressamente previsto. Ogni altro uso è da considerarsi improprio e quindi pericoloso.

E' esclusa qualsiasi responsabilità contrattuale ed extra contrattuale del costruttore per i danni causati da errori nell'installazione e nell'uso, e comunque da inosservanza delle istruzioni date dal costruttore stesso

1	PRE	SCRIZIONI PER COLLEGAMENTI	4
1.	1	Messa a terra	4
	1.1.1	1 Messa a terra - sistema TN	4
	1.1.2	Conduttore di protezione (PE) and Terra Funzionale (FE)	4
1.	2	Inverter / Variable Speed Drive (VSD)	5
1.	3	Elettrodi di accensione e trasmormatori	5
	1.3.	1 Raccomandazioni	6
	1.3.2	2 Schermatura	6
1.	4	Passaggio cavi	7
	1.4.	1 Cablaggio servomotore: esempio	9
	1.4.2	2 Cablaggio Cavo bus Bus sulle porte LMV5x e AZL	9
	1.4.3	3 Esempio di connessione terra	9
2	Disp	olay AZL e programmazione	10
2.	1	Fasi del programma di funzionamento del controllore LMV5	11
2.	2	LMV5x struttura dei menù	12
2.	3	Numero di identificazione bruciatore	13
2.	4	Password	14
	2.4.	Accesso ai livelli assistenza/service con password dedicata	14
	2.4.2	2 Disabilitare la password	14
	2.4.3	3 Cambiare la password password	14
3	Seri	e termostatica e safety loop	15
4	SER	RVOCOMANDI	16
4.	1	Indirizzamento dei servocomandi	16
4.	2	Impostazione velocità degli attuatori	17
5	Con	figurare il regolatore di carico	18
6	Con	figurazione delle sonde e dei set-point	19
6.	1	Configurazione di una sonda di temperatura ai morsetti X60	19
6.	2	Configurazione di una sonda di temperatura o pressione ai morsetti X61	20
	6.2.	Configurazione di una sonda di pressione o temperatura ai morsetti X61	20
6.	3	Configurazione dei morsetti X62	20
6.	4	Settare il setpoint, il bruciatore e la banda di funzionamento del PID	21
	6.4.	1 Set-point	21
	6.4.2	2 DiffIntervModOn e DiffIntervModOff	21
	6.4.3	Parametri regolatore PID	22
6.	5	CONFIGURAZIONE DELLE FUNZIONI "SogliaTermOff" E "DiffIntervTermOn"	23
7	Stan	ndarizzazione VSD	24
8	POS	SIZIONI SPECIALI	25
8.	1	Punto di accensione	25
8.	2	Posizione pre-ventilazione	25
8.	3	Posizione di risposo	25
8.	4	Posizione di post-ventilazione	25
9	REG	GOLAZIONE DELLE CURVE RAPPORTO ARIA/COMBUSTIBILE	26
9.	1	Impostazioni combustibile - punti curva	26
9.	2	Impostazione dei punti di carico (bruciatori senza FGR)	27
10	Con	figurazione per bruciatori con ricircolo del gas di scarico (FGR)	30
10).1	Raccomandazioni	30
10).2	Indirizzazione e attivazione del servocomando AUX3	31
10	0.3	Impostazione delle posizioni speciali the special positions	32
10).4	Impostazione della modalità regolatore di carico - vedere il capitolo precedente (regolazione senza FGR)	32
10).5	Modalità FGR	33
10	0.6	Parametri principali della funzione FGR	34
10).7	Esempio di fattore FGR fattore di mappa FGR su regolazione del bruciatore	35
11	PAR	RTENZA A FREDDO (CSTP)	36
12	FUN	IZIONAMENTO MANUALE DEL BRUCIATORE	38

1 PRESCRIZIONI PER COLLEGAMENTI


1.1 Messa a terra

1.1.1 Messa a terra - sistema TN

L'apparecchiatura LMV5x richiede che il sistema di messa a terra sia TN.

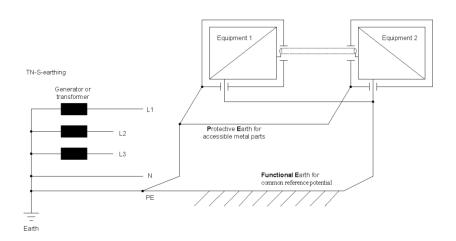
TN-S: PE e N sono conduttori separati che sono connessi insieme solamente vicino alla sorgente di alimentazione Questo tipo di configurazione è considerato standard per la maggior parte di sistemi elettrici residenziali ed industriali nel nord America e anche in Europa

TN-C-S: Connettori PEN combinati, dal trasformatore al punto di distribuzione nell'edificio, ma con i conduttori PE ed N separati su cablaggio interno fisso.

LMV deve essere connesso a terra (PE). Δ Volt deve essere a 0 V tra N-PE.

NOTE: PE = "conduttore di protezione", è differente da FE

FE = "terra funzionale"

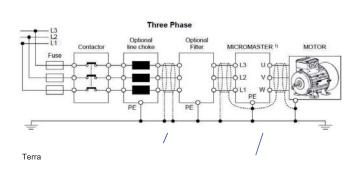

1.1.2 Conduttore di protezione (PE) and Terra Funzionale (FE)

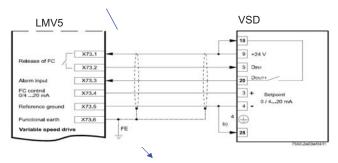
Conduttore di protezione (PE):

Conosciuto come un conduttore di messa a terra dell'apparecchiatura, evita eventuali pericoli mantenendo a terra le superfici conduttive esposte del dispoitivo..

Per evitare possibili cali di tensione, nel conduttore in circostanze normali non è consentito alcun flusso di corrente, eventuali correnti di guasto fanno scattare l'interruttore differenziale che protegge il circuito.

Esempio: corpo bruciatore o terzo filo in un cavo a 3 fili (N L PE)


Terra funzionale (FE):


Non è destinato alla "protezione anti-shock". Viene utilizzato come un potenziale di riferimento comune.

Ad esempio: schermature dei cavi.

1.2 Inverter / Variable Speed Drive (VSD)

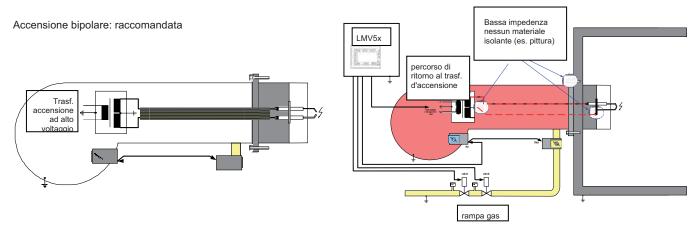
L'inverter (VSD) è considerato la più forte sorgente di disturbi EMC, è importante tenere presente le seguenti considerazioni:

Note: Se l'LMV5 è montato in un armadio, in alternativa a (X73.6 / FE), è anche possibile connettere il cavo PE in armadio

Usare esclusivamente VSD con filtri EMC!

Cavi dal VSD al motore ventilatore (Line voltage)

Utilizzare un <u>cavo completamente separato e schermato</u> dal VSD al motore del ventilatore! Collegare la schermatura al VSD- e sul lato motore con PE. Per dettagli e ulteriori informazioni vedere la relativa documentazione VSD.


Cavi dal LMV5 al VSD (comandi e segnali)

Usare cavi schermati. Collegare la schematura del cavo solo lato LMV5 con X73.6 (FE), e non lato VSD.

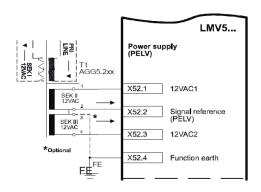
1.3 Elettrodi di accensione e trasmormatori

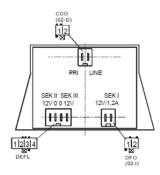
Anche l'accensione è considerata una forte sorgente di disturbi EMC. Seguire le raccomandazioni qui elencate:

- Mantenere il cavo di alta tensione più corto possibile
- Evitare l'accoppiamento capacitivo e induttivo con altri percorsi di segnale.
- Utilizzare un cablaggio separato per il cavo di accensione ad alta tensione, e mantenere la distanza massima possibile con altri cavi e l'alloggiamento del bruciatore. Ad esempio utilizzare una canalina separata in materiale plastico, vedere anche Appendice "Esempio di cablaggio, messa a terra e schermatura del sistema LMV5"
- Preferire l'accensione bipolo (vedere i disegni riportati di seguito)...
- Quando si utilizza l'accensione con doppia elettrodo,i cavi dovrebbero essere tenuti insieme per assicurare che l'area di emissioni rimanga la minore possibile.

Se viene utilizzato una accensione a polo singolo, è molto importante avere bassa impedenza sulle connessioni di tipo meccanico (nessun materiale isolante es: vernice), in modo da ottenere un buon flusso di corrente dalla scintilla di accensione fino al trasformatore di accensione, assicurando basse emissioni FMC.

Se l'impedenza tra le connessioni meccaniche è alta (es: vernici), saranno presenti correnti multiple dalla scintilla di accensione al trasformatore di accensione, dando come risultato alte emissioni EMC.


1.3.1 Raccomandazioni

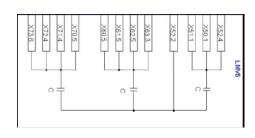

Si raccomanda di utilizzare una "piastra di montaggio" metallica per LMV5 e il trasformatore AGG5.220. Utilizzare questa piastra per ottenere la "Functional Earth" (FE), vedere esempio: EARTH connection

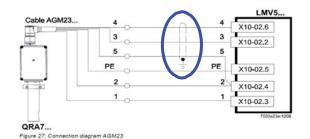
La connessione del FE al LMV5 deve essere effettuata collegando il terminale X52.4 con FE!

Seguire attentamente le istruzioni di cablaggio per le connessioni di terra e di schermatura.

In alcuni casi, connettere il terminale X52.2 con FE, migliora la resistenza dell'LMV5 ai disturbi EMC. Effettuare la connessione e controllare: nel caso non ci fosse alcun miglioramento, rimuovere la connessione.

FE è cablato internamente all'LMV ai morsetti per la schermatura (ad esempio per sonde di temperatura o pressione)


Per ottenere una buona connessione al FE dei servocomandi SQM4/9, assicurarsi della presenza di un adeguato contatto elettrico tra FE e la custodia degli attuatori.


Se necessario connettere gli attuatori SQM45/48/91 a FE con cavo separato avente il diametro massimo possibile.

1.3.2 Schermatura

I morsetti LMV5-FE per la schermatura sono collegati internamente all'LMV5 con X52.4, questo morsetto deve essere collegato esternamente con FE!,

I morsetti di schermatura per il CAN-Bus (X50.1, X51.1) sono collegati direttamente con X52.4, gli altri morsetti di schermatura sono collegati tramite condensatori per impedire la corrente DC.

Per i cavi sotto indicate usare cavi schermati:

Per il cavo CAN-Bus usare AGG5.631 e / o AGG5.641 insieme a AGG5.110 = schermatura di collegamento CAN bus, per il collegamento del bus CAN all'unità base.

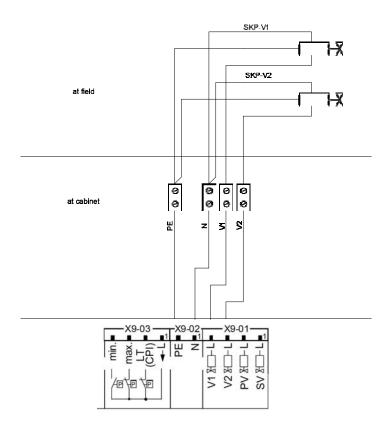
- Cavi per il VSD:
- Cavo tra VSD e motore ventilatore
- Cavo di bassa tensione tra LMV5 e VSD (connettore X73)
- Cavi per sensori di temperatura o di pressione, punti di regolazione, uscita di carico nell'unità base LMV5x (connettori X60, X61, X62, X63)
- Cavi per i contatori del combustibile nell'unità base LMV5x (connettori X71, X72)
- Cavo per il sensore di giri: X70
- Cavo tra la sonda ossigeno QGO20 e PLL52 (connettore X81)
- Cavi tra sensori di temperatura e PLL52 (connettori X86, X87)

Cavo per QRA7x : per lunghezza cavo > 10m e < 100m; per i fili dei morsetti 3, 4 e 5, usare cavo schermato e collegare la schermatura alla barra di terra del quadro.

1.4 Passaggio cavi

Suddividere i cavi secondo le raccomandazioni seguenti:

Completamente separate da tutti gli altri cavi:

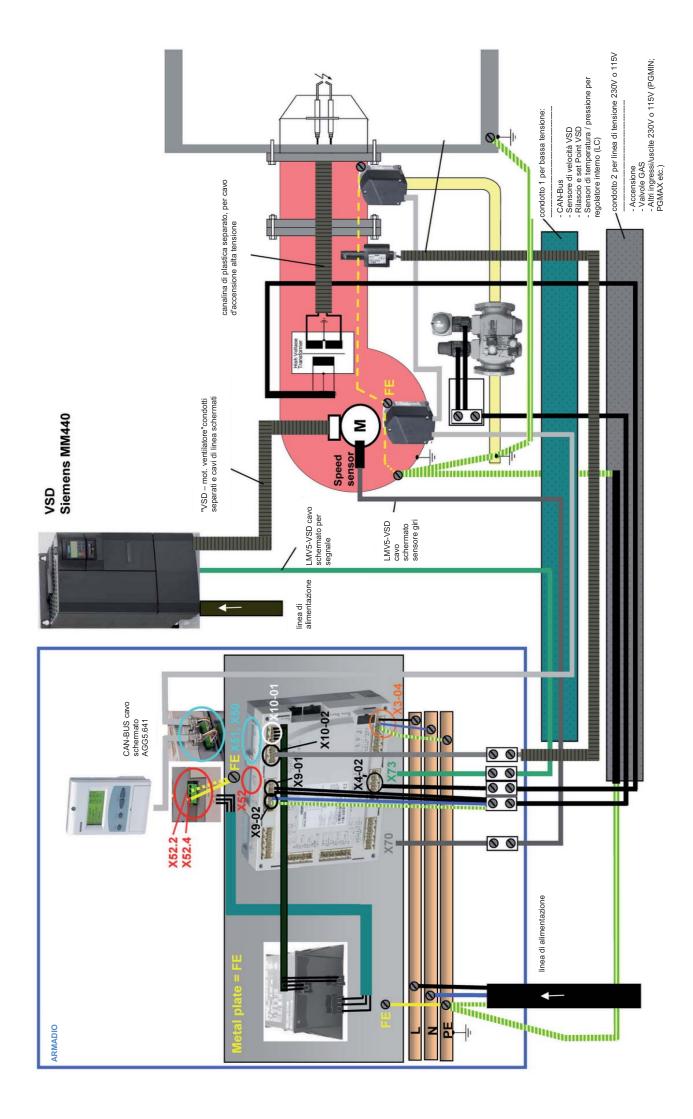

- Cavo per la linea "da VSD a motore ventilatore"
- Cavo di accensione ad alta tensione
- Cavo per il sensore di fiamma

Insieme nel condotto 1 per bassa tensione, adesempio.:

- Cavo CAN-BUS
- Cavo per sensore di giri VSD, LMV5 X70
- Cavo per rilascio e set point VSD, LMV5 X73
- Cavi per regolatore di carico: sensore di temperatura o pressione, set point, uscita di carico su LMV5 X60, X61, X62, X63

Insieme nel condotto 2 per la tensione di linea, ad esempio:

- cavo per trasformatore di accensione
- Cavi per altri segnali di tensione di linea, come pressostati gas / aria,
- Cavo per valvole gas SKP/VGD



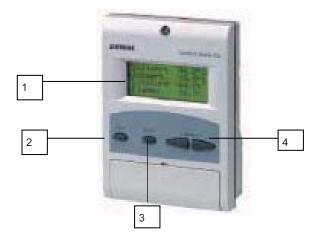
I cavi delle LMV5 alle SKP / VGD-Gas devono essere collegati al lato LMV5 con X9-01: L-Valve1, L-Valve2 e X9-02, N, PE) e collegati al lato SKP separati da ogni SKP.

Esempio di cablaggio, vedi il prossimo paragrafo

ATTENZIONE: TENERE SEPARATI CAVI DI SEGNALE, CAVI DI OUTPUT, CAVO FOTOCELLULA COME MOSTRATO NELLA FIGURA SEGUENTE

1.4.1 Cablaggio servomotore: esempio

1.4.2 Cablaggio Cavo bus Bus sulle porte LMV5x e AZL.

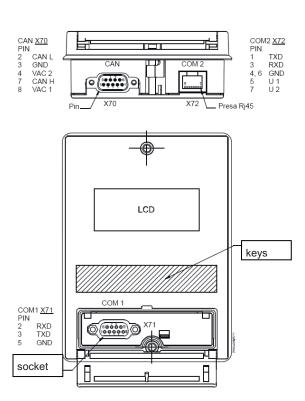


1.4.3 Esempio di connessione terra

2 Display AZL e programmazione

L'utente può settare solo i parametri non protetti da password: (vedere "Regolazione del set-point di temperatura). L'interfaccia utente di Siemens AZL permette di programmare l'apparecchiatura LMV e monitorare i dati di sistema.

L'interfaccia utente è composta da:


display: mostra i parametri e menù

ESC (livello precedente): per tornare al livello di menù precedente e uscire dalla programmazione senza modificare i dati.

Enter

ENTER (livello successivo): per confermare la modifica di un parametro e passare al menù/parametro successivo

SELECT • per selezionare una voce di menù e per la modifica di parametri.

L'AZL5x dispone di tre prese per interfacciarsi con l'esterno:

presa X70 per collegamento tramite cavo CAN bus: il collegamento include l'alimentazione per il display

presa COM1 (X71) per collegamento con PC/Laptop tramite connettore RS232

presa COM2 (X72) per collegamento con il sistema di automazione generale tramite connettore RJ45

Nota: le porte COM 1 e COM 2 non possono funzionare contemporaneamente

Attenzione: quando il MODBUS è attivo, non è possibile effettuare il backup da computer via ACS450; se si tenta di eseguire il backup, viene perso il setpoint e il bruciatore si spegne immediatamente

2.1 Fasi del programma di funzionamento del controllore LMV5

Numero fase	Descrizione	Sequenza
10		Verso posizione riposo
12		Stand by
20,21	Attesa consenso avvio	Avvio
22	Avvio ventilatore	Avvio
24	Verso posizione pre-ventilazione	Avvio
3034	Pre-ventilazione	Avvio
36	Verso posizione accensione	Avvio
38	Posizione accensione	Avvio
40,42,44	Iniezione combustibile1	Avvio
50,52	Iniezione combustibile1	Avvio
54	Verso posizione bassa fiamma	Avvio
60,62	Spegnimento in bassa fiamma	Funzionamento
70,72	Verso posizione post-ventilazione	Spegnimento
7478	Post-ventilazione	Spegnimento
79	Test pressostato aria	Spegnimento
8083		Controllo tenuta
01		Fase sicurezza
00		Blocco

All'avvio del bruciatore, il display mostra, una per una, le varie fasi del programma di avvio, fino al raggiungimento della fase di funzionamento (fase 60). Il sistema di gestion bruciatore LMV5x è preimpostato da fabbrica. Eventuali cambiamenti sono possibili previo inserimento password.

Chiudendo la serie termostatica, una volta terminata la fase di avvio (da fase 12 a fase 34), il bruciatore viene portato al valore di accensione di fabbrica (fase 38).

Il bruciatore rimane in questa posizione perchè è l'unico punto di lavoro in memoria.

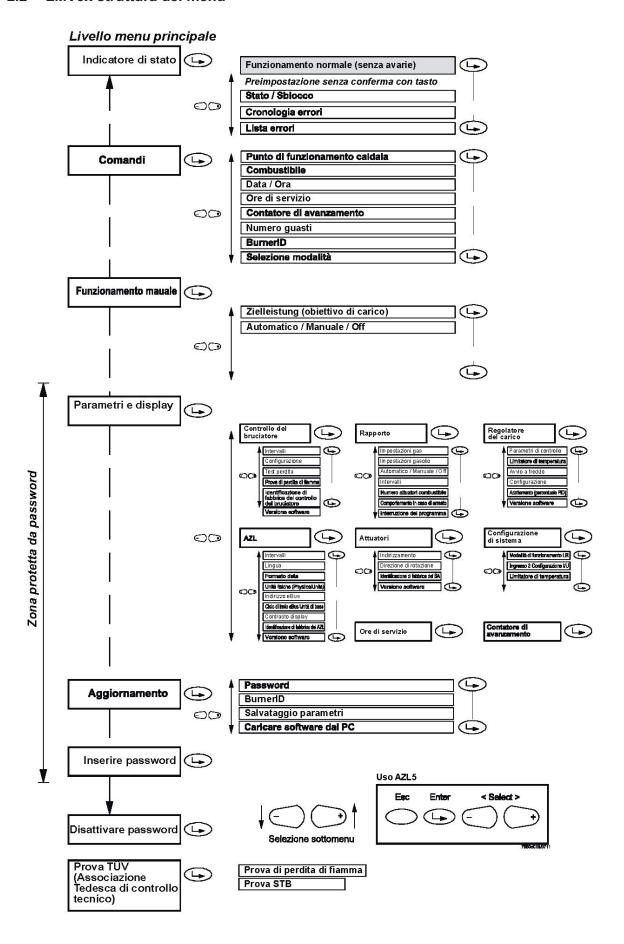
Si deve, quindi, impostare la curva di carico del bruciatore fino al limite del carico massimo (100% della potenza)

In questa fase, i servocomandi si portano sulle posizioni indicate dai punti impostati sulla curva di carico. Durante questi spostamenti, si deve sempre eseguire l'analisi dei fumi, punto per punto, e verificare la stabilità della fiamma.

I punti della curva combustibile/aria devono essere regolati al primo avvio, da un operatore qualificato.

ATTENZIONE! La procedura richiede una password: tutte le variazioni ai parametri di combustione vanno eseguite da personale qualificato e verificate con l'uso dell'analizzatore di combustione. Una volta inserita la password sarà possibile eseguire le impostazioni. Ricordarsi, comunque, che se non si preme alcun tasto per un certo periodo di sicurezza, la password scade e verrà, quindi, richiesta.

ATTENZIONE! Durante la fase di avvio a freddo, è necessario settare il carico del bruciatore. Valori di potenza troppo bassi possono danneggiare la testa di combustione, boccaglio, ugello olio (se presente). Il punto di lavoro minimo deve essere regolato da personale qualificato.



ATTENZIONE! Eseguire sempre l'analisi fumi, punto per punto, e verificare la stabilità della fiamma!

ATTENZIONE! Aggiustare la reale percentuale di carico sul corrispondente punto della curva dell'AZL, durante la regolazione del bruciatore.

2.2 LMV5x struttura dei menù

ATENZIONE: LMV51.300: HA UN SOLO AUSILIARIO. PUO' ESSERE UTILIZZATO PER FGR O VSD OPPURE VSD e FGR INSIEME.

ATTENZIONE: SI RACCOMANDA DI NON UTILIZZARE IL CONTROLLO OSSIGENO SE FGR E' INSTALLATO E ATTIVO.

2.3 Numero di identificazione bruciatore

Il numero di identificazione del bruciatore coincide con il **numero di matricola** del bruciatore.

Nota: nel caso in cui si debba contattare il centro assistenza, indicare il tipo e la matricola del bruciatore (vedere targa dati).

Nota: Il numero di identificazione del bruciatore deve essere settato nell' AZL.

Facendo uso del tasto ESC, accedere al menù e seguire il percorso sottostante per poter configurare la voce specifica:

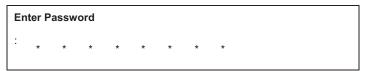
1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Visualizza Stato						
	NumIdent- Prodotto					Numero di Identificazione del Bruciatore

Il numero di identificazione del prodotto è un parametro OEM inserito dal costruttore del bruciatore, e non può essere cambiato; può essere composto da un minimo di 4 caratteri a un massimo di 15.

2.4 Password

2.4.1 Accesso ai livelli assistenza/service con password dedicata

In base alla password inserita (service o OEM), saranno visibili parametri differenti.


Parametri "Service", curve dei servocomandi e valori di set-point, sono protetti da password. L'operatore deve loggarsi usando la password "9876". Il livello "user" non necessita di password.

Una volta pronti all'inserimento della Password, sotto la scritta Enter password lampeggia un cursore. Inserire la password un carattere alla volta e per confermare premere Enter. In tal modo, il cursore si posiziona sulla prima posizione della riga di immissione della password. A questo punto, è possibile selezionare un carattere (cifra o lettera) tramite incremento o decremento.

L'inserimento del carattere selezionato viene quindi confermato premendo Enter. In caso di inserimento errato, è possibile modificare l'ultimo carattere premendo il tasto Esc. Gli altri caratteri della password vengono selezionati, modificati e inseriti in modo analogo.

Durante il processo di inserimento è sempre leggibile un solo carattere. Quando si inserisce l'ultimo carattere della password, confermare l'inserimento con il tasto Enter.

Display prima dell'inserimento dei caratteri della password

Display durante l'inserimento dei caratteri della password:

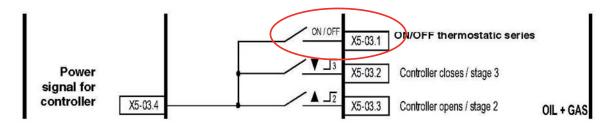
Se la password inserita è corretta, vengono visualizzati I vari parametri di accesso in funzione del livello. In caso negative si ritorna al menu principale. Per tornare al menù principale, premere ripetutamente "Esc" fino a tornare al menu del primo livello, poi premere ripetutamente la freccia.

2.4.2 Disabilitare la password

Per impedire al cliente di modificare le regolazioni o alterare i parametri si deve disabilitare la password. La funzione di disabilitazione della password si trova nel menu di primo livello: selezionare (DisattivPassword) e premere "Enter".

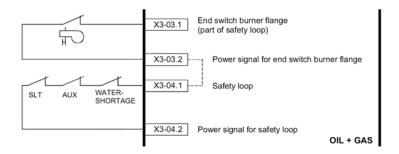
Nota: Se non si preme nessun pulsante del display per un certo tempo prestabilito, la password si disattiva automaticamente.

Nota: Se viene tolta tensione all'unità, la password si disattiva automaticamente


2.4.3 Cambiare la password password.

Facendo uso del tasto ESC, accedere al menù e seguire il percorso sottostante per poter configurare i parametri:

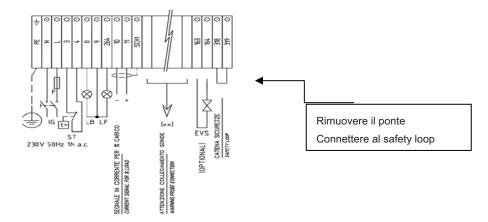
1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Aggiornare						
(Password					Per camnbiare la password
	•	PasswordService				Per service
	<u></u>	Password OEM				Per OEM


3 Serie termostatica e safety loop

Il bruciatore si spegne in modo normale quando la serie termostatica si apre (X5-03.1 e X5-03.4 - morsetti 3 e 4 della morsettiera del bruciatore). In questo caso prima di spegnersi, il bruciatore si porterà al carico minimo e successivamente si chiuderanno le valvole del combustibile. Seguirà la fase di post- ventilazione se impostata. Richiudendo la serie termostatica, il bruciatore si riavvia.

Nell'impianto sono previsti altri dispositivi di sicurezza (livelli, pressostati, termostati, serranda aria), e prendono il nome di "safety loop" (catena di sicurezza). Questi contatti sono connessi in serie ai morsetti 318-319 della morsettiera di alimentazione. Quando il safety loop chiude, il bruciatore è pronto per ripartire. Il servocomando muove verso la posizione di "riposo" (standby), e se i morsetti 3-4 sono chiusi, il ciclo di avvio riprende; altrimenti il bruciatore entra nella fase di standby.

Nell'impianto è previsto anche il termostato di sicurezza. Se il termostato scatta (morsetti X3-04.1 e X3-04.2 corrispondono ai morsetti 318 and 319 sulla morsettiera alimentazione del bruciatore – vedi sotto), il sistema andrà immediatamente in blocco.


Legenda:

SLT: termostato sicurezza (termostato di safety loop)

AUX: contato ausialiaro

Water Shortage: flusso stato acqua

Nel caso di bruciatori progettati per l'estrazione automatica dalla caldaia, ai morsetti X3-03.1 e X3-03.2 è collegato il microinterruttore di finecorsa della flangia bruciatore. In caso di apertura del contatto, il bruciatore si spegne immediatamente.

NOTA: Quando safety loop apre, il bruciatore si spegne immediatamente, saltando la fase di bassa fiamma. E' importante distinguere la "serie termoastatica" da "safety loop"

Si possono verificare al massimo 16 spegnimenti per emergenza, dopodiché si verifichrà un arresto di blocco. AZL visualizzerà il messaggio: "Catena sicurezze aperta". Seguire il percorso evidenziato per accedere alle opzioni di "safety loop"

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						Menu per l'impostazione dei parametri
(Controllo					Impostazione dei parametri per controllo bruciatore
		Configurazione				
		<u></u>	ContatoreRipetiz			Stabilisce il numero massimo di ripetizioni
			•	CatenaSicurezza	116	Default è 16

4 SERVOCOMANDI

4.1 Indirizzamento dei servocomandi

L'indirizzamento serve a stabilire la funzione di ogni attuatore. L'indirizzamento viene già eseguito in fabbrica dal costruttore del bruciatore.

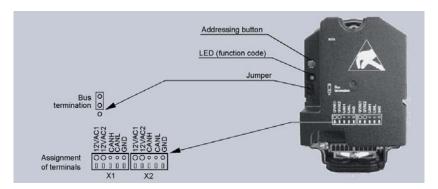
Nel caso sia necessario effettuare la sostituzione di un servocomando, si deve eseguire l'indirizzamento, altrimenti, il sistema non può funzionare. Il parametro dedicato all'indirizzamento dei servocomandi è protetto da password di livello Service. Controllare che, nell'ultimo servocomando del CAN bus, il jumper "Bus termination" (Fine linea bus) sia impostato su "ON" prima di iniziare la parametrizzazione.

Facendo uso del tasto ESC, accedere al menù e seguire il percorso sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						
<u></u>	Servomotori					
		Indirizzamento				Indirizzamento dei servocomandi
		(<u>.</u>	ServAria ServGas (Olio) ServOlio ServAux1 ServAux2 ServAux3(**)			(**) usato con FGR

Per indirizzare un servocomando, selezionare l'attuatore corrispondente e seguire le istruzioni che appariranno sul display:

Quando il LED verde sul servocomando lampeggia, significa che, in base al numero dei lampeggi effettuati è stato assegnata una delle seguenti funzioni:


Numero lampeggi	Funzione servocomando
1 lampeggio	servocomando serranda aria
2 lampeggi	servocomando valvola a farfalla del gas
3 lampeggi	servocomando regolatore pressione dell'olio
4 lampeggi	servocomando ausiliario AUX1
5 lampeggi	servocomando ausiliario AUX2
6 lampeggi	servocomando ausiliario AUX3

Se il bruciatore prevede FGR, è necessario utilizzare AUX3

ATTENZIONE: dai servocomandi non si effettua alcuna regolazione. In ogni caso, non tenere mai premuto a lungo il pulsante rosso P1 dei servocomandi, altrimenti verranno cancellati alcuni parametri fondamentali per il funzionamento del bruciatore. Il bruciatore andrà, così, continuamente in blocco.

Nel caso in cui, accidentalmente sia stato premuto a lungo il pulsante P1, sarà necessario effettuare un nuovo indirizzamento del servocomando

ATTENZIONE: Quando il LED verde LV sul servocomando presenta una luce continua, significa che deve ancora essere assegnato o che è stato resettato e deve essere indirizzato

4.2 Configurazione porte attuatori

Terminato l'indirizzamento, è necesario configurare/attivare la modalità di funzionamento di ogni servocomando.

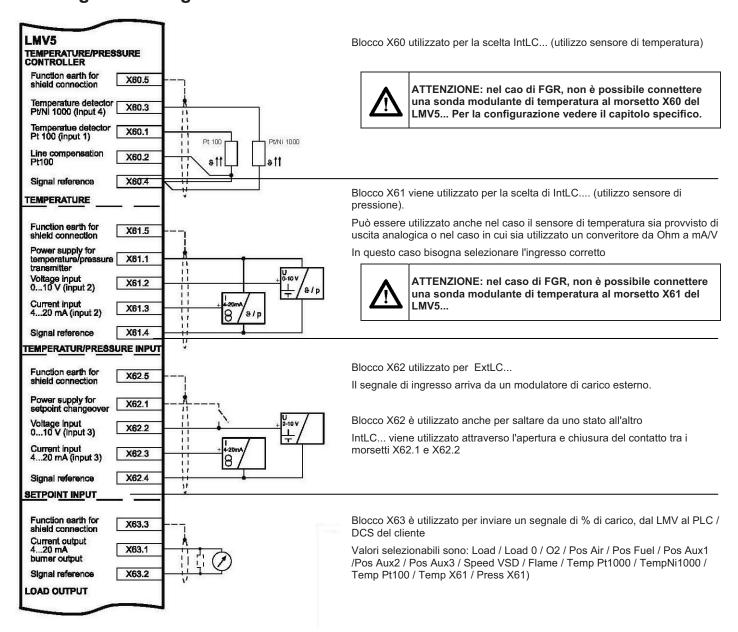
ATTENZIONE: Attivare solo i servocomandi che sono realmente presenti, altrimenti scatterà un errore.

1° livello	2° livello	3° livello	4° livello	Scelte possibili
Param & Visualiz				
	CammaElettr onica			
	<u></u>	TaraturaGas		
			ServocomAux ServomAria ServomAux1 ServomAux2 ServomAux3 Convert.Frequen ServomGas ServomOlio	disattivato Attivato air influen (solo con LMV52x se presente controllo ossigeno O2 control) (valori disponibili solo su LMV 51.300) VSD = solo VSD AUX3 = solo FGR, senza compensazione di temperatura

ATTENZIONE: LMV 51.300può operare come VGD+FGR senza compoensazione di temperatura

4.3 Impostazione velocità degli attuatori

LMV considera l'inverter come un attuatore, quindi il tempo di salita del numero dei giri e il tempo di frenata non devono essere superiori al tempo di corsa del servocomando. Se fosse necessario aumentare i tempi dell'inverter, cambiare anche il tempo di corsa del servocomando seguendo la procedura riportata sotto.


Seguendo il percorso descritto in tabella, impostare entrambi i parametri "RampaFunzMod" e "RampaSalita" per definire la velocità di salita/frenata dell'inverter e il tempo di apertura (da 0° a 90°) dei servocomandi.

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						Menu per l'impostazione dei parametri
	CammaEle ttronica					In questa Sezione si impostano i Rapporti Aria/Combustibile
		Tempi				
			RampaFunzMod	Service	40 s	velocità massima del servocomando durante il funzionamento (fase 60 ÷ 62)
						Con un settaggio di 30 secondi, si ottiene una velocità massima di 90° in 30 secondi (3°/s)
						LMV5 calcola la velocità di ogni servocomando, in modo che tutti i servocomandi raggiungano la posizione target nello stesso tempo.
						Valori 1060s
		•	RampaSalita	Service	40 s	Velocità dei servocomandi durante la fase di risposo, preventilazione, accensione e di postventilazione
						Con un settaggio di 10 secondi, si ottiene una velocità massima di 90° in 10 secondi (9°/s)
						Valori 10120s

ATTENZONE: Si consiglia di settare il tempo di salita e di frenata ad un valore circa 35% più basso rispetto al servocomando più lento.

5 Configurare il regolatore di carico

IntLC....deve essere settato insieme alla sonda di modulazione (temperatura o pressione). La sonda e il suo segnale devono essere configurate. I morsetti da utilizzare sono i X60 per la sonda di temperatura e X61 per sonda di pressione o sonde con output analogico.

ExtLC... deve essere settato insieme ad un segnale esterno di modulazione proveniente d un modulatore esterno. Il segnale di input deve essere configurato. I morsetti da utilizzare sono i X62 per la scelta del tipo di segnale.

Facendo uso del tasto ESC, accedere al menù e seguire il percorso sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						Livello menu parametrizzazione
	RegolatCarico					Impostazioni parametri regolatore
		Configurazione				Configurazione generale regolatore di portata
		•	TipoFunzRegCar			Funzionamento con regolatore di carico
				RPext X5-03 RPint RPint s.PLC RPint X62 RPext X62 RPext s.PLC		Vedi sotto

RPext X5-03 = dispositivo esterno di controllo del carico, a tre punti (X5-03 terminals)

RPint = regolatore interno (LMV5x) (commuta tra 2 set point, W1,W2 settati tramite AZL. la commutazione tra W1 e W2 avviene tramite l'apertura/chiusura dei morsetti X62.1, X62.2 del LMV5x).

RPint s.PLC = regolatore interno e set point configurato tramite connessione bus

RPint X62 = regolatore interno (LMV), ma set point configurato esternamente tramite un segnale di tensione / corrente ai morsetti X62

RPext X62 = regolatore esterno, il carico del bruciatore viene controllato attraverso un segnale di tensione / corrente ai morsetti X62

RPext s.PLC = regolatore esterno, il carico del bruciatore viene controllato via bus

ATTENZIONE: in caso di FGR, non è possibile connettere la sonda di temperatura per la modulazione ai morsetti X60 del LMV5x. Vedere il capitolo corrispettivo per la configurazione.

6 Configurazione delle sonde e dei set-point

Nel caso di utilizzo del regolatore interno del LMV5x, è possibile connettere una sonda di temperatura o pressione ai morsetti X60 o X61. In questo caso, settare il tipo di sonda e il suo range di funzionamento.

6.1 Configurazione di una sonda di temperatura ai morsetti X60

ATTENZIONE: se si utilizza un regolatore esterno, non connettere i morsetti X60 o X61.

ATTENZIONE: Se il bruciatore prevede FGR con compensazione di temperatura, usare sonda Pt1000.

ATTENZIONE: In base al tipo di sonda installata il valore verrà visualizzato in "°C" o "bar".

Facendo uso del tasto ESC, accedere al menù e seguire il percorso sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Params & Display						Livello menu parametrizzazione
<u></u>	RegolatCarico					Impostazioni regolatore di portata interno
		Configurazione				Configurazione generale regolatore di portata
			Sensor SelezSensore			Selezione ingresso valore effettivo
				Pt100 Pt1000 Ni1000 SondaTemp. SondaPress.		Vedi tabella in basso
				Pt100Pt1000 Pt100Ni1000		

Valori possibili:

Pt100 Sensore di temperatura Pt100 in ingresso X60, funzione del limitatore di temperatura interna = attivato.

Pt1000 Sensore di temperatura Pt1000 in ingresso X60, funzione del limitatore di temperatura interna = attivato.

Ni1000 Sensore di temperatura LG-Ni1000 in ingresso X60, funzione del limitatore di temperatura interna = attivato.

SondaTemp. Sensore di temperatura in ingresso X61, funzione del limitatore di temperatura interna = disattivato.

SondaPress. Sensore di pressione in ingresso X61, funzione del limitatore di temperatura interna = disattivato.

Pt100Pt1000 Sensore di temperatura Pt100 in ingresso X60, per controllo temperatura e funzione del limitatore di temperatura e inoltre sensore

di temperatura Pt1000 in ingresso X60 per la funzione del limitatore di temperatura.

Pt100Ni1000 Sensore di temperatura Pt100 in ingresso X60, per controllo temperatura e funzione del limitatore di temperatura e inoltre sensore

di temperatura LG-Ni in ingresso X60 per la funzione del limitatore di temperatura.

senza sonda Nessun sensore per valori effettivi (ad es. in caso di carichi esterni predefiniti e senza limitatore di temperatura interno).

ATTENZIONE:se viene connessa, una seconda sonda della caldaia, ai morsetti (solo 1000 Ohm), le funzioni interne SogliaTermOff e DiffIntervTermOn vengono automaticamente attivate (vedi paragrafo CONFIGURAZIONE DELLE FUNZIONI "SogliaTermOff" e "DiffIntervTermOn").

6.2 Configurazione di una sonda di temperatura o pressione ai morsetti X61

ATTENZIONE: se si utilizza un regolatore esterno, non connettere i morsetti X60 or X61.

Se è stata connessa una sonda di modulazione ai morsetti X61, procedere come segnato:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
	RegolatCarico					Impostazioni regolatore di portata interno
	(Configurazione				Configurazione generale regolatore di portata
		<u></u>	InpEst X61 U/I			Configurazione ingresso X61
				420 mA 210 V 010 V		Settare il valore in accordo con la sonda montata
				020 mA		

6.2.1 Configurazione di una sonda di pressione o temperatura ai morsetti X61

Una volta settato il tipo di sensore di temperatura, configurare il campo di lavoro del sensore:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
	RegolatCarico					Impostazioni regolatore di portata interno
	(Configurazione				Configurazione generale regolatore di portata
			CampoSensPress			Fine campo di misurazione pressione per ingresso X61
			(099.9 bar	099.9 bar	Valori inputabili
				02000 °C	02000 °C	

Esempio: se viene utilizzato un sensore Siemens max 10 bar, una tensione di 0 V corrisponde a 0 bar, mentre il valore di 10 V corrisponde alla massima pressione ovvero 10 bar. Se il sensore viene cambiato con un sensore max 16 bar, 0 V corrisponderà a 0 bar e 10 V corriposnderà a 16 bar. Il parametro "CampoSensPress" dovrà essere settato a 16 bar.

6.3 Configurazione dei morsetti X62

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
(RegolatCarico					Impostazioni regolatore di portata interno
		Configurazione				Configurazione generale regolatore di portata
			InpEst X62 U/I			Configurazione ingresso X62: il segnale di ingresso su X62 può cambiare il setpoint o regolare il carico
				420 mA		Secondo l'uscita del modulatore esterno.
				210 V		
				010 V		
				020 mA		

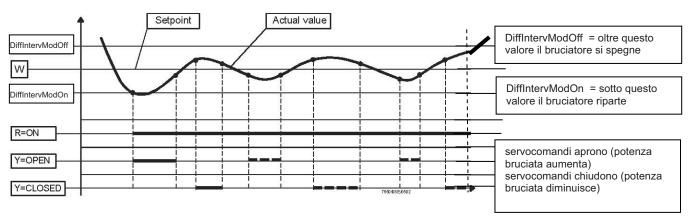
Se si desidera collegare una seconda sonda della caldaia ai morsetti (solo 1000 Ohm), le funzioni interne SogliaTermOff e DiffIntervTermOn vengono attivate automaticamente (vedere paragrafo CONFIGURAZIONE DELLE FUNZIONI "SogliaTermOff" E "DiffIntervTermOn").

6.4 Settare il setpoint, il bruciatore e la banda di funzionamento del PID

6.4.1 Set-point

Per configurareil set-point di temperatura ovvero la temperatura di funzionamento della caldaia, procedere come indicato:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
	RegolatCarico					Impostazioni regolatore di portata interno
	(ParametriRegolat				Impostazioni parametri regolatore


Apparirà la schermata:

SetPointW1	Att: set-point corrente; usare le frecce per cambiare il valore
Att:: 90° Nuov:: 90°	Nuov: nuovo valore. Enter conferma, altrimenti uscire senza salvare premendo ESC Premere ESC più volte per uscire dalla modalità di programmazione del set-point

Dopo aver settato il set-point, è necessario configurare il range di funzionamento del bruciatore. Vedere il paragrafo DiffIntervModOn e DiffIntervModOff

6.4.2 DiffIntervModOn e DiffIntervModOff

Dopo avere impostato il valore di temperatura set-point W1, impostare i valori del "termostato limite di accensione" (SDon) e del "termostato limite di spegnimento" (SDOff).

Per impostare questi valori, selezionare con le frecce la voce DiffIntervModOn (SDOn), scorrendo verso il basso il menù "RegolCarico"; premere ENTER

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
	RegolatCarico					Impostazioni regolatore di portata interno
	(ParametriRegolat				Impostazioni parametri regolatore
			DiffIntervModOn		(DiffIntervModOn
(DiffIntervModOff		•	DiffIntervModOff

il	disp	lay	mostrerà:
----	------	-----	-----------

DiffIntervModOn	DiffIntervModOff
att: 1.0%	Att: 10.0%
luov: 1.0%	Nuovo: 10.0%

Il valore di default per DiffintervModOn è 1%, significa che il bruciatore riaccenderà ad una temperatura inferiore dell'1% rispetto al set-point.

Cambiare il valore, se necessario, facendo uso delle frecce; premere ENTER per confermare e ESC per uscire. Premere solo ESC per uscire senza salvare

Ora selezionare DiffIntervModOff facendo uso delle frecce, e premere ENTER.

Il valore di default per questo parametro è 10%. Il bruciatore si spegnerà se la temperatura eccederà del 10% il valore di set point.

Premere ENTER per confermare, poi ESC per uscire. Oppure premere solamente ESC per uscire senza modificare il dato

6.4.3 Parametri regolatore PID

La memoria del regolatore contiene 5 impostazioni standard del parametro. Se necessario, uno di questi 5 valori tripli PID può essere copiato nelle postazioni di memoria per i valori effettivi in modo tale da diventare attivo

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						Livello menu parametrizzazione
<u></u>	RegolatCarico					Impostazioni regolatore di portata interno
		ParametriRegolat				Impostazioni parametri regolatore
			SelezParamRegol			Settings of controller parameter for internal load controller
			(1)		Adaption MoltoVeloce Veloce Normale Lento MoltoLento	

I parametri PID possono essere impostati manualmente su qualsiasi valore degli intervalli di impostazione sopra descritti, oppure è possibile attivare (ed ulteriormente modificare se necessario) un triplo valore tra i valori standard descritti di seguito, o ancora è possibile impiegare la funzione di adattamento invece dell'impostazione manuale (funzione di autoimpostazione), con cui l'LMV5... rileva autonomamente i parametri PID.

Fare riferimento al manuale Siemens LMV5x per ulteriori istruzioni. Generalmente il settaggio proposto dal LMV5x (moltoVeloce, veloce, normale, Lento, molto lento) è sufficiente per un adeguato funzionamento.

Adattamento	Sono impiegati i valori rilevati dalla funzione di adattamento dell'LMV5				
	Xp [%]	Tn [s]	Tv [s]		
MoltoVeloce (esempio, piccole caldaie)	42,5	68	12		
Veloce	14,5	77	14		
Normale	6,4	136	24		
Lento	4,7	250	44		
Molto Lento (esempio, caldaie molto grandi)	3,4	273	48		

La tabella mostra i parametri standard PID secondo in base alla scelta effettuata .

Il parametro Xp è la banda proporzionale in % del set point.

6.5 CONFIGURAZIONE DELLE FUNZIONI "SogliaTermOff" E "DiffIntervTermOn"

Queste funzioni abilitano la soglia per lo spegnimento immediato, nel caso in cui si ecceda il valore SogliaTermOff. Il riavvio automatico viene eseguito per valori inferiori rispetto a DiffIntervTermOn.

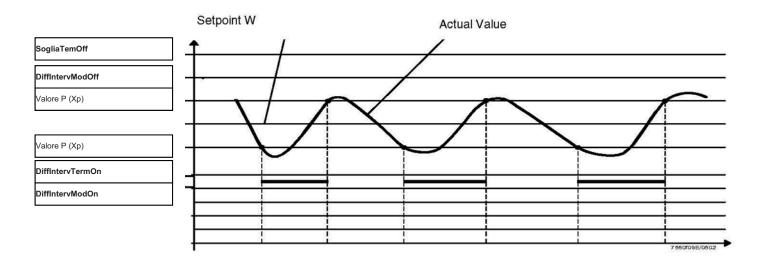
Sul display vengono mostrati contemporaneamente i valori di temperatura/pressione rilevati

SogliaTermOff spegne immediatamente il bruciatore nel caso la temperatura superi il valore impostato. Valvole gas/olio vengono chiuse subito.

DiffIntervTermOn riavvia automaticamente il bruciatore quando il valore di temperatura scende al di sotto di quello impostato

DiffIntervModOff spegne automaticamente il bruciatore, portandolo prima in bassa fiamma, se la temperatura supera il valore impostato

DiffIntervModOn riavvia automaticamente il bruciatore se la temperatura scende sotto il valore impostato


Valore P (Xp) banda proporzionale di modulazione

Note: questa funzione è disponibile solo per sonde di temperatura Pt100 Ni1000 o Pt 1000 connesse ai morsetti X60.3 e X60.4.

ATTENZIONE: In pratica, questi parametri svolgono una funzione simile a quella del termostato di sicurezza, ma non possono mai sostituire il termostato di sicurezza. La caldaia deve sempre operare con il proprio termostato di sicurezza opportunamente collegato

NOTE: la SogliaTermOff per lo spegnimento immediato, deve essere sempre impostata ad un valore più alto della soglia di spegnimento normale DiffIntervModOff. DiffIntervTermOn deve essere maggiore di DiffIntervModOn.

Facendo uso del tasto ESC, accedere al menù e seguire lo schema sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Default	1° livello
Param & Visualiz							Menu level for making the parameter set- tings
	RegolatCarico						Settings for the internal load controller
		TermostatoLimi te					Settings for the temperature limiter function
			SogliaTermOff	02000 °C		95°C	-500 % SogliaTermOff
		(1)	DiffIntervTermOn	-500 % SogliaTermOff		- 5%	Differenziale termostato ON

7 Standarizzazione VSD

La standardizzazione del motore serve alla LMV per poter controllare l'esatto numero di giri del motore alla frequenza massima in uscita dall'inverter. Di fabbrica, viene eseguita una standardizzazione provvisoria allo solo scopo di poter eseguire il collaudo. La standardizzazione definitiva deve essere ripetuta sull'impianto da parte del centro Assistenza (solo se bruciatore include il ventilatore) prima del collaudo.

Per eseguire la standardizzazione il bruciatore deve essere in sosta ma non in blocco (X5-03 aperto). La "Catena sicurezza" (Safety Loop) deve essere chiusa (X3-04).

Facendo uso del tasto ESC, accedere al menù e seguire lo schema sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	Valori	Descrizione
Parametri e Visualizzazioni						Menu per l'impostazione dei parametri
	Modulo Inverter					Impostazione per convertitore di frequenza
	•	Configurazione				
		•	Numero giri			
				Normizzazione	disattivato/attivato	Procedura di normizzazione numero giri ventilatore

Attivando la standardizzazione, senza accendere il bruciatore, il servocomando aria si porta alla massima apertura. Parte il motore del ventilatore e l'inverter porta il motore al massimo dei giri. Il sensore, montato sul motore, rileva il numero dei giri per minuto. LMV memorizza il dato e il motore si ferma.

ATTENZIONE: non inserire, manualmente, il numero dei giri riportati nella targa dati del motore alla voce "StandardizVeloc".

ATTENZIONE:: il cavo di alimentazione che collega l'inverter al motore deve essere schermato.

8 POSIZIONI SPECIALI

8.1 Punto di accensione

Il punto di accensione è indipendente da tutti gli altri punti della curva di regolazione aria/combustibile.

In caso di bruciatori misti, il punto di accensione impostato per il funzionamento a gas è indipendente da quello impostato per il funzionamento a combustibile liquido.

Il bruciatore viene consegnato con un punto di accensione già impostato in fabbrica, agevolando così le operazioni di prima accensione da parte del Centro Assistenza (Service).

Il servocomando dell'aria nel punto di accensione, viene impostato in fabbrica con una apertura compresa tra i 6° e i 7°, mentre quello del gas con una apertura compresa tra i 12° e i 15°. Nel caso di bruciatori dotati di inverter, l'accensione è consigliata con inverter al 100% della frequenza.

Facendo uso del tasto ESC, accedere al menù e seguire lo schema sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						Menu per l'impostazione dei parametri
	CammaElettronic a					
		TaraturaGas TaraturaOlio				Scegliere combustibile bruciato
			PosizioniSpecial			
				PosizioniAccens		
				PosizioniRiposo		
			(PosizioniPrevent		
			(PosizioniPostven		
				<u></u>	PosAccensGas	Settare la posizione
				<u></u>	PosAccensAria	Settare la posizione
					PosAccensAux1	Settare la posizione
				<u></u>	PosAccensAux2	Settare la posizione
				<u></u>	PosAccensAux3	Settare la posizione
					AccConvFreq	Settare la posizione

8.2 Posizione pre-ventilazione

Seguire lo schema della tabella precedente, fino al quarto livello, e scegliere posizione di pre-ventilazione.

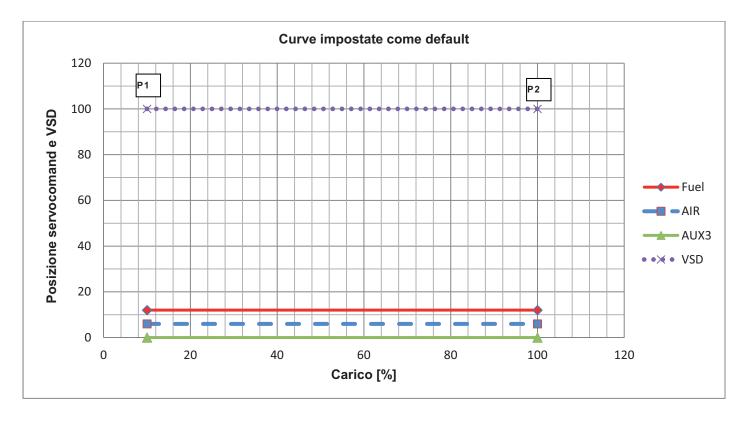
8.3 Posizione di risposo

Seguire lo schema della tabella precedente, fino al quarto livello, e scegliere posizione di riposo.

8.4 Posizione di post-ventilazione

Seguire lo schema della tabella precedente, fino al quarto livello, e scegliere posizione di post-ventilazione

9 REGOLAZIONE DELLE CURVE RAPPORTO ARIA/COMBUSTIBILE


ATTENZIONE: nei bruciatori dotati di Inverter, per effettuare la regolazione delle curve rapporto aria/combustibile, è prima necessario effettuare la Standardizzazione del numero dei giri del motore (vedi capitolo "standardizzazione VSD")

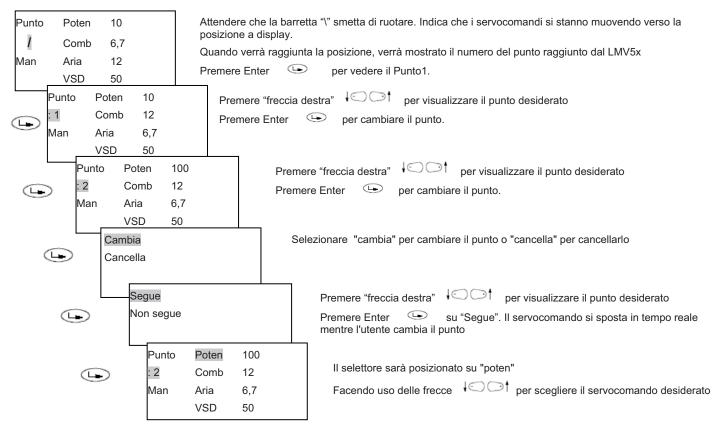
1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visual.						Menu per l'impostazione dei parametri
•	CammaElettronica					
	(TaraturaGas TaraturaOlio				Scegliere combustibile bruciato
		<u></u>	ParametriCurve			

9.1 Impostazioni combustibile - punti curva

Di fabbrica vengono già impostate due curve, che corrispondono ad un ipotetico stadio di bassa fiamma.

Nota: punti P1 e P2, vengono provvisoriamente denominati 10% e 100% di carico, indipendentemente dall'effettivo carico reale. L'operatore ha la possibilità di nominare, a piacere, il carico su ogni punto, indipendentemente dall'effettivo carico reale di quel punto. LMV5x metterà poi automaticamente in ordine i vari punti, in base al valore di carico assegnato in ogni punto dall'operatore

In questo modo, chiudendo la serie termostatica, il bruciatore, dopo l'accensione, si posiziona al carico minimo **P1** e successivamente procede verso il carico massimo **P2**, senza però incrementare la potenza erogata, poiché in entrambi i punti della curva, tutti gli attuatori sono regolati con la stessa apertura ai minimi valori.



ATTENZIONE: Per bruciatori con FGR e LMV52.400, il parametro è settato come "disattivato".

9.2 Impostazione dei punti di carico (bruciatori senza FGR)

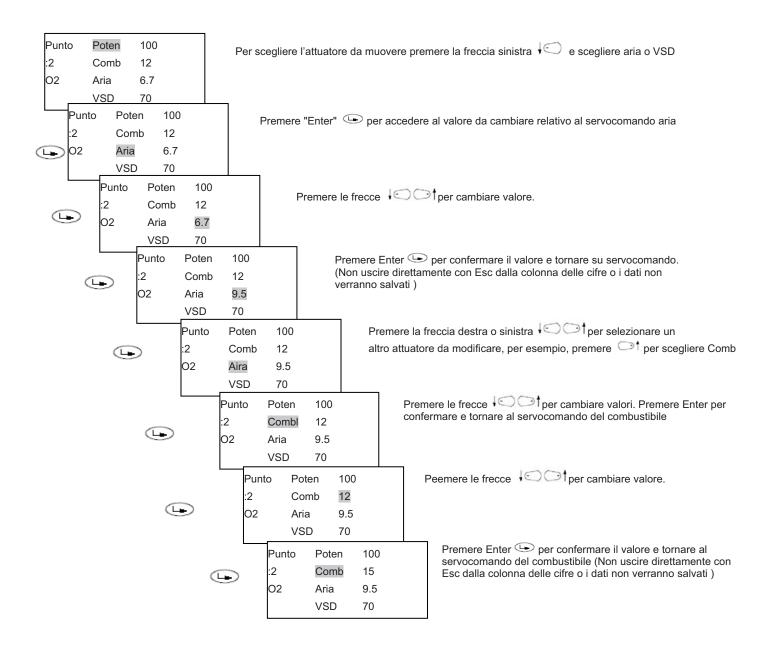
Facendo uso del tasto ESC, accedere al menù e seguire lo schema sottostante per poter configurare i parametri:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Parametri e Visualizzazioni						
	CammaElettronica					Impostazione rapporti Aria/Combustibile
		TaraturaGas TaraturaOlio				Regolazione parametri di funzion. della combustione a Gas e olio
		(ParametriCurve			Stabilisce il rapporto tra il Combustibile e l'aria comburente.

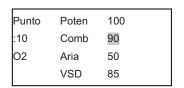
Adesso è possibile eseguire modifiche al Punto 2 con la seguente procedura

Controllando continuamente l'eccesso d'aria mediante l'analizzatore di combustione, aumentare solo di alcuni gradi* (vedi nota) l'apertura della serranda dell'aria e, se presente, anche l'inverter.

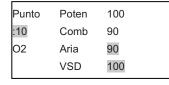
Aumentare successivamente solo di alcuni gradi* (vedi nota) anche l'apertura della farfalla del gas (o del servocomando combustibile). Procedere per gradi in questo modo, fino ad arrivare alla completa apertura della valvola a farfalla (servocomando a 90° - vedi grafico). Lo scopo è di raggiungere con sufficiente eccesso d'aria la posizione di massima apertura della farfalla del gas


Durante questa operazione di incremento della posizione dei servocomandi, oltre a incrementare progressivamente anche la quantità di aria, va tenuta sotto controllo la quantità di combustibile tramite il regolatore di pressione del gruppo valvole, per non eccedere oltre la massima portata richiesta.

Una volta raggiunta la posizione di massima apertura della farfalla del gas, regolare la portata del combustibile, agendo solo tramite lo stabilizzatore di pressione del gruppo valvole (o tramite il regolatore di pressione dell'olio, nel caso di combustibile liquido).


ATTENZIONE: Per incremento di " alcuni gradi", si intende che l'operazione di incremento deve essere effettuata in modo tale da non provocare forti eccessi d'aria o condizioni in difetto d'aria A tale scopo l'operazione di incremento, va eseguita monitorando continuamente l'analisi dei fumi con l'analizzatore di combustione. Si consiglia di effettuare gli incrementi mantenendo un O2 % compreso tra il 7,5% massimo ed il 3% minimo.

Salvare i nuovi punti, procedento con incrementi del 10÷20% del carico, Misurare la potenza del bruciatore al contatore. In questo modo, se per qualche motivo si dovesse interrompere la procedura e riavviarla più tardi, si ripartirebbe dai punti salvati.


Sempre controllando i parametri con l'analizzatore di combustione continuare ad incrementare le aperture dei servocomandi di Aria (e/o se presente, dall'inverter) e del Combustibile

Alla fine, verrà configurato l'ultimo punto.

Agire sul regolatore di pressione per aggiustare la pressione del combustibile al valore adeguato a raggiungere il 100% del carico del generatore/caldaia.

Agire su servocomandi AIRA o VSD, per regolare la combustione.

Schermata d'esempio, nell'ipotesi di aver configurato 10 punti curva.

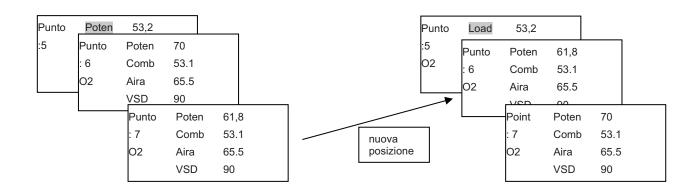
ATTENZIONE: Settare i valori di % di carico per ogni punto-curva.

ATTENZIONE: Regolare la posizione dei servocomandi a piccoli passi, sempre controllando i parametri di combustione

Attenzione! Una volta impostato il Punto2 di massimo carico, per motivi di sicurezza, non scendere direttamente al carico minimo P1, senza avere impostato altri punti intermedi (vedi paragrafo successivo).

A

Attenzione! In caso sia necessario spegnere immediatamente il bruciatore funzionante in alta fiamma, e il punto di massimo carico non è stato ancora regolato in combustione, ridurre il gas dallo stabilizzatore fino a portare il bruciatore in sufficiente eccesso d'aria, quindi spegnere il bruciatore dall'interruttore generale. Alla successiva accensione, ripartire con il punto P2 al minimo (impostazione di fabbrica - vedi paragrafo precedente) e procedere all'impostazione dei punti.


ATTENZIONE: Al raggiungimento del carico massimo (100%) , ricontrollare i punti-curva. E' cambiata la pressione al regolatore perciò anche la portata del gas. E' necessario ricontrollare i punti già configurati.

ATTENZIONE: per un funzionamento corretto, è necessario che la curva di ogni servocomando non inverta mai la sua pendenza.

ATTENZIONE: Quando il valore di percentuale di carico viene cambiato dall'utente, LMV ricalcola tutti i punti-curva per adattarli al nuovo valore immesso. Può così succedere che, una volta salvato il punto appena regolato, questo venga spostato su altra posizione.

10 Configurazione per bruciatori con ricircolo del gas di scarico (FGR)

10.1 Raccomandazioni

Nota!

Riduzione del carico massimo del bruciatore

Utilizzando ricircolo del gas di scarico (FGR) o immettendo la massa di ritorno attraverso le condotte di immissione, è possibile limitare il carico massimo del bruciatore.

Ciò significa che viene ridotta la quantità di aria comburente massima che può essere immessa.

Durante la regolazione del bruciatore si consiglia di considerare un eccesso di aria adeguato per ottenere la corretta quantità di O2 nel fumo, dopo la ricircolazione dei gas di scarico.

Quindi, la quantità di combustibile per l'alta fiamma deve essere ridotta per garantire valori corretti di combustione.

Attenzione

La compensazione di temperatura del ricircolo dei gas di scarico (FGR) può essere impostata solamente selezionando ConsCaricoMinGas durante il funzionamento.

Una variazione dei punti-curva senza una corrispondente temperatura di ricircolo del gas di scarico (ad es. "senza controllo" in funzione o in stand-by) provoca un accoppiamento errato dei valori di posizione del ricircolo gas di scarico e di temperatura di ricircolo fumi. Ciò può portare a quantità eccessive di gas di scarico ricircolato, che potrebbero causare un aumento della fiamma dalla bocca del bruciatore (soglia di stabilità della fiamma).

Attenzione!

Una successiva modifica dei punti-curva senza una correlata temperatura di ricircolo del gas di scarico (ad esempio senza ConsCaricoMinGas in funzione o standby) porta ad un accoppiamento errato della posizione di ricircolo del gas di scarico e della temperatura di ricircolo del gas di scarico.

Ciò può portare a quantità eccessive di gas di scarico ricircolato, che potrebbero causare un aumento della fiamma dalla bocca del bruciatore (soglia di stabilità dellafiamma).

Nota!

Ricircolo dei gas di scarico (FGR) in combinazione con regolazione O2

Su un impianto con FGR, non impiegare la regolazione O2.

Ciò non compromette la funzione del sensore O2.

Vi sono i seguenti effetti fisici:

1. Influsso reciproco delle pressioni

2. La riduzione O2 può portare a un forte aumento dei valori NOx.

Questi cambiamenti fanno sì che l'impostazione del rapporto, della regolazione O2 e della funzione FGR diventino più difficili o non eseguibili. Anche se è possibile l'impostazione, durante il funzionamento può verificarsi instabilità di fiamma oppure il mancato raggiungimento dei valori NOx necessari.

Nota!

La completa regolazione di *TCautoDeact* è possibile solo quando la temperatura del gas di scarico viene acquisita tramite l'ingresso del regolatore di carico (X60 ...).

Quando la temperatura viene acquisita tramite l'ingresso PLL52 ... (X86 ...) e il controllo / allarme O2 è attivo (no *CtrlAutoDeac*), non è possibile utilizzare la compensazione della temperatura di ricircolo dei gas di combustione (FGR) (causerebbe l'errore C: F6 D: 2).

Quando il modo operativo *O2 Control* è disattivato (*man deact*), il modo operativo *TCautoDeact* può essere utilizzato se la temperatura del gas di scarico viene acquisita tramite PLL52 ... (X86 ...).

Attenzione!

Se su bruciatore misto (a più combustibili) la funzione FGR viene utilizzata per un solo combustibile (ad es. Funzionamento a gas con FGR e funzionamento a olio senza FGR) prestare attenzione ai seguenti punti:

Quando si commuta al combustibile senza FGR, occorre garantire che l'unità FGR sia stata chiusa e sorvegliare che siano mantenute tali posizioni di chiusura.

Ciò si ottiene facendo le seguenti impostazioni per il carburante senza FGR:

- Attivazione del servocomando AUX3
- Parametrizzazione a "chiuso" delle posizioni default, Preventilazione, Accensione e Postventilazione.
- Parametrizzazione a "chiuso" tutte le posizioni del servocomando AUX3 in tutti i punti della curva
- Parametrizzazione del modo operativo FGR su CurvaAux3on.

Prima di attivare il sistema FGR, è obbligatorio completare la regolazione della curva aria/combustibile su ogni punto, fino alla potenza massima bruciata. Fare riferimento al capitolo precedente per istruzioni in merito.

ATTENZIONE: Attivando o incrementando l'apetura della valvola farfalla FGR è obbligatorio monitorare la combustione attraverso un analizzatori di fumi, opportunamente tarato.

10.2 Indirizzazione e attivazione del servocomando AUX3

Normalmente queste operazioni sono già state eseguite dal costruttore.

Possono risultare necessarie in alcuni casi come ad esempio: sostituzione del servocomando, in caso la modalità FGR non sia ancora stata attivata oppure se LMV5 viene fornito sciolto....

ATTENZIONE: per LMV52.400, in caso di indirizzamento servocomando FGR: l'unica scelta possibile è AuxActuator3. Non impostare il servocomando FGR in maniera diversa.

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						
	Servomotori					Settaggio dei servomotori
	(Indirizzazione				Indirizzazione di servomotori non indirizzati
		٩	ServomAria ServomGas ServomOlio ServomAux ServomAux 2 ServomAux 3		ServomAux 3	E' OBBLIGATORIO scegliere ServomAux 3

Dopo l'indirizzazione, attivare il servocomando FGR.

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						
(CammaElettron ica					
		TaraturaGas TaraturaOlio				Settaggio parametri per olio/gas
			ServocomAux	disattivato damper act VSD attivo AUX3 VSD+Aux3	Disattivato per LMV52.xxx AUX3 per LMV51.300	Disattivato per LMV52.xxx AUX3 for LMV51.300
		(ServomAria	disattivato attivato air influen	activated	
		(ServomAux 1			
			ServomAux 2			
			ServomAux 3		Attivo per LMV52.xxx	
		(Convert.Frequen			
		<u></u>	ServomGas ServomOlio		Attivo Attivo	Scegliere in base al tipo di combustibile

10.3 Impostazione delle posizioni speciali the special positions

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						
	CammaElettron ica					
		TaraturaGas TaraturaOlio				
			PosizioniSpeci al			

Qui sotto le posizioni suggerite. Possono essere modificate durante la fase di commissioning in accordo alle esigenze dell'impianto.

Posizioni speciali: AUX3 POS

Posizione riposo
 Posizione preventilazoione
 Posizione d'accensione
 Posizione post-ventilazione
 90° (aperto)
 (chiuso)
 90° (aperto)

10.4 Impostazione della modalità regolatore di carico - vedere il capitolo precedente (regolazione senza FGR)

ATTENZIONE: Se deve essere selezionata una delle opzioni intLC (internal Load Controller), non sarà possibile collegare un sensore di temperatura ai morsetti X60. Usare un sensore di temperatura con uscita analogia o un convertitore Ohm → mA or V. Dovranno essere connessi ai morsetti X61.

ATTENZIONE: Se viene utilizzata una delle opzioni extLC (External Load Controller), settare sulla scelta del sensore "senza sonda", "SondaTemp." o "SondaPress"

ATTENZIONE: configuare i morsetti X61 in base al sensore o segnale utilizzato.

10.5 Modalità FGR

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						
	Flue Gas Recirc					
	((1)	disattivato tempo / temperatura temp.contr. TCautoDeact Aux3 Minpos auto deact			Fare riferimento alla tabella sottostante

Description of the FGR mode.

FGR-Modo	Descrizione	LMV50 LMV51.3 LMV52.2	LMV52.4
Aux3 Minpos	La funzione di ricircolo gas di scarico (FGR) è disattivata. L'attuatore ausiliario 3 si sposta sulla sua curva di rapporto parametrizzata	•	•
disattivato	L'attuatore ausiliario 3, dopo la posizione di accensione, viene sempre mantenuto sulla posizione minima (segnalata con #) e la temperatura FGR non viene analizzata (indicatore XXX). In tal modo, il sistema può essere spostato in uno stato sicuro se non è stato possibile configurare completamente l'impostazione FGR. Con questa impostazione, si raccomanda di mettere in funzione il bruciatore prima di impostare la curva FGR.		•
tempo	L'attuatore ausiliario 3 viene mantenuto sulla posizione di accensione fino al raggiungimento di un intervallo impostabile. (parametro "DelaytimeFGR"). Durante l'operazione, il bruciatore regola il suo carico secondo i punti-curva, senza il ricircolo dei gas di scarico.	•	•
temperatura	L'attuatore ausiliario 3 viene mantenuto sulla posizione di accensione fino al raggiungimento di una temperatura impostabile (parametro "SogliaFGR"). Durante l'operazione, il bruciatore regola il suo carico secondo i punti-curva, senza il ricircolo dei gas di scarico.	•	•
temp.contr.	La posizione dell'attuatore ausiliario 3 viene calcolata in funzione della temperatura dei fumi e della curva di rapporto. È inoltre possibile mantenere l'attuatore sulla posizione di accensione per un intervallo impostabile (parametro ARF ON Time).		•
TCautoDeact	Effetto come temp.contr., ma in caso di errore del sensore fumi la funzione viene disattivata automaticamente. L'attuatore si sposta sulla posizione minima FGR e viene emesso un avviso di errore		•
deactMinpos	Dopo la posizione di accensione, l'attuatore ausiliario 3 viene mantenuto sempre sulla posizione minima di ricircolo gas combustibile FGR (segnalazione con #) e la temperatura di ricircolo gas combustibile non viene valutata (visualizzazione XXX). In questo modo, se non è stato possibile eseguire completamente l'impostazione del ricircolo gas combustibile, il sistema può essere condotto a uno stato di sicurezza. In questo caso si consiglia di eseguire l'avviamento del bruciatore prima di impostare la curva di ricircolo gas combustibile (FGR).		
auto deact	L'FGR con compensazione di temperatura è stato disattivato automaticamente. Effetto come deactMinpos), ma viene emesso un avviso.		•

10.6 Parametri principali della funzione FGR

Parametri	Descrizione	LMV50 LMV51.3 LMV52.2	LMV52.4
DelaytimeFGR Gas DelaytimeFGR Oil	Impostazione del tempo di ritardo con cui dopo il passaggio alla fase OPERATION 1 l'attuatore ausiliario 3 viene mantenuto sulla posizione di accensione	•	•
SogliaFGR Gas SogliaFGROil	Impostazione della temperatura che non deve essere raggiunta affinché l'attuatore ausiliario 3 venga mantenuto sulla posizione di accensione	•	
ARF-sensor (X86 PtNi1000 / X60 Pt1000 / X60 Ni1000)	Selezione del sensore di temperatura per l'FGR con compensazione di temperatura	•	•
Factor FGR Gas Factor FGR Oil	Adattamento della posizione calcolata in base alla temperatura, dell'attuatore ausiliario 3. L'impostazione avviene in passi di 1%. Il valore 100% significa = nessun adattamento. Un valore <100% riduce la quantità dei fumi di ritorno (riduzione della posizione dell'attuatore in direzione dell'attuatore chiuso). Il fattore funziona solo in caso di discrepanza rispetto alla temperatura FGR rilevata. Ciò significa che quando si raggiunge la temperatura inizialmente misurata, la posizione salvata viene raggiunta indipendentemente dal fattore FGR. Vedere la seguente Tabella "esempi posizione attuatori con FGR".		•
FGR MinPos	Limitazione della posizione dell'attuatore ausiliario 3 per la modalità Temp.Comp. e TKautoDeact verso il basso. L'impostazione avviene come valore assoluto e garantisce che l'FGR sia sottoposto a flusso di corrente minimo. La posizione viene impiegata anche per garantire una posizione dell'attuatore definita per il funzionamento di emergenza oppure la disattivazione automatica dell'FGR		•
FGR MaxPos Fact	Limitazione verso l'alto della posizione richiesta, calcolata in base alla temperatura effettiva e alla posizione di riscaldamento, dell'attuatore ausiliario 3. L'impostazione avviene in passi di 1% e si riferisce al rispettivo punto della curva. Tra i punti della curva le interpolazioni sono lineari.		•

I parametri sono visibili dal menu del display:

1° livello	2° livello	3° livello	4° livello	5° livello	6° livello	Descrizione
Param & Visualiz						
	Flue Gas Recirc					
		ARF-sensor	X60 Pt1000 X60 Ni1000			Secondo la sonda installata
		SogliaFGR Gas SogliaFGROil	0850 °C			Regolare secondo le necessità
		DelaytimeFGR Gas DelaytimeFGR Oil	063 min			Regolare secondo le necessità
		Factor FGR Gas Factor FGR Oil	10100%			Regolare secondo le necessità
		FGR MinPos				Regolare secondo le necessità
		FGR MaxPos Fact	0100%			Regolare secondo le necessità

ATTENZIONE: Solo in caso di FGR con compensazione della temperatura.

Se la temperatura rilevata è minore del valore registrato durante l'impostazione della curva, il servomotore AUX3 si avvicinerà alla posizione impostata ma non riuscirà a raggiungerla. In queste condizioni il ricircolo gas di scarico, potrebbe essere insufficiente o eccessivo.

I valori NOx potrebbero differire dalle aspettative o la fiamma potrebbe essere instabile. Provare a ridurre il fattore di correzione ("Factor FGR Gas" or "Factor FGR Oil"). Se necessario, intervenire sulla curva FGR. Probabilmente il punto era stato salvato anche se la temperatura dei gas di scarico era troppo lontana dalla condizione di regime

10.7 Esempio di fattore FGR fattore di mappa FGR su regolazione del bruciatore

Settiamo AUX3 per FGR come "temp.contr." Mode

La curva è impostata come evidenziato dalla tabella sottostante:

Punto	1	2	3	4	Nota
% Carico	37,5 %	62,5 %	75 %	100 %	
AUX3 Curva FGR	19,3 °	25,0 °	28,5 °	37,0 °	
FGR temperatura	72 °C	105 °C	121 °C	150 °C	Il valore del gas di scarico aumenta dalla bassa all'alta fiamma. La temperatura si riferisce al bruciatore condizioni di funzionamento operativo.

LMV52.400 calcolerà una "Curva zero" riferita al gas di scarico ad una temperatura di 0°C.

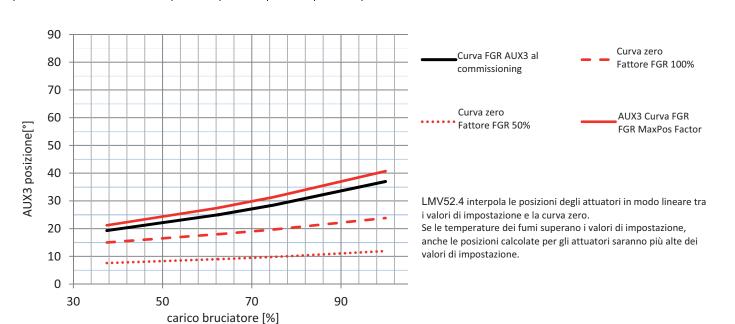
La "Curva zero" viene calcolata in riferimento all'effetto della temperatura sulla densità del fumo.

Se il "fattore FGR" è impostato al 100%, LMV non farà alcuna correzione.

Punto	1	2	3	4	Nota
Pos. FGR con T = 0 °C curva zero	15 °C	18 °C	19,7 °C	23,8 °C	Fattore FGR impostato al 100%

Se "fattore FGR" viene impostato ad un valore inferiore al 100%, LMV applicherà un'ulteriore correzione per il calcolo della "curva zero" Se "fattore FGR" è del 50%, la nuova "curva zero" sarà:

Punto	1	2	3	4	Nota
Pos. FGR con T = 0 °C curva zero	7,6°	9,0°	9,8°	11,9°	Fattore FGR impostato al 50% Ciò mostra che un fattore FGR del 50% con una curva zero porta al dimezzamento delle posizioni dell'attuatore.

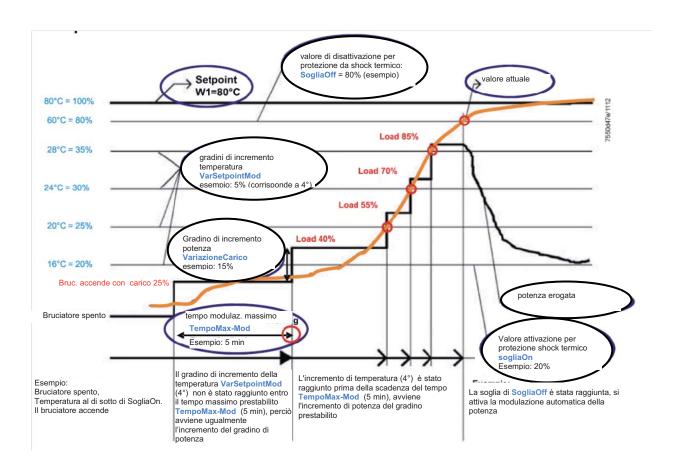

Se il valore di temperatura dei fumi, durante il funzionamento del bruciatore, è più alto della temperatura riscontrata durante il commissioning, la posizione AUX3 sarà maggiore del valore settato.

Per impedire un'ampia apertura della valvola farfalla FGR, potrebbe risultare necessario limitare la correzione automatica di LMV52.400.

Questo potrebbe essere necessario se l'apertura di AUX3 diventa maggiore di 90°, se la fiamma diventa instabile, oppure se il ricircolo fumi di scarico è troppo alto.

Per limitare la correzione a causa di un valore maggiore di temperatura, sarà necessario modificare il parametro "FGR MaxPOS Fac".

Punto	1	2	3	4	Nota
Pos. FGR	21,2°	27,5°	31,4°	40,7°	FGR MaxPOS Factor settato a 10% I valori sono il 10% superiori ai corrispondenti settati inizialmente.



11 PARTENZA A FREDDO (CSTP)

Se nell'impianto è presente una caldaia a vapore o una caldaia che deve partire a freddo e, per evitare gli shock termici, è richiesto il riscaldamento lento della caldaia mantenendo il bruciatore al minimo di potenza, può essere utilizzata la funzione automatica di Partenza a freddo, in alternativa al funzionamento manuale con il carico al minimo.

La funzione Cold Start ("Partenza a freddo") può essere abilitata **solo dal Service** (accesso tramite password riservata). Se tale funzione è stata abilitata, e la caldaia è fredda, all'accensione del bruciatore verrà visualizzato il messaggio "Protezione shock termico attivata". Se, invece, la funziona non è abilitata, dopo l'accensione, il bruciatore aumenterà normalmente il carico in base alla richiesta dell'utenza.

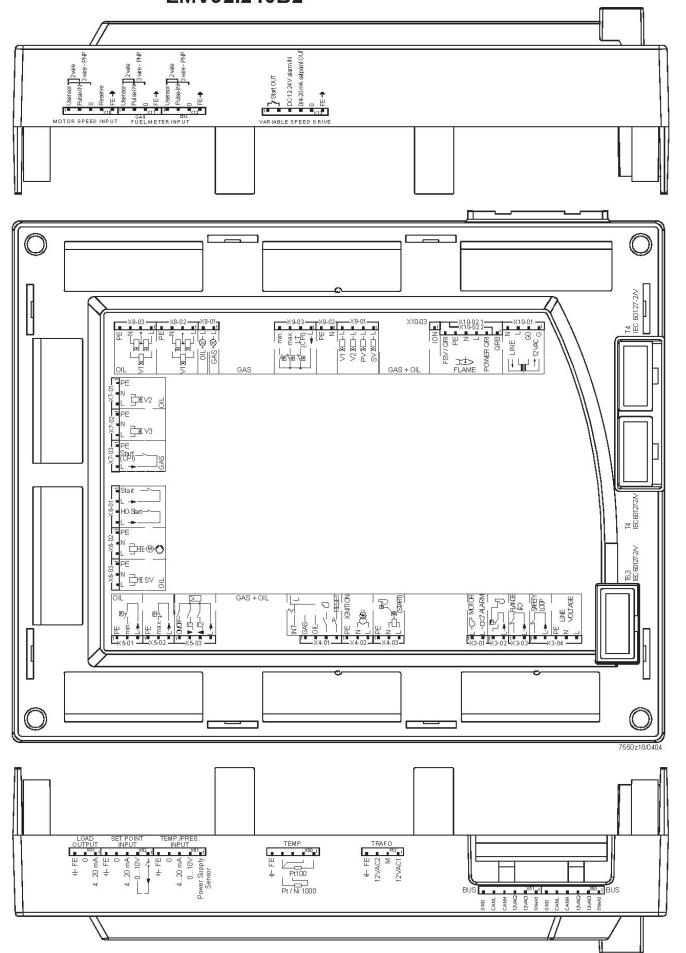
1° livello	2° livello	3° livello	4° livello	5° livello	default	Descrizione
Parametri e Visualizzazioni						Menu per l'impostazione dei parametri
(RegolatCarico					Impostazioni regolatore di portata interno
		Avviamento Freddo				Impostazioni avviamento a freddo (protezione choc termico)
		(L)	AvvFreddoOn	disattivato/ attivato		AvvFreddoOn attiva o disattiva la protezione da shock termico per avviamento a freddon. Gli altri parametri sono settati di fabbrica e possono essere cambiati seguendo le righe seguenti
			SogliaOn	0100%Wcurren	20%	Valore di attivazione della protezione shock termico per avviamento a freddo (in percentuale riferito al setpoint impostato)
		.	VariazioneCarico	0100%	15%	Percentuale di incremento del carico (modulante)
		(VarSetpointMod	1100% Wcurrent	5%	incremento % rispetto al setpoint (solo modulante)
			SetpointStad	1100% Wcurrent	5%	incremento % rispetto al setpoint (funz. a stadi)
		.	TempoMax-Mod	163 min	3 min	tempo max. per ogni incremento (modulante)
		<u></u>	TempoMax-Stadi	163 min	3 min	tempo max. per ogni aumento (a stadi)
			SogliaOff	1100% Wcurrent	80%	Valore di disattivazione protezione shock termico avviamento a freddo (in percentuale riferito al setpoint impostato)
		٩	Additional-Sens	Disattivato Pt100 Pt1000 Ni1000	Disattivo	Selezione per sensore addizionale (protezione shock termico avviamento a freddo)
		(TemperAvvFreddo	02000 °C		Temperatura attuale sensore per avviamento a freddo
			SetpSensore agg.	0450 °C	60°C	Setpoint per sensore addizionale
		(Consenso Stadi	no consenso / consenso	consenso	Stadio per funz. a stadi (protezione shock termico avviamento a freddo)

Nota: L'attivazione della modalità di funzionamento in manuale, eseguibile anche dal cliente, (vedi capitolo funzionamento manuale) esclude momentaneamente la funzione di Partenza a freddo (CSTP), il ritorno alla modalità Automatica ripristina la funzione di partenza a freddo se precedentemente impostata dal Service

12 FUNZIONAMENTO MANUALE DEL BRUCIATORE

L'operatore può scegliere se selezionare il funzionamento del bruciatore in modalità manuale ad un carico fisso impostabile, oppure il funzionamento in modalità modulante tramite il regolatore di carico automatico, infine può anche decidere lo spegnimento mediante la funzione di bruciatore spento.

Selezionare del tipo di funzionamento "Manuale / Automatico / Spento".


1° livello	2° livello	3° livello	Password	Descrizione
FunzionManuale				L'operatore, può controllare manualmente il carico, oppure può lasciarlo in modalità automatica o sempre spento
	Autom/Man/ Spento			Seleziona il carico manualeautomatico/spento
		Automatico/ Manuale/ Spento	Cliente	

Selezione della percentuale di carico per la modalità di funzionamento in manuale:

Per impostare la percentuale di carico alla quale si vuole fare funzionare il bruciatore in modalità manuale, procedere come descritto sotto

1° livello	2° livello	3° livello	Password	Descrizione
FunzionManuale				L'operatore, può controllare manualmente il carico, oppure può lasciarlo in modalità automatica o sempre spento
	SelezCarico			Seleziona percentuale di carico
	(0100%	Cliente	

LMV51.300B2 / LMV52.200B1 / LMV52.200B2 / LMV52.240B2

Blocco morsetti	Simbo	oli connetori	Ingressi	Uscite	Descrizione	Alimentazione
	PIN1	L-C MOTOR		х	Teleruttore motore ventilatore	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
X3-01	PIN2	L -D-7 ALARM		х	Segnalazione blocco	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1	725	х		Pressostato aria (LP)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X3-02	PIN2	_d 0		х	Alimentazione pressostato aria (LP)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1	FLANGE	х		Contatto finecorsa flangia bruciatore	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
X3-03	PIN2			х	Alimentazione contatto finecorsa flangia bruciatore	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
	PIN1	SAFETY	х		Catena sicurezze	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
	PIN2	LOOP LOOP		х	Alimentazione per catena sicurezze	AC 230 V +10 % / -15 %, 5060 Hz, Imax 5 A
	PIN3	■PE	Х		Massa (PE)	
X3-04	PIN4	N LINE VOLTAGE	Х		Alimentazione Neutro (N)	
7.0-04	PIN5	L	x		Alimentazione Fase (L)	AC 230 V +10 % / -15 %, 5060 Hz, fuse 6.3 AT (DIN EN 60 127
		INT — <t l<="" td=""><td></td><td></td><td>Selezione "interna" del tipo di com- bustile se i morsetti 1-2 non sono utilizzati</td><td></td></t>			Selezione "interna" del tipo di com- bustile se i morsetti 1-2 non sono utilizzati	
	PIN1	GAS —	х		Seleziona funzionamento a gas	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN2		х		Seleziona funzionamento a combustibile liquido	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X4-01	PIN3	RESET	х		Contatto di controllo del contattore ventilatore (FCC) o pressostato ricircolo fumi	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4		х		Pulsante di Reset o blocco manuale	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN1			Х	Massa (PE)	
	PIN2	PE IGNITION		х	Neutro (N)	
X4-02	PIN3	N D		х	Trasformatore acensione	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.2
	PIN1			Х	Massa (PE)	
	PIN2	PE ₽		х	Neutro (N)	
X4-03	PIN3	N (START)		х	inserimento pressostato per ventila- zione continua	AC 230 V +10 % / -15 %, 5060 Hz, 0.5 A, cos.0.4

Blocco morsetti		Simboli connetori	Ingressi	Uscite	Descrizione	Alimentazione
	PIN1			х	Massa (PE)	
	PIN2	PE min —	х		Pressostato di minima pres- sione combustibile liquido (DWmin-oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X5-01	PIN3			x	Alimentazione pressostato di minima pressione combustibile liquido (DWmin-oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1			х	Massa (PE)	
	PIN2	PE max →	х		Pressostato di massima pressione combustibile liquido (DWmax-oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X5-02	PIN3			×	Alimentazione pressostato di massima pressione combusti- bile liquido (DWmax-oil)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1	- ONIOSE	x		Contatto accensione/spegnimento bruciatore	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN2	ONOFF -	х		Contatto controllore esterno diminuisce carico / stadio3	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X5-03	PIN3	■ ▲ <u>2</u>	х		Contatto controllore esterno aumenta carico / stadio2	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4			х	Alimentazione contatti	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1		х		Termostato consenso nafta nel riscaldatore (TCN)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN2	START L ->		x	Alimentazione termostato con- senso nafta nel riscaldatore (TCN)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
X6-01	PIN3	■ HO-START —	х		Termostato nafta circuito interno bruciatore (TCI)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	PIN4			×	Alimentazione termostato nafta circuito interno bruciatore (TCI)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	PIN1			х	Massa (PE)	
	PIN2	PE PE		х	Neutro (N)	
X6-02	PIN3			х	Pompa combustibile liquido	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	PIN1			х	Massa (PE)	
	PIN2	PE PE		х	Neutro (N)	
X6-03	PIN3	N SV			Valvola sicurezza intercetta- zione combustibile liquido	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4

Blocco morsetti	;	Simboli connetori		Uscite	Descrizione	Alimentazione
	PIN1			х	Massa (PE)	
	PIN2	│		х	Neutro (N)	
X7-01	PIN3	N V2			Valvola combustibile liquido 2° sta- dio	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1			х	Massa (PE)	
	PIN2	[↑] ■ PE		х	Neutro (N)	
X7-02	PIN3	N V3			Valvola combustibile liquido 3° stadio	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
	PIN1			х	Massa (PE)	
	PIN2 PE		Х		Contatto per gas CPL (LMV52)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X7-03	PIN3	_ → L		х	Alimentazione contatto (riserva)	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA

Blocco morsetti	Simboli conneto	ri	Ingressi	Uscite	Descrizione	Alimentazione
	OIL + 🛇 – L 📮	PIN2		х	Lampada segnalazione funziona- mento comustibile liquido	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
X8-01	GAS +⊗−L ■	PIN1		x	Lampada segnalazione funziona- mento gas	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		х	Massa (PE)	
	PE =	PIN3		х	Neutro (N)	
X8-02	N N	PIN2		x	Mosetto per collegamento valvole in serie	
70 0Z	V1 X	PIN1		х	Valvola combustibile liquido 1	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		х	Massa (PE)	
	PE =	PIN3		х	Neutro (N)	
X8-03	N N	PIN2		x	Mosetto per collegamento valvole in serie	
X0-00	V1 X	PIN1		х	Valvola combustibile liquido 1	AC 230 V +10 % / -15 %, 5060 Hz, 1 A, cos.0.4
		PIN4		x	Valvola gas 1	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	V1 <u>}</u> L ■ V2 }L ■	PIN3		х	Valvola gas 2	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
X9-01	PV <u> </u>	PIN2		х	Valvola gas	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
	SV 🖫 L 💻	PIN1		х	Valvola sicurezza intercettazione gas	AC 230 V +10 % / -15 %, 5060 Hz, 2 A, cos.0.4
		PIN2		х	Massa (PE)	
X9-02	PE N -	PIN1		х	Neutro (N)	
		PIN4	х		Pressostato gas di minima	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	min max max	PIN3	х		Pressostato gas di massima	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
X9-03	LT (CPI)	PIN2	х		Pressostato gas controllo perdita valvole o contatto valvole chiuse	AC 230 V +10 % / -15 %, 5060 Hz, Imax 1.5 mA
	— ← L ■	PIN1		х	Alimentazione per i contatti dei pressostati	AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA

Blocco mor- setti	Simboli connetor	i	Ingressi	Uscite	Descrizio	ne	Alimentazione
		PIN4		х	Neutro (N)		AC 230 V +10 % / -15 %, 5060 Hz, max 1 mA
	LINE N	PIN3		Х	Fase alimentazione tra	asformatore	
X10-01	GO GO	PIN2	х		Alimentazione per GC)	AC 12 V +10 % / -15 %, 5060 Hz, max 1.2 mA
	12VAC G ■	PIN1	х		Alimentazione per G		
	FSV/QRI _	PIN6	х		QRI(Sensore infraro QRA7segnale in Vo		Umax DC 5 V
	PE ■	PIN5		х	Massa (PE)		
	N =	PIN4		х	Neutro (N)		
X10-02	FLAME L	PIN3		х			AC 230 V +10 % / -15 %, 5060 Hz, Imax 500 mA
	POWER QRI	PIN2		х	AlimentazioneQRI(S rosso)/QRA7segnale		DC 14 / 21 VC Imax 100 mA
	QRB •	PIN1	х		QRBsegnale in Volt		Max. DC 8 V
X10-03	ION E	PIN1		х	IEletrodo ionizzazione alternativa sensori Ult QRA vedere capitolo uscite sensori	ravioletti	Umax (X3-04-PINS) Imax. 0.5 mA
				х	Massa di riferimento (PELV)	
	GND ■ CANL ■	PIN5		х	Cavo segnale (CANL)	l	DC U <5 V, Rw = 120 Ù, level to ISO-DIS 11898
		PIN4		Х	Cavo segnale (CANH))	
X50	CANH 12VAC2	PIN3		х	Alimentazione per attuatori / Display AZL		AC 12 V +10 % / -15 %, 5060 Hz, Fuse max. 4 A
X30	12VAC1 =	PIN2		х	Alimentazione per attu Display AZL	uatori /	
	Shield -	PIN1		х	Schermo (Mas	ssa)	
		PIN6		Х	Massa di riferimento (PELV)	
	GND CANL	PIN5		Х	Cavo segnale (CANL))	DC U <5 V, Rw = 120 Ù, level to ISO-DIS 11898
		PIN4		Х	Cavo segnale (CANH))	
X51	CANH 12VAC2	PIN3		х	Alimentazione per attu AZL	uatori Display	AC 12 V +10 % / -15 %, 5060 Hz, Fuse max. 4 A
731	12VAC1 -	PIN2	Alimentazione per attuatori Display X AZL				
	Shield =	PIN1		х	Schermo (Mas	ssa)	
		PIN4	х		(Massa)		
	¶⊢ FE ■	PIN3	х		Alimentazone dal tras per LMV5x	sformatore	AC 12 V +10 % / -15 %, 5060 Hz
VEO	M =	PIN2	х		Massa di riferimento (PELV)	
X52	12VAC1 -	PIN1	х		Alimentazone dal tras per LMV5x	sformatore	AC 12 V +10 % / -15 %, 5060 Hz

Blocco morsetti	Simboli conneto	ori	Ingressi	Uscite	Descrizione	Alimentazione
		Son	de Te	mper	ratura / Pressione controllore	
	_	PIN5	х		Schermo cavo sonde	
	(⊢ FE ⊨	PIN4	х		Comune	
		PIN3	х		Ingresso sensore temperatura Pt / LG-Ni 1000	
X60	4 6 7 6	PIN2	х		Cavo compensazione sensore temperaturaPT100	
X00	Pt/Ni 1000	PIN1	х		Ingresso sensore temperatura PT100	
		PIN5	х		Schermo cavo	
	(⊢ FE 🕨	PIN4	х		Massa di riferimento	
	0 =	PIN3	х		Ingresso segnale in corrente per sensori di pressione/temperatura 0/ 420 mA	DC 0/420 mA
	4-20 mA	PIN2	х		Ingresso segnale in tensione per sensori di pressione DC 010 V	DC 010 V
X61	0-10 V =					
	Power Supply Sensor	PIN1		×	Alimentazione per sensori di Pressione/temperatura	approx. DC 20 V Max. 25 mA
		PIN5	х		Schermo cavo	
	(- FE ■	PIN4	х		Massa di riferimento	
	0 -	PIN3	х		Ingresso in mA per segnale di Set point o carico	DC 020 mA
VCO	4-20 mA	PIN2	х		Ingresso in Volt per segnale di Set point o carico	DC 010 V
X62	0-10 V	PIN1		x	Alimenazione per cambio di Set point	approx. DC 24 V Max. 2 mA
		PIN3	х		Schermo cavo	
	- FE =	PIN2		х	Massa di riferimento	
	o -					
X63	4-20 mA	PIN1		x	Uscita Segnale in mA percentuale di carico	DC 420 mA, RLmax = 500 ohm

COD.: M07979AD rel. 3.2 01/13

PRESCRIZIONI PER COLLEGAMENTI LMV5x

I collegamenti sensibili ai disturbi EMC sono quelli relativi al cavo "bus" (cavo linea servocomandi, PLL52), cavo fotocellula, cavo sensore di giri, cavo segnale 4÷20mA che pilota l'inverter.

I cavi di comando e di potenza (400V e 230V) devono essere sempre separati dai cavi di segnale.

Il cavo "bus" tra quadro e bruciatore e tra bruciatore e scheda PLL52 (utilizzata per regolazione ossigeno) deve essere posato separatamente, lontano da cavi di potenza. Quando sono previsti tratti lunghi, è preferibile inserire il cavo "bus" dentro un tubo o guaina metallica, con le estremità della guaina collegate a massa mediante opportuni collari.

Tra inverter e motore, prevedere cavo tripolare schermato con terra esterna alla schermatura, del tipo FG70H2R+T (vedi Allegato 1).

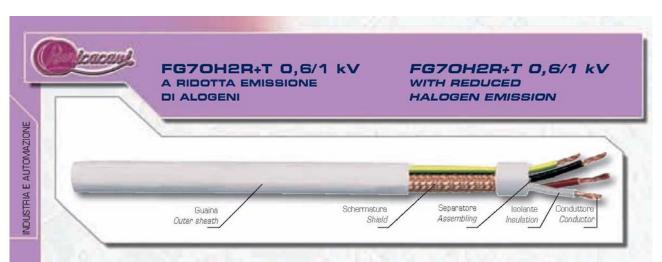
La schermatura deve arrivare fin sotto all'inverter e fino alla scatola motore. La schermatura va collegata alla massa "equipotenziale" da entrambi i lati magari con opportuni collari.

In alternativa si può usare un cavo normale dentro un tubo o guaina metallica, sempre con le estremità della guaina collegate a massa con opportuni collari, e una cordina di terra esterna per la massa motore.

Il cavo del segnale 4÷20mA per comandare l'inverter deve essere del tipo schermato sempre con schermatura solo dal lato LMV5x .Se l'inverter non è all'interno del quadro bruciatore, prevedere anche una posa separata del cavo dentro una guaina metallica sempre messa a terra con collari.

Per il cavo sensore di giri, prevedere cavo tipo "rete Ethernet" cat. 5 o 6 dentro sempre una guaina metallica, messa a massa alle estremità e posata separatamente dal cavo motore.

Siccome il sensore di giri usa 3 fili, si possono dividere le coppie e incrociarle per eliminare i disturbi.


In alternativa si può usare un cavo twistato 3x2x0,50 tipo Liycy (vedi Allegato 2).

Per il cavo della fotocellula QRI, prevedere gli stessi accorgimenti presi per il cavo sensore giri.

Anche per le versioni con regolazione ossigeno, i collegamenti tra sonda ossigeno e PLL52 devono essere fatti con cavo twistato 3x2x0,50 tipo Liycy (vedi Allegato 2).

NB: quando una schermatura è collegata a massa attraverso entrambe le estremità, tali estremità devono essere equipotenziali. Se tra le estremità c'è una qualsiasi tensione, mettere a massa solo una delle due estremità, generalmente quella vicina al componente più sensibile agli EMC. In ogni caso ricordarsi che l'apparecchiatura di controllo del bruciatore deve essere privilegiata ovvero avere il collegamento a massa più vicino delle altre. Ad esempio nel collegamento LMV-Inverter, se la schermatura ha una sola estremità a massa, questa deve essere lato LMV.

Allegato 1 – Esempio di cavo per motore

CARATTERISTICHE TECNICHE

Colore delle anime:		UNEL 00722 / VDE 0293 (Tab. 8)
Conduttori:	rame rosso elettrolitico	normativa CEI EN 60228 CI.5 (Tabella 9
Isolante:	elastomero silanico di qualità G7	normativa CEI 20-11 - CEI EN 50363
Separatore:	nastro poliestere-mylar	
Schermatura:	a treccia capillari di rame rosso elettrolitico cop. > 80	3 %
Guaina esterna:	PVC di qualità TM2	normativa CEI 20-11 - CEI EN 50363
Colore della guaina:	Grigio RAL 7035	
Prova N.P. verticale:	su singolo conduttore o cavo isolato	normativa CEI EN 60332-1-2
Prova GAS emessi:	durante la combustione	normativa CEI EN 50267-2-1
Resistenza agli olii:		normativa CEI 20-34/0-1
Prova N.P.I.:		normativa CEI 20-22/2
Resistenza elettrica:	relativamente alla sezione	normativa CEI EN 60228 (Tabella 9)
Tens. nominale Uo/U:	0,6/1 kV	
Tensione di prova:	4000 V	
Temperatura d'esercizio:	(-25 °C ÷ + 90 °C)	
Temperatura di corto circuito:	250 °C	
Marcatura:	BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 kV 0.R.	CEI 20-22 II CE Anno/Lotto - N° Anime x Sezione + T
Raggio di curvatura:	minimo 15 volte diametro esterno	

TECHNICAL FEATURES

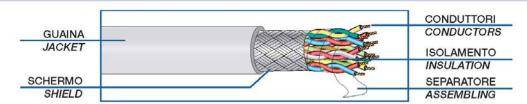
	1. Co. M. 18. 1	
Cores colour code:		UNEL 00722 / VDE 0293 (Tab. 8)
Conductors :	fine wires stranded of bare copper	CEI EN 60228 Cl.5 (Tab.9) rule
Insulation:	G7 quality rubber	CEI 20-11 - CEI EN 50363 rules
Assembling:	polyester-mylar tape	
Shield:	bare copper braid 80% covering	
Outer sheath:	TM2 quality PVC	CEI 20-11 - CEI EN 50363 rules
Sheath colour code:	Grey RAL 7035	
Vertical fire retardant test:	on single conductor or insulated cable	CEI EN 60332-1-2 rule
Emission GAS test:	during the combustion	CEI EN 50267-2-1 rule
Oil resistant test:		CEI 20-34/0-1 rule
Flame retardant test:		CEI 20-22/2 rule
Electric resistance:	according to	CEI EN 60228 (Tab. 9)
Working voltage:	0,6/1 kV	
Testing voltage:	4000 V	
Working temperature:	(-25 °C ÷ +90 °C)	
Short circuit temperature:	250 °C	
Outer printing:	BERICA CAVI S.P.A. (VI) FG70H2R + T 0,6/1 KV O.R. CE	1 20-22 II C€ - Year/Lot - Nr. of cond. by cross sect. + 1
Bending radius:	cable outer diameter x 15	

INDUSTRIA E AUTOMAZIONE

FG70H2R+T 0,6/1 kV A RIDOTTA EMISSIONE DI ALOGENI

FG70H2R+T 0,6/1 kV WITH REDUCED HALOGEN EMISSION

TIPO TYPE	Ø ESTERNO MEDIO MEDIUM Ø OUTER	PESO MEDIO MEDIUM WEIGHT	CODICE PRODOTTO ITEM CODE
n° x mm²	mm	kg x km	
3x1,5 + 1G1,5	10,8	173,0	B5803150
3x2,5 + 1G2,5	12,6	254,0	B5803250
3x4 + 1G4	15,3	365,0	B5803400
3x6 + 1G6	17,4	497,0	B5803600
3x10 + 1G10	20,6	730,0	B58031000
3x16 + 1G16	24,8	1095,0	B58031600
3x25 + 1G25	30,1	1680,0	B58032500
- 24			
	- 100		
	M.		
	- 1		
	No.		


	TIPO Ø ESTERNO MEDIO TYPE MEDIUM		PESO MEDIO MEDIUM	CODICE PRODOTTO ITEM		
		Ø OUTER	WEIGHT	CODE		
n	° x mm²	mm	kg x km			
			- 100			
			ED AL			
			D-10-0			
		0.67.1	- 0			
		U. I				
170						
11.						

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

IMPIEGO: Cavi schermati per segnali e trasmissione dati per applicazioni in elettronica ed informatica, efficaci contro le interferenze elettromagnetiche ed atti ad offrire una protezione contro influenze capacitive dovute a campi elettrici.

CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

STANDARD USE: Signal and data transmission shielded cables for electronics and information technology applications, effective against electromagnetic interferences and suited to offer protection against capacitive influences due to electric fields.

CARATTERISTICHE TECNICHE **TECHNICAL FEATURES** CONDUTTORI; CONDUCTORS Flexible bare copper conductors sec. CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, NF C32-013 CEI 20-29 (IEC 228) CI. 5, VDE 0295 CI. 5, (0,34 mm²: VDE 0295 Cl.2) NF C32-013 Ref. (0,34 mm2 : VDE 0295 Cl.2) ISOLANTE: INSULATION: Polyvinylchloridə (PVC) CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Rəf. Polivinilaloruro (PVC) Sec. CEI 20-11 Cl. R2, VDE 0207 Cl. YI2 Colour code according to DIN 47100 Codici colori: a norma DIN 47100 SEPARATORE: ASSEMBLING: Nastro di poliestere Polyester tape helically wound SCHERMATURA: A treccia di rame stagnato Tinned copper braid Cordina di continuità a richiesta On request with drain wire **GUAINA ESTERNA:** JACKET Polyvinylchloride (PVC) Polivinilcloruro (PVC) Sec. CEI 20-20 CI. TM2, VDE 0207 CI. YM2 CEI 20-20 Cl. TM2, VDE 0207 Cl. YM2 Ref. colore: grigio (diverso a richiesta) colour: grey or on request RESISTENZA ELETTRICA DEI CONDUTTORI: ELECTRICAL CONDUCTOR RESISTANCE: 0,14 mm²: <148 Ohm/Km 0,14 mm²: <148 Ohm/Km 0,25 mm2: <79 Ohm/Km 0.25 mm2: <79 Ohm/Km 0.34 mm2: <55 Ohm/Km 0.34 mm2: <55 Ohm/Km 0,50 mm²: <39 Ohm/Km 0,75 mm²: <26 Ohm/Km <39 Ohm/Km < 26 Ohm/Km 0.50 mm²: 0.75 mm²: 1mm²: <19,5 Ohm/Km 1 mm2: <19,5 Ohm/Km TEMPERATURA DI ESERCIZIO: WORKING TEMPERATURE: posa fissa: -25°C + 70°C posa mobile: -15°C + 70°C fixed installation: -25°C + 70°C flexing: -15°C + 70°C RAGGIO DI CURVATURA: BENDING RADIUS: 15 volte il diametro del cavo 15 times overall diameter of cable WORKING VOLTAGE: TENSIONE DI ESERCIZIO: 250 V TENSIONE DI PROVA: TEST VOLTAGE: 31

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

PROVA N.P. FIAMMA:

Standard: sec. CEI 20-35 (IEC 332.1) A richiesta: sec. CEI 20-22 II (IEC 332.3A)

FLAME RETARDANT TEST:

Standard: CEI 20-35 (IEC 332.1) Ref. On request: CEI 20-22 II (IEC 332.3A) Ref.

IMPEDENZA DI TRASFERIMENTO:

28.204.1.25.3.000

25x2x0.25

16.4

340.0

max 200 mohm/m (f<10MHz)

SURFACE TRANSFER IMPEDANCE:

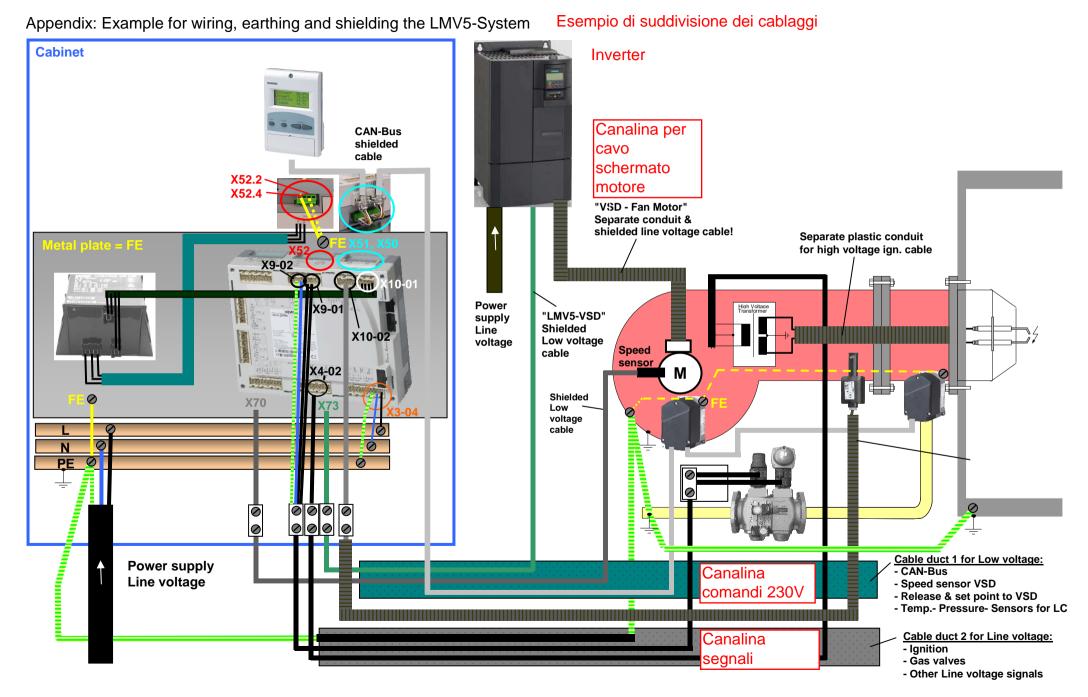
max 200 mohm/m (f<10MHz)

CAPACITA' DI LAVORO:

cond/cond: 120 nF/km (nom.) cond/sch: 180 nF/km (nom.)

CAPACITANCE:

cond/cond: 120 nF/km (nom.) cond/shield: 180 nF/km (nom.)


CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km	CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km
CODE	TYPE	outer diameter ø	Medium weight Kg/Km	CODE	TYPE	outer diameter ø	Medium weight Kg/Km
28.204.1.02.1.000	2x2x0.14	5.6	40.0	28.204.1.02.4.000	2x2x0.34	7.3	68.0
28.204.1.03.1.000	3x2x0.14	5.9	47.0	28.204.1.03.4.000	3x2x0.34	7.8	82.0
28.204.1.04.1.000	4x2x0.14	6.2	61.0	28.204.1.04.4.000	4x2x0.34	8.6	96.0
28.204.1.05.1.000	5x2x0.14	7.2	68.0	28.204.1.05.4.000	5x2x0.34	10.0	110.0
28.204.1.06.1.000	6x2x0.14	7.6	76.0	28.204.1.06.4.000	6x2x0.34	10.6	130.0
28.204.1.07.1.000	7x2x0.14	7.6	82.0	28.204.1.07.4.000	7x2x0.34	10.6	145.0
28.204.1.08.1.000	8x2x0.14	8.4	90.0	28.204.1.08.4.000	8x2x0.34	11.5	150.0
28.204.1.10.1.000	10x2x0.14	9.8	118.0	28.204.1.10.4.000	10x2x0.34	13.0	190.0
28.204.1.12.1.000	12x2x0.14	10.2	130.0	28.204.1.12.4.000	12x2x0.34	13.5	220.0
28.204.1.16.1.000	16x2x0.14	11.2	160.0	28.204.1.16.4.000	16x2x0.34	15.2	250.0
28.204.1.18.1.000	18x2x0.14	11.7	186.0	28.204.1.18.4.000	18x2x0.34	16.0	275.0
28.204.1.20.1.000	20x2x0.14	12.4	200.0	28.204.1.20.4.000	20x2x0.34	17.1	290.0
28.204.1.25.1.000	25x2x0.14	14.0	273.0	28.204.1.25.4.000	25x2x0.34	19.5	400.0
28.204.1.02.3.000	2x2x0.25	5.8	54.0	28.204.1.02.5.000	2x2x0.50	7.6	75.0
28.204.1.03.3.000	3x2x0.25	7.0	65.0	28.204.1.03.5.000	3x2x0.50	9.0	125.0
28.204.1.04.3.000	4x2x0.25	7.3	89.0	28.204.1.04.5.000	4x2x0.50	10.0	140.0
28.204.1.05.3.000	5x2x0.25	8.0	99.0	28.204.1.05.5.000	5x2x0.50	10.8	160.0
28.204.1.06.3.000	6x2x0.25	9.0	114.0	28.204.1.06.5.000	6x2x0.50	11.7	190.0
28.204.1.07.3.000	7x2x0.25	9.0	120.0	28.204.1.07.5.000	7x2x0.50	11.7	220.0
28.204.1.08.3.000	8x2x0.25	9.6	126.0	28.204.1.08.5.000	8x2x0.50	14.0	250.0
28.204.1.10.3.000	10x2x0.25	10.3	160.0	28.204.1.10.5.000	10x2x0.50	15.0	300.0
28.204.1.12.3.000	12x2x0.25	11.4	171.0	28.204.1.12.5.000	12x2x0.50	15.7	345.0
28.204.1.16.3.000	16x2x0.25	13.1	238.0	28.204.1.16.5.000	16x2x0.50	17.6	450.0
28.204.1.18.3.000	18x2x0.25	13.6	248.0				
28.204.1.20.3.000	20x2x0.25	14.2	275.0				

CAVI TIPO "Li-YCY-P" A COPPIE SCHERMATI A TRECCIA

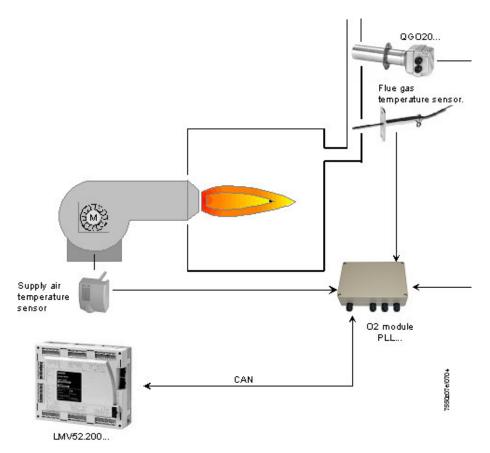
CABLES TYPE "Li-YCY-P" TWISTED PAIRS, TINNED COPPER BRAID SHIELD

CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km	CODICE	FORMAZIONE	ø esterno medio	Peso medio Kg/Km
CODE	TYPE	outer diameter ø	Medium weight Kg/Km	CODE	TYPE	outer diameter ø	Medium weight Kg/Km
28.204.1.02.6.000	2x2x0.75	8.6	103.0	28.204.1.02.7.000	2x2x1	9.4	122.0
28.204.1.03.6.000	3x2x0.75	9.0	128.0	28.204.1.03.7.000	3x2x1	11.5	179.0
28.204.1.04.6.000	4x2x0.75	10.6	167.0	28.204.1.04.7.000	4x2x1	12.8	237.0
28.204.1.05.6.000	5x2x0.75	12.0	215.0	28.204.1.05.7.000	5x2x1	13.8	297.0
28.204.1.06.6.000	6x2x0.75	12.8	240.0				
28.204.1.07.6.000	7x2x0.75	12.8	265.0				
28.204.1.08.6.000	8x2x0.75	14.6	306.0				
28.204.1.10.6.000	10x2x0.75	16.0	355.0				
28.204.1.12.6.000	12x2x0.75	17.0	405.0				
28.204.1.16.6.000	16x2x0.75	20.5	565.0				

SIEMENS

18 Appendice 4: LMV52... con controllo O2 e modulo O2

18.1 Generalità

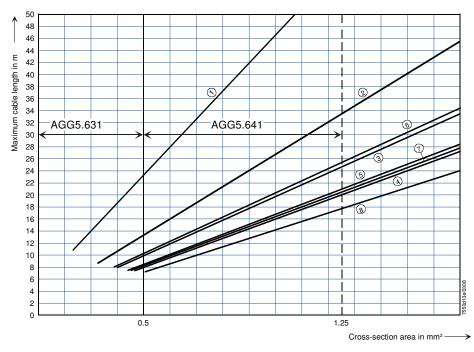

Il sistema LMV52... è un'estensione del sistema LMV51.... Una funzione speciale del sistema LMV52... è il controllo della percentuale di ossigeno nei fumi di scarico al fine di aumentare l'efficienza della caldaia.

Oltre alle caratteristiche dell'LMV51..., il sistema LMV52... fornisce il controllo dell'O2, il controllo di un massimo di 6 attuatori, il controllo del VSD, e la misura del consumi dei combustibili. Il sistema LMV52... utilizza un sensore di O2 (QGO20...), un modulo esterno O2, e le componenti standard del sistema LMV51....

Il modulo PLL... O2 è un modulo di misura indipendente per il sensore QGO20... e per 2 sensori di temperatura (Pt1000 / LG-Ni 1000). Il modulo comunica con l'LMV52... attraverso il CAN bus.

Il contatore di combustibile deve essere collegato direttamente agli ingressi relativi al combustibile dell'unità base. Sul display dell'AZL5... e sull'unità operativa, si possono leggere i singoli valori di consumo ed azzerare le letture del contatore.

ATTENZIONE: per la corretta regolazione del bruciatore, è necessaria l'installazione di un contatore di combustibile, dedicato al singolo bruciatore.


Determinazione della lunghezza massim del cavo

La lunghezza massima del cavo tra il trasformatore e gli utenti del CAN bus dipende dal tipo di cavo (area della sezione), il numero degli attuatori ed il tipo di attuatore utilizzato (corrente).

I grafici che seguono possono essere utilizzati per determinare le lunghezze massime del cavo del CAN bus tra il trasformatore ed il gruppo di attuatori oppure l'AZL5..., a seconda dei relativi fattori influenzanti.

È stata fatta l'ipotesi che gli attuatori del gruppo siano vicini tra loro.

L'area **minima** della sezione per gli esempi del sistema illustrati risulta dall'inizio della curva. Le lunghezze **massime** del cavo per i cavi di sistema definiti AGG5.641 ed AGG5.631 risultano dai punti di intersezione nel grafico.

AGG5.631 (cable type 2) AGG5.641 (cable type 1)

- (1) 1 x SQM45... (5) 2 x SQM48...
- ② 2 x SQM45... ⑥ 1 x SQM45... + 1 x SQM48...
- ③ 3 x SQM45... ⑦ 2 x SQM45... + 1 x SQM48...
- 4 x SQM45... 8 3 x SQM45... + 1 x SQM48...

Connessione del CAN bus tra il trasformatore e il gruppo dell'attuatore

Quando si connette un modulo O2 PLL52..., la lunghezza massima ammissibile del cavo di una rete deve essere ridotta di 2 m.

Esempio: - Cavo di sistema: AGG5.641 (per la connessione del cavo agli attuatori)

- Attuatori: 2 x SQM45...

Il punto di intersezione della linea verticale dell'AGG5.641 (1.25 mm²) e la curva \square (2 x SQM45...) fornisce una lunghezza massima del cavo di 33.4 m tra il trasformatore ed il gruppo di attuatori.

12.1 Alimentazione del sistema LMV5...

In principio, la topologia del CAN bus contiene sempre una struttura di linea e, pertanto, ha un nodo iniziale ed uno finale.

I singoli utenti del CAN bus sono collegati in serie, per cui i rispettivi nodi finali sono terminati da resistenze di terminazione del CAN bus.

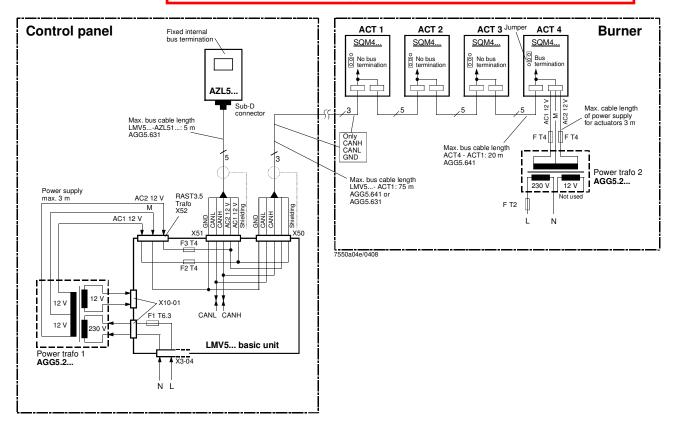
L'unità base è una componente della linea di comunicazione ed è circuitata tra l'AZL5... e gli attuatori.

Nel sistema, l'AZL5... assume sempre la funzione di un nodo finale del CAN bus. La resistenza di terminazione richiesta per il CAN bus è in tal caso già integrata.

Con gli attuatori, l'ultimo utente diventa il nodo finale del CAN bus (qui, la terminazione interna del CAN bus deve essere attivato mediante uno spinotto di connessione "Jumper").

Gli altri utenti del nodo sulla struttura della linea sono configurati senza resistenza di terminazione.

Esempio 1


Installazione di tutti i componenti del bruciatore; cavo del CAN bus «LMV5... ↔ ultimo attuatore» < 20 m

Nota sull'esempio 1

Lunghezza totale del cavo del CAN bus \leq 100 m

Unità base LMV5... sulla centralina di controllo, attuatore sul bruciatore; cavo del CAN bus «LMV5... ↔ ultimo attuatore» > 20 m

Note sull'esempio 2

Lunghezza totale del cavo del CAN bus ≤ 100 m

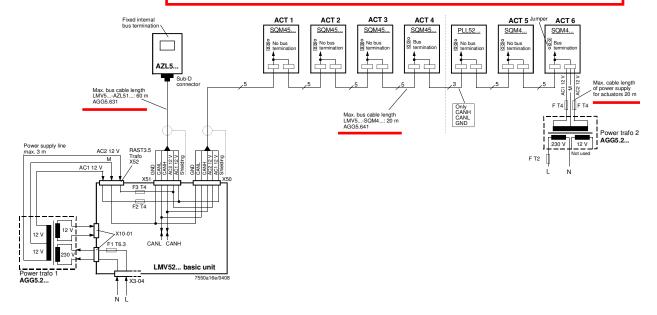
Se la distanza tra l'LMV5... e l'ultimo attuatore è superiore a 20 m, oppure se sul bruciatore è installato più di un attuatore SQM48... (consultare lo schema di dimensionamento «Determinazione della lunghezza massima del cavo»), sarà necessario un secondo trasformatore per l'alimentazione degli attuatori.

In tal caso, il trasformatore 1 fornisce l'alimentazione all'unità base dell'LMV5... e dell'**AZL5...**

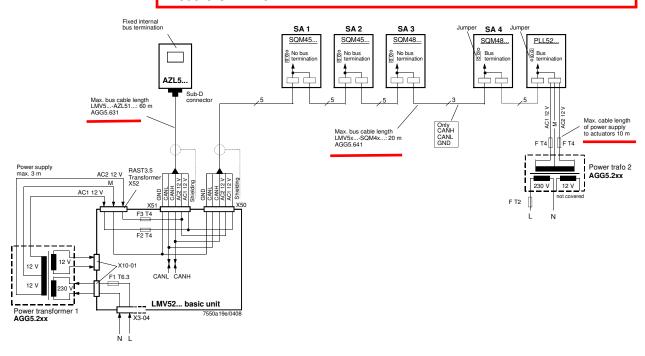
Con le connessioni del cavo del CAN bus dall'LMV5... al primo attuatore, le 2 tensioni AC1 e AC2 dal lato LMV5... **non saranno** collegate e solo i cavi CANH, CANL ed M (+schermatura) verranno collegati al primo attuatore.

In tal caso, gli attuatori sono alimentati da un secondo trasformatore che deve essere posizionato vicino agli attuatori.

L'alimentazione da quel trasformatore (cavi AC1, AC2 e GND) viene fornita all'attuatore (SA4 nell'esempio precedente) e quindi collegata attraverso il cavo del bus AGG5.641 a tutti gli altri attuatori.


I fusibili richiesti per il trasformatore 1 sono posizionati nell'unità base dell'LMV5....

Per il trasformatore 2, questi 3 fusibili devono essere posti vicino al trasformatore.


Esempio 3a

Installazione di tutti i componenti nel bruciatore; Cavo CAN bus «LMV52... ↔ ultimo attuatore» < 20 m con 6 attuatori e modulo O2 PLL52...

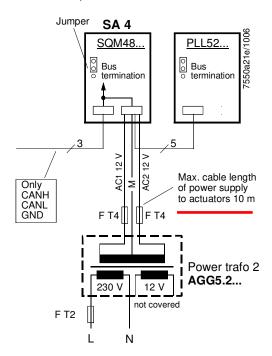
Esempio 3b

Installazione nella centralina di controllo, nel bruciatore e sulla caldaia; cavo del CAN bus «LMV52... ↔ ultimo attuatore» < 25 m con 4 attuatori e modulo O2 PLL52...

Cavo del CAN bus con LMV52... e più di 4 attuatori più modulo O2 PLL52...

Sulle applicazioni LMV52... con più di 4 attuatori (SQM45...), sarà necessario un secondo trasformatore per l'alimentazione degli attuatori aggiuntivi.

In tal caso, il trasformatore 1 alimenta l'unità base LMV52..., l'**AZL5...**, ed i primi 4 attuatori.

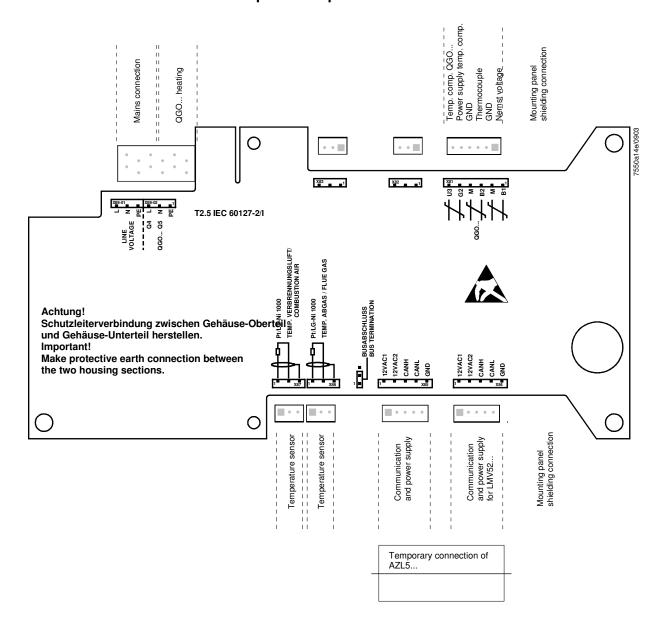

Interrompere la connessione tra le componenti in una posizione opportuna. Sul lato attuatore, le 2 tensioni AC1 ed AC2 **non** devono essere collegate ma solo le linee «CANH, CANL ed M» (+schermatura) al modulo O2 ed all'altro attuatore.

Gli attuatori (SA5, SA6) ed il modulo O2 devono essere alimentati da un secondo trasformatore da posizionare vicino agli attuatori ed al modulo O2.

Collegare la linea di alimentazione proveniente da quel trasformatore al modulo O2 PLL52... (nell'esempio 3a «SA6» / nell'esempio 3b «Auxiliary terminal») (linee AC1, AC2, M) e da qui, attraverso il cavo del AGG5.641, fino al secondo attuatore (SA) ed al modulo O2.

I fusibili necessari per il trasformatore 1 sono posizionati nell'unità base dell'LMV52....

Opzionalmente, la tensione di alimentazione può essere anche trasmessa attraverso una scatola per cavi ed inviata alla linea di connessione tra l'attuatore (SA4) e PLL52...

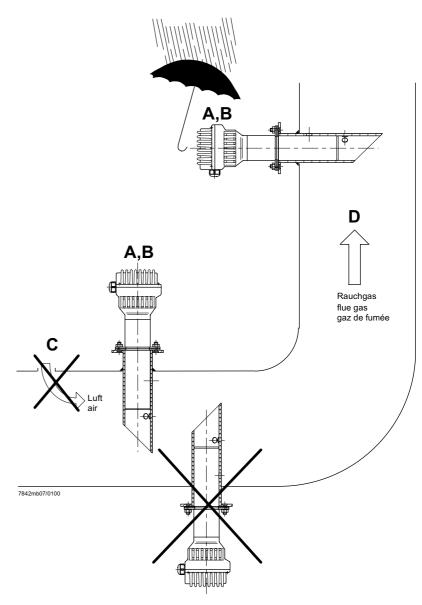


Per il trasformatore 2, l'OEM deve montare i 3 fusibili nelle vicinanze del tranformatore.

18.8 Modulo **O2**

Rispetto al Sistema LMV51, il Sistema LMV52... ha dei componenti aggiuntivi: modulo O2, semsore O2 e sensore di temperature dei gas combusti. Il moodulo O2 si collega con l'unità base attraverso il CAN bus e deve essere posizionato vicino al sensore ossigeno QGO... (< 10 m), al fine di mantenere le interferenze sulle linee sensibili più basse possibili. Per il riscaldamento del sensore, il modulo di O2 richiede il collegamento ad una rete separata.

18.8.1 Inputs e outputs



QGO20...

Montageanleitung Mounting instruction Instruction de montage Monteringsanvisning Montage-aanwijzing Istruzioni di montaggio Asennusohje Instrucciones de montaje Monteringsinstruktion Montasjeanvisning

Fühler aus Keramik - zerbrechlich Ceramic detector - fragile Sonde en céramique - fragile

O2-Fühler QGO20... und Rauchgassammler AGO20...

Voraussetzungen für eine korrekte messtechnische Erfassung des O2-Gehaltes der Rauchgase:

- A QGO20... **nur** mit Rauchgassammler AGO20... einsetzen
- B Einbauort des QGO20... so nahe am Brenner wie möglich, in einem Bereich ohne Turbulenzen und Inhomogenitäten. Nicht direkt im Bereich von Klappen oder Bögen montieren. Idealer Abstand: 5 x Kamindurchmesser.
- C Zwischen Brenner und Fühler darf keine Luft in die Rauchgase gelangen.
- D Strömungsgeschwindigkeit 1...10 m/s. Rauchgastemperatur am Messort ≤ 300°C

O2-detector type QGO20... and flue gas collector type AGO20...

Presupposition for the correct measurement of the O2 content of the flue gases:

- A Use QGO20... **only** with flue gas collector type AGO20...
- B Mounting position of the QGO as close as possible to the burner, in a homogenous area without any turbulences. Do not mount the QGO20... in the area of dampers or curves. Ideal distance: Five times the diameter of the stack.
- C No air must be allowed to join the flue gases on their way from the burner to the detector.
- D Flow velocity 1...10 m/s. Flue gas temperature at the measuring position $\leq 300^{\circ}C$

Sonde O2 QGO20... et collecteur des gaz de fumée AGO20...

Conditions requises pour une détection correcte de la teneur en O2 des gaz de fumée:

- A Utiliser le QGO20... **exclusivement** avec le collecteur des gaz de fumée AGO...
- B Lieu de montage du QGO20... le plus près possible du brûleur, dans un domaine homogène sans turbulences. Ne pas le monter dans le domaine des clapets ou dans les courbes. Distance idéale: Cinq fois le diamètre de la cheminée.
- C Entre le brûleur et la sonde, il ne doit pas pénétrer d'air dans les gaz de fumée.
- D Vitesse d'ecoulement 1...10 m/s. Température des gaz fumée au lieu de la mesure ≤ 300°C

Anschluss-Schema

6-adriges abgeschirmtes Kabel. Adern möglichst paarweise verdrillt. Abschirmung an Klemme GND des RPO... . Abschirmung nicht mit Schutzleiter oder M verbinden!

Anschlusskabel z.B.:

Wiring diagram

Shielded 6-core cable. Wires should be twisted in pairs. Screen must be connected to terminal GND of the RPO... . Do not connect the shielding to the protective earth or M!

Connecting cable e.g.:

Schéma de raccordement

Câble blindé à 6 brins. Brins torsadés si possible par paires. Blindage sur la borne GND du RPO... . Ne pas connecter le blindage avec le conducteur de protection ou MI

Câble de raccordement p.ex.:

LifYCY LiYCY	6 x 2 x 0,20 / 22 oder 6 x 2 x 0,20	LifYCY LiYCY	6 x 2 x 0,20 / 22 or 6 x 2 x 0,20	LifYCY LiYCY	6 x 2 x 0,20 / 22 ou 6 x 2 x 0,20
B1 (+) M (-)	Signal O2-Messzelle Masse für B1, B2	B1 (+) M (-)	Signal from O2-measuring cell Ground for B1, B2	B1 (+) M (-)	Signal de la cellule de mesure d'O2 Masse pour B1, B2
B2 (+) M (-)	Thermoelement-Spannung	B2 (+) M (-)	Thermocouple voltage	B2 (+) M (-)	Tension de thermocouple
U3 (+)	Signal Temperaturkompensations-	U3 (+)	Signal from temperatue compensation element	U3 (+)	Signal de l'élément de cpmpensation de température
G2 (-)	Speisung Temperaturkompensations- element	G2 (-)	Power supply for temperature compensation element	G2 (-)	Alimentation de l'élément de compensation de température
GND	Masse für Anschirmung	GND	Ground for screening	GND	Masse du blindage
3 x 1,5 mm ² :		3 x 1,5 mm ² :		3 x 1,5 m	ım²:
Q4	Fühlerheizung (AC 230 V)	Q4	QGO detector heating (AC 230 V)	Q4	Chauffage de sonde QGO (AC 230 V)
Q5	Fühlerheizung (AC 230 V)	Q5	QGO detector heating (AC 230 V)	Q5	Chauffage de sonde QGO (AC 230 V)

Erde*

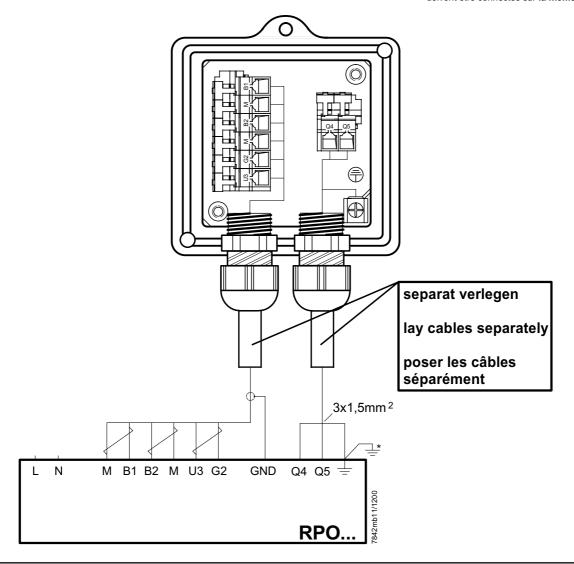
Vorsicht bei den Anschlüssen U3 und G2! Ein Fehlverdrahten der Anschlüsse führt zu einem Ausfall des Kompensationselementes.

* Am RPO... steht nur 1 Erdleiterklemme zur Verfügung. Beide Erdleiter müssen auf eine Klemme geführt werden.

Earth*

Caution when connecting U3 and G2! Faulty wiring leads to failure of the compensation element.

* At the RPO..., there is only 1 earth terminal available. Both earth wires must be connected to **the same** earth terminal.



Prière de faire attention lors des raccordements U3 et G2. Une erreur de câblage des fils de raccordement conduit à une destruction de l'élément de compensation.

* Le RPO... ne dispose que d'une seule borne de mise à la terrre. Les deux fils de mise à la terre doivent être connectés sur **la même** borne.

2/4 4 319 2366 0

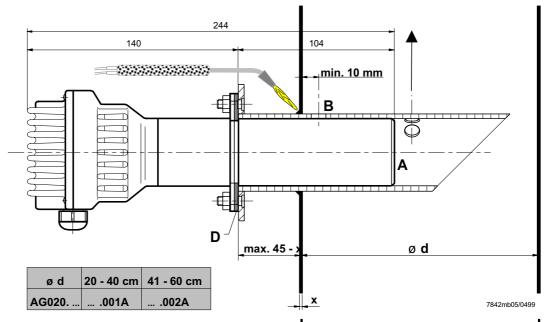
Hinweise für Installation und Inbetriebnahme

- Distanz zwischen Wand des Rauchgaskanals und Rauchgasaustritt (B) des AGO20... min. 10 mm
- Die Kaminisolierung darf nicht über den Anschlussflansch hinausragen und dadurch den Fühlerkopf isolieren (therm. Überlastung).
 Der Fühlerkopf muss frei bleiben!
 Strahlungswärme vermeiden; z.B. durch Wärmeleitbleche
- Bei der ersten Inbetriebnahme ist das Mess-Sytem ca. 2 Stunden vor Gebrauch einzuschalten.
 Bei kurzen Abschaltungen der Anlage (1-2 Wochen) ist es empfehlenswert, das Mess-System (QGO... und RPO) nicht auszuschalten.
- Während des Aufheizvorganges kann der Fühler falsch messen.

- QGO20... nie im kalten Zustand bei laufendem Brenner im Kamin einsetzen.
- Nach Fühlertausch, Ansteuerung der Fühlerheizung überprüfen.
- Spannung an Q4 Q5 muss im 2 s Takt pulsieren.

Commissioning and Installation Guide

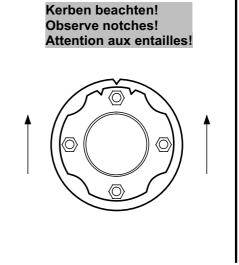
- The distance between the wall of the flue gas duct and the flue gas outlet (B) of the AGO20... must be a minimum of 10 mm
- The insulation of the chimney must not project beyond the connecting flange, thus insulating the head of the sensor (thermal overload).
 The head of the sensor must remain uncovered!
 Avoid heat due to radiation, e.g. through thermal conductive plates
- When starting up the plant for the first time, the measuring system should be switched on approx.
 2 hours prior to usage.
 If the plant is switched off for short periods of the time (1 to 2 weeks), it is recommended to leave the measuring system (QGO... and RPO) switched on.
- During the heating up phase, the detector could deliver an incorrect signal.


- Never use a cold QGO20... in the flueway while burner is operating.
- After changing the sensor, check the proper functioning of the sensor's heating element
- Voltage at Q4 Q5 must pulsate at 2-s intervals
- If voltage does not pulsate, <u>switch equipment off</u> <u>immediately</u>
- replace RPO

Instructions de mise en service et installation

- La distance entre la paroi de la conduite de gaz et la sortie des gaz de fumée (B) du AGO20... doit être d'au moins 10 mm.
- L'isolation de la cheminée ne doit pas dépasser la bride de raccordement, c'est-à-dire couvrir la tête de la sonde (surcharge thermique). La tête de la sonde ne doit pas être couverte! Eviter la chaleur de rayonnement, p.ex. par tôles thermoconductrices
- Lors de la première mise en service, le dispositif de mesure doit être raccordé environ 2 heures avant l'utilisation. En case de courtes interruptions de l'installation (1-2 semaines), il est recommandé de ne pas déclencher le dispositif de mesure (QGO... et RPO).
- Pendant l'operation d'échauffement, il est possible que la sonde ne mesure pas correctement.

- Ne jamais introduire le QGO20... à l'état froid ou le laisser introduit dans la cheminée quand le brûleur est en marche.
- Lors d'un changement de sonde, verifier le signal de chauffage de celle-ci.
- Les tensions aux bornes Q4 Q5 doivent commuter toutes les 2 s.
- <u>Déconnecter immédiatement</u> en cas de noncommutation des tensions
 - » Echanger le RPO

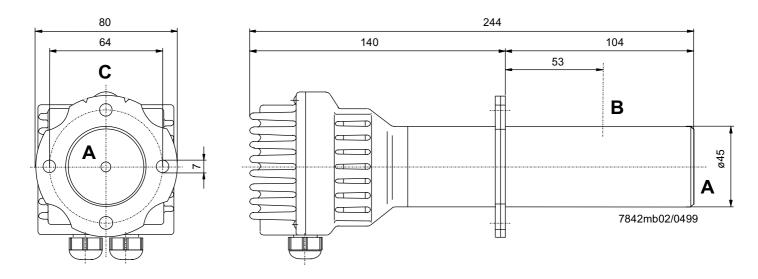


Legende:

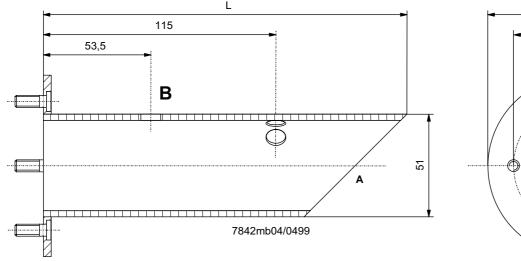
Strömungsrichtung

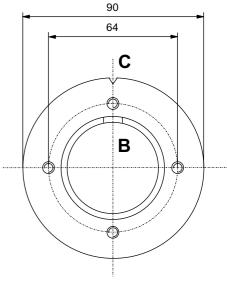
Direction of flow of flue gases

Direction du courant des gaz de fumée



7842mb06/0499


4 319 2366 0 3/4


Maßbilder / Dimensions / Encombrements

QGO20...

AGO20...

L = 180 mm für AGO20.001A

L = 260 mm für AGO20.002A

A = Rauchgaseintritt

B = Rauchgasaustritt

C = Kerbe

D = Flachdichtung (beiliegend)

L = 180 mm for AGO20.001A

L = 260 mm for AGO20.002A

A = Flue gas inlet

B = Flue gas outlet

C = Notch

D = Flat seal (enclosed)

L = 180 mm pour AGO20.001A

L = 260 mm pour AGO20.002A

A = Entrée du gaz de fumée

B = Sortie de gaz de fumée

C = Entaille

D = Joint d'étanchéité plat (inclus)

18.13 Scheda Tecnica

Unità base LMV52...

Condizioni ambientali

Consultare il capitolo Scheda Tecnica!

PI	ı	52	

Consultare II capitolo Scheda Techica !				
Tensione di rete «X89-01»	AC 120 V	AC 230 V		
	-15 % / +10 %	-15 % / +10 %		
Classe di sicurezza	I con parti di classe	II		
	secondo la DIN EN 6	60730-1		
Frequenza di rete	50 / 60 Hz ±6 %			
Consumo di potenza	Ca. 4 VA	Ca. 4 VA		
Grado di protezione	IP54, con contenitor	e chiuso		
Trasformatore AGG5.210				
 Lato principale 	AC 120 V			
- Lato secondario	AC 12 V (3x)			
Trasformatore AGG5.220				
- Lato principale	AC 230 V			
- Lato secondario	AC 12 V (3x)			
Immagazzinamento	DIN EN 60 721-3-1			
Condizioni climatiche	Classe 1K3			
Condizioni meccaniche	Classe 1M2			
Intervallo di temperatura	-20+60 ℃			
Umidità	< 95 % r.h.			
Trasporto	DIN EN 60 721-3-2			
Condizioni climatiche	Classe 2K2			
Condizioni meccaniche	Classe 2M2			
Intervallo di temperatura	-30+70 ℃			
Umidità	< 95 % r.h.			

Esercizio

Umidità

Condizioni climatiche

Condizioni meccaniche

Intervallo di temperatura

La condensazione, la formazione di ghiaccio o l'ingresso di acqua non sono consentite !

DIN EN 60 721-3-3

Classe 3K5

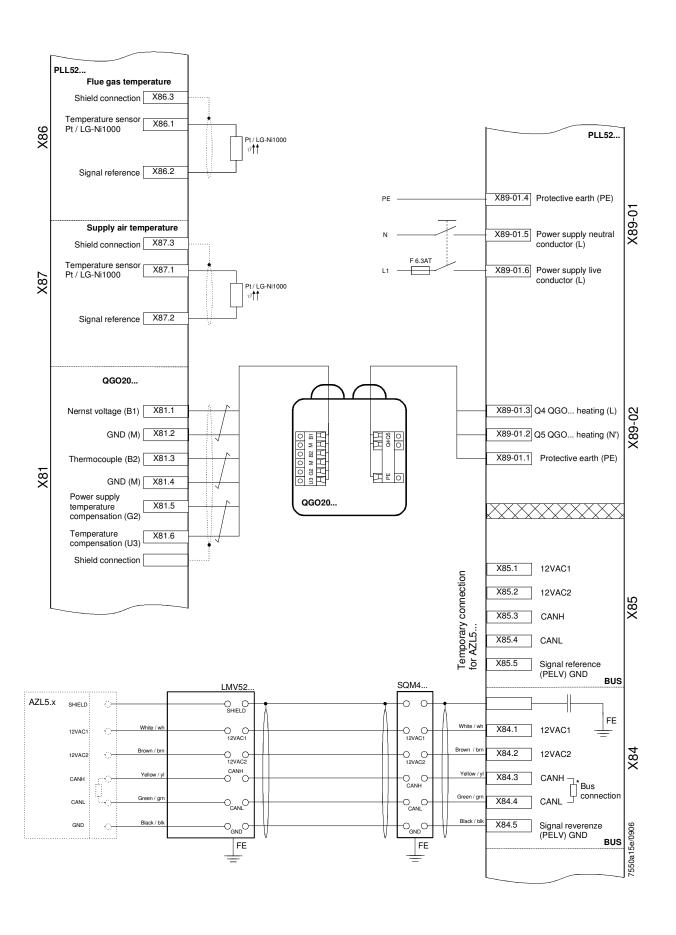
Classe 3M2

-20...+60 °C

< 95 % r.h.

18.14 Valori dei terminali, lunghezze e area della sezione dei cavi

Unità base LMV52...


Consultare il capitolo «Scheda Tecnica / LMV5... ed AZL5...!»

PLL52...

Lunghezze cavi / area della sezione	
Collegamenti elettrici «X89»	Fissare i terminali fino ad un max. 2.5 mm²
Lunghezza del cavo	≤10 m verso il QGO20
Area della sezione	Consultare la descrizione del QGO20
	Doppino telefonico

Ingressi Analogici:

Rivelatore della temperatura dell'aria	Pt1000 / LG-Ni1000
Rivelatore della temperatura del gas	Pt1000 / LG-Ni1000
QGO20	Consultare la Scheda Tecnica N7842
Interfaccia	Bus di comunicazione per LMV52

INVERTER KOSTAL

Collegamento e programmazione per bruciatiori a regolazione elettronica con

LMV2x/3x, LMV5x, ETAMATIC e regolazione INVERTER

Manuale Service ISTRUZIONI TECNICHE

Indice:

Identificazione INVERTER, 3

Comunicazione interfaccia utente (a richiesta), 4

Connessioni elettriche, 5

Varianti di collegamento motore per INVERTER taglia A, B, C, 5

Varianti di collegamento motore per INVERTER taglia D, 6

Collegamento segnali e comandi INVERTER, 7

Collegamenti elettrici e Configurazione parametri, 7

Configurazione ingresso analogico 0-10V / 4-20mA, 8

Configurazione contatto di comando / abilitazione funzionamento start e stop INVERTER, 9

Configurazione parametri start / stop e tipo funzionamento INVERTER, 10

Dati relativi al motore, 11

Variante segnale di uscita per leggere il numero di giri del motore (opzionale), 12

Collegamenti chopper di frenatura, 14

Morsettiera bruciatore con interfaccia INVERTER, 16

INVEOR Mx IVxx PWxx LPxx APxx GHxx DKxx COxx 1
1 2 3 4 5 6 7 8 9 10

	Legenda		Legenda
1	Serie regolatore di velocità: INVEOR	6	Circuito stampato delle applicazioni: AP12 - Standard AP13 - CANopen
2	Luogo di installazione/taglia: integrato sul motore - M, taglia: α, A, B, C, D	7	Comando: DK01 - Standard (senza tastiera a membrana) DK04 - con tastiera a membrana
3	Tensione di ingresso : IV02 - 230 V	8	Involucro : GH10 – dissipatore di calore standard (verniciato nero)
4	Potenza motore raccomandata : kW: 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11,0; 15,0; 18,5; 22,0	9	Versione firmware : CO00 - Standard CO01 - specifico
5	Circuiti stampati : LP01 / LP03 – Standard (senza chopper di frenatura); LP02 / LP04 – Standard (con chopper di frenatura);	10	Generazione dispositivo: 1 – versione attuale

L'apparecchiatura **LMV5x**, attraverso un sensore controlla i giri motore ventilatore e con un segnale in **4÷20mA** lo comanda attraverso l'inverter.

L'apparecchiatura **LMV3x/LMV2x** attraverso un sensore controlla i giri motore ventilatore e con un segnale in **0÷10V** lo comanda attraverso l'inverter.

Generalmente la curva dell'inverter va da 50% a 100% dei giri motore. Questo oltre che a migliorare la regolazione del bruciatore permette anche un risparmio sui consumi del motore ventilatore.

COMUNICAZIONE

Interfaccia Utente (a richiesta)

Il regolatore di velocità può essere messo in funzione nei seguenti modi:

Attenzione: Rivolgersi al costruttore per ordinare il dispositivo più idoneo.

Adattatore USB per PC Tramite il software PC INVERTER PC Display remoto INVEOR MMI: INVEROR MMI è un display portatile con il quale si possono visualizzare e modificare tutti i parametri inverter, manuale disponibile sul sito KOSTAL. Collegamento Bluetooh: usando adattatore Bluetooth si può collegare tramite App da qualsiasi dispositivo scaricare App per Android o OS da App Store/Google play... Adattatore BlueToot serve per creare una connessione Bluetoot con inverter, per modificare e visualizzare i parametri Iverter bisogna utilizzare un dispositivo esterno di interfaccia Tablet o Telefono cellulare, scaricare App per Android o OS da App Store/Google play.

CONNESSIONI ELETTRICHE

Varianti di collegamento motore per Inverter taglia A, B, C

Collegamento a stella o a triangolo per regolatore di velocità integrato sul motore

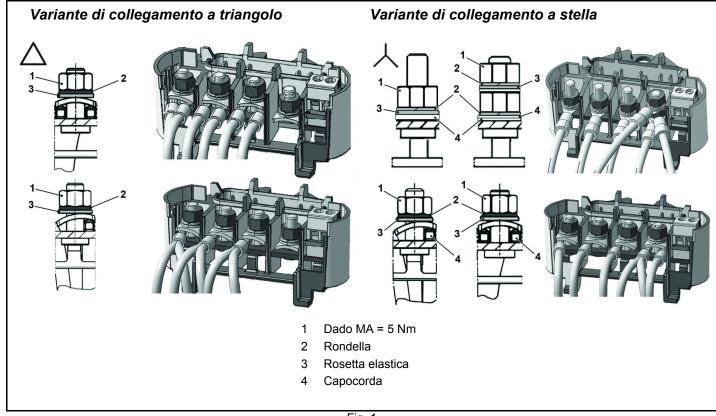
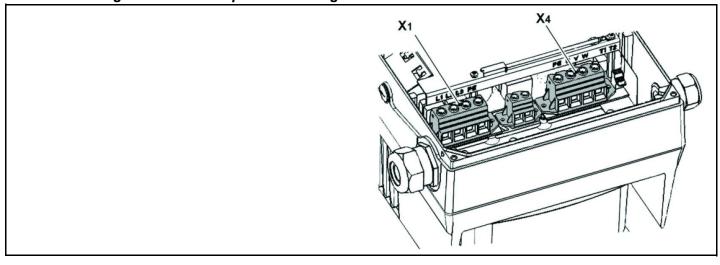
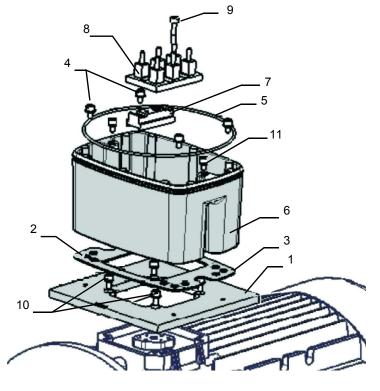



Fig. 1

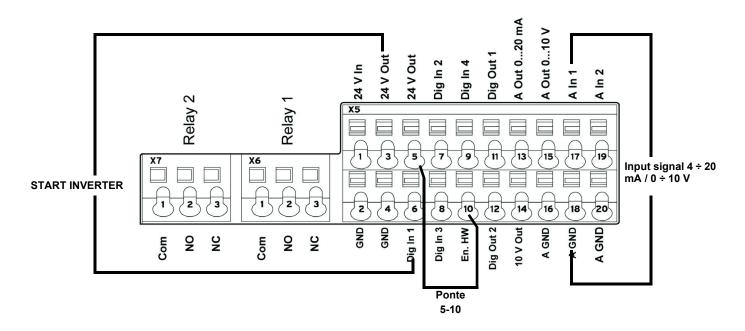
Varianti di collegamento motore per Inverter taglia D


N. morsettiera X1	Denominazione	Assegnazione
1	L1	Fase di rete 1
2	L2	Fase di rete 2
3	L3	Fase di rete 3
4	PE	Conduttore di protezione

Tab. 1 - Assegnazione morsetti X1 - 3 x 400 VAC

N. morsettiera X4	Denominazione	Assegnazione
1	PE	Conduttore di protezione
2	U	Fase di rete 1
3	V	Fase di rete 2
4	W	Fase di rete 3

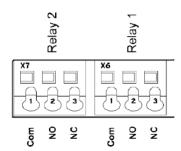
Tab. 2 - Assegnazione morsetti X1 - 3 x 400 VAC


Fig. 2 - Sequenza di assemblaggio: Cassetta di connessione - piastra adattatrice taglia D

Legenda:

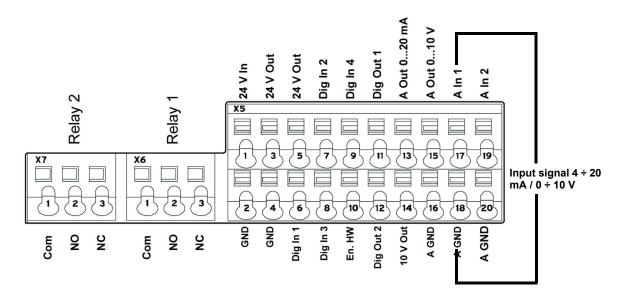
- 1 Opzione piastra adattatrice (variante)
- 2 Fori in corrispondenza del motore
- 3 Guarnizione
- 4 Viti di fissaggio con elementi elastici
- 5 Guarnizione O-ring
- 6 Supporto INVEOR / piastra adattatrice
- 7 Opzione rialzo morsettiera
- 8 Morsettiera originale (non inclusa nella confezione)
- 9 Opzione vite lunga (per pos.7)
- 10 Opzione viti di fissaggio con elementi elastici
- 11 Viti di fissaggio INVEOR/supporto

Collegamento segnali e comandi INVERTER



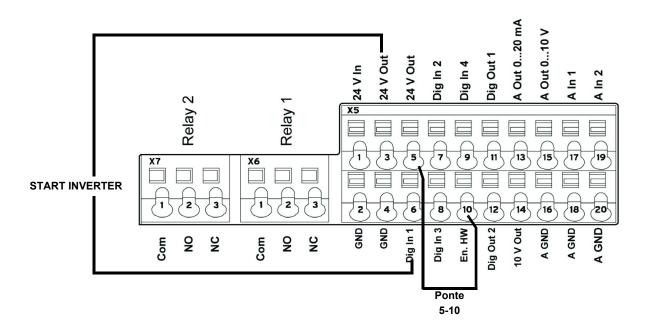
Collegamenti elettrici e Configurazione parametri

Sull' INVERTER sono usati n°2 relè, morsetti X7-1-2-3 e X6-1-2-3 vengono usati per:


LMV2/3x: il relè 1 è usato come contatto di sicurezza sulla serie Safety loop dell'apparecchiatura. Il relè 2 è usato come segnalazione di anomalia sul frontale quadro bruciatore.

LMV5x / ETAMATIC: il relè 1 è usato come contatto di avvenuto comando di partenza motore ventilatore. Il relè 2 è usato come segnalazione di anomalia dell'INVERTER all'apparecchiatura LMV5x / ETAMATIC.

Parame	Parametro		
1.181	Funzione Reset Automatico	Reset automatico delle anomalie L'INVERTER resetta l'anomalia dopo il tempo impostato. Valore impostato = 30 secondi	
1.182	Numero Reset Automatici	Con la Funzione in reset automatico si può limitare il numero massimo di reset automatici. Valore impostato = 0 (numero massimo di reset automatici)	
4.190	Funzioni del relè 1	Selezione del modo di funzionamento del relè 1 Valore impostato = LMV2x/3x= 11 (errore invertito NC) Valore impostato = LMV5x / ETAMATIC = 19 (motore è in funzione NO)	
4.210	Funzioni del relè 2	Selezione del modo di funzionamento del relè 2 Valore impostato = LMV2x/3x= 11 (errore invertito NC) Valore impostato = LMV5x / ETAMATIC = 11 (errore invertito NC)	


Configurazione ingresso analogico 0-10V / 4-20mA

L'ingresso Aln1 può essere configurato come ingresso in tensione o corrente per LMV5-Etamatic viene configurato come ingresso in corrente 4-20mA, per LMV2x/3x come ingresso in tensione 0-10V.

		Definisce il tipo di ingresso se in corrente o in tensione
4.020	Tipo ingresso Al1	1= Ingresso in tensione 0-10V (LMV2x/3x)
	. The magnetic manner	2= Ingresso in corrente 0/4-20mA (LMV5 ETAMATIC)
		Definisce il valore minimo dell'ingresso analogico in percentuale dell'intervallo.
		Esempio:
4.021	Al1 Norm. Minimo	010 V oppure 020 mA = 0 %100 %
		210 V oppure 420 mA = 20 %100 %
		Valore impostato = 20% per LMV2x/3x, LMV5x, ETAMATIC
		Definisce il valore massimo dell'ingresso analogico in percentuale dell'intervallo a 10V
4.022	Al1 massimo	o 20mA
		Valore impostato = 100%
4.023	Al1 tempo di reazione	Definisce la banda morta sul segnale ingresso
		Valore impostato = 1%
		Una variazione dell'ingresso viene preso in considerazione dopo questo tempo se
4.024	Al1 tempo filtro	troppo corto pùo comparire errore rottura filo se segnale 4-20 mA va a 0 per un breve periodo
		Valore impostato = 4 secondi
		Specifica se l'ingresso è 0 = analogico / 1 = ingresso digitale
4.030	Al1 funzione Ingresso	Valore impostato = 0 analogico
4.000	Ald Haif Salina in the salina and d	Definisce l'unità di misura dell'ingresso 1
4.033	Al1 Unità di misura ingresso 1	Valore impostato = 0 (%)
4.034	Al1 Inizio scala	Definisce inizio scala dell'ingresso 1
4.034	ATT ITIIZIO SCAIA	Valore impostato = 0 (%)
4.035	Al1 Fine scala	Definisce inizio scala dell'ingresso 1
4.033	All I lile Scala	Valore impostato = 100 (%)
		Definisce il tempo dopo il quale compare anomalia se ingresso Al1 si interrompe (rot-
4.036	Al1 tempo di rottura filo 5s	tura filo).
		Valore impostato = 5 secondi
4.037	Al1 Inversione	Inverte il segnale dell'ingresso 1
		Valore impostato = 0 (Inattivo)

Configurazione contatto di comando / abilitazione funzionamento start e stop INVERTER

Morsetto	
X5-3 (24V Out) X5-6 (Digit In1)	se porto i 24V al morsetto X5-6 abilito il funzionamento INVERTER e il contatto che lo fa partire/spegnere. Su LMV2/3x X5-3 (24V Out) alimenta anche encoder giri motore.
X5-5 (24V Out) collegato con X5-10 (En.HW)	serve per dare abilitazione alla rampa di frenatura xxxx

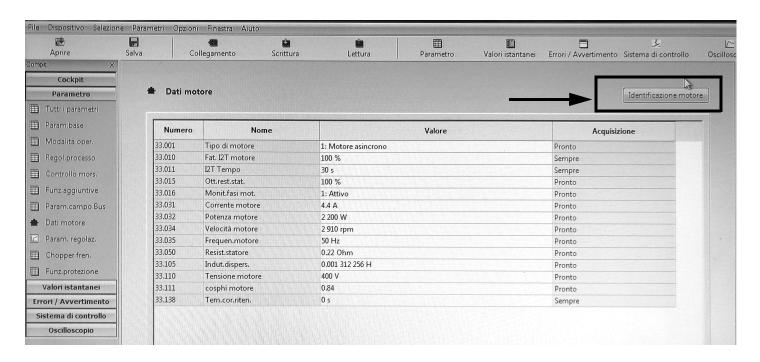
Configurazione parametri start / stop e tipo funzionamento INVERTER

Parame	tro	
1.020	Frequenza min. Hz	Frequenza ingresso al minimo in Hz Valore impostato = 0 Hz (LMV2x-3x / LMV5x) Valore impostato = > 35 Hz (ETAMATIC)
1.021	Frequenza max. Hz	Frequenza ingresso al massimo in Hz Valore impostato = 51,5 Hz (LMV2x-3x / LMV5x) Valore impostato = 50 Hz (ETAMATIC)
1.050	Rampa 1 Tempo di Frenatura 1	Tempo frenatura allo spegnimento per arrivare alla velocità di 0 Hz dopo che il contatto di start e stop si è aperto (non usato) Valore impostato = 10 secondi
1.051	Rampa 1 Tempo di Accelerazione 1	Il tempo di accelerazione 1 è il tempo necessario al regolatore di velocità per accelerare da 0 Hz alla frequenza massima (non usato) Valore impostato = 10 secondi
1.052	Rampa 2 Tempo di Frenatura 2	Tempo frenatura allo spegnimento per arrivare alla velocità di 0 Hz dopo che il contatto di start e stop si è aperto Valore impostato = 10 secondi
1.053	Rampa 2 Tempo di Accelerazione 2	Il tempo di accelerazione 2 è il tempo necessario al regolatore di velocità per accelerare da 0 Hz alla frequenza massima. Valore impostato = 10 secondi
1.054	Seleziona Rampa usata	Ingresso digitale 1(dig In1 / X5-6) seleziona la rampa utilizzata Valore impostato = 1 (parametri 1.052 e 1.053)
1.088	Arresto rapido	non usato ma impostare Valore impostato = 10 secondi
1.100	Modalità funzione	Modalità di regolazione della frequenza: definisce il tipo di funzionamento dell'INVER- TER, nel nostro caso è sempre regolazione di frequenza (0) Valore impostato = 0
1.130	Setpoint di riferimento	Determina la sorgente dalla quale leggere il valore di riferimento Nel nostro caso è sempre ingresso analogico Al1 Valore impostato = 1 (ingresso analogico 1)
1.131	Abilitazione Software	A seconda della modifica effettuata, il motore può avviarsi immediatamente. Selezione della sorgente per l'abilitazione della regolazione. Valore impostato = 0
1.132	Protezione Start-Up	Selezione del comportamento in risposta all'abilitazione software. Valore impostato = 1 (Avvio soltanto con fronte di salita all'ingresso dell'abilitazione della regolazione)
1.150	Senso di Rotazione motore	Non cambiare questo parametro, per invertire il senso di rotazione, invertire 2 dei 3 fili del cablaggio INVERTER / MOTORE, così facendo gli INVERTER Valore impostato = 1 soltanto avanti / rotazione oraria (non sono possibili modifiche del senso di rotazione)

Dati relativi al motore

I dati relativi al motore dipendono dal tipo di motore usato. Fare riferimento ai dati riportati nella targa del motore.

Seguire le seguenti operazioni:


- inserire i dati relativi al motore,
- attivare la funzione di riconoscimento motore,
- se la funzione termina con successo inserire i restanti parametri.

Durante la fase di riconoscimento, INVERTER misura alcuni parametri e modifica alcuni settaggi.

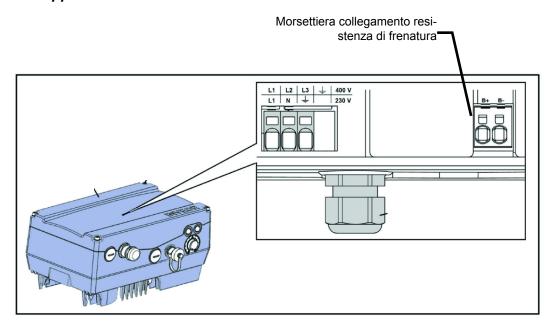
N.B. Ad ogni avvio del programma di riconoscimento, verificare nuovamente tutti i parametri di questo manuale.

Parame	Parametro			
33.001	Tipo Motore	Selezione del tipo di motore Valore impostato = 1 (Motore asincrono)		
33.010	Fattore I ² t motore	Non usato, solo per encoder Valore impostato = 100%		
33.011	Tempo I ² t	Non usato, solo per encoder Valore impostato = 30 secondi		
33.015	Ottimizzazione R	Se necessario, con questo parametro si può ottimizzare il comportamento di avvio. Non usato Valore impostato = 100%		
33.016	Controllo fasi motore	Il controllo errore "Collegamento motore interrotto" (errore 45) può essere attivato/ disattivato con questo parametro. Valore impostato = 1 (controllo attivo)		
33.031	Corrente motore	Corrente massima motore Valore impostato = valore corrente di targa motore in Ampere		
33.032	Potenza motore	Potenza motore all'albero Valore impostato = valore potenza di targa motore in Watt		
33.034	Numero di giri del motore	Numero di giri del motore Valore impostato = numero di giri di targa motore in rpm		
33.035	Frequenza motore	Frequenza nominale del motore Valore impostato = frequenza di targa del motore in Hz		
33.050	Resistenza Statore	Viene riconosciuta da INVERTER Valore impostato = rilevato automaticamente, valore in Ohm		
33.105	Induttanza di dispersione	Viene riconosciuta da INVERTER Valore impostato = rilevato automaticamente, valore in Henry		
33.110	Tensione nominale motore	Tensione nominale del motore Valore impostato = 400V		
33.111	Cos phi motore	Dato su targa dati motore Valore impostato = 0,xx		
33.138	Tempo corrente di mantenimento	Serve per fermare il motore!! dopo la frenatura viene mantenuta corrente continua per un certo tempo, assicurarsi che non ci siano surriscaldamenti in questa fase max 5 s suggerito Valore impostato = 0 secondi		

Attivare la funzione di "Identificazione motore" e seguire le istruzioni proposte da INVERTER, successivamente modificare i parametri sottodescritti. L'immagine mostra la schermata del software sul PC.

Parame	tro		
34.010	Tipo di regolazione	Motore asincrono open-loop Valore impostato = 100 (motore asincrono open-loop)	
34.020	Ripartenza al volo	volo Valore impostato = 1 (attivato)	
34.021	Tempo ripartenza al volo	Viene calcolato da Inverter Valore impostato = valore calcolato da INVERTER in ms	
34.090	Regolazione velocità K _P	Viene calcolato da inverter durante riconoscimento motore, reimpostarlo a 2000 dopo aver fatto riconoscimento motore Valore impostato = 2000 mA/rad/sec	
34.091	Regolazione velocità Tn	Viene calcolato da inverter durante riconoscimento motore, reimpostarlo a 7,5 s dopo aver fatto riconoscimento motore Valore impostato = 7,5 sec	
34.110	Compensazione scorrimento	Se a 1 è attiva la funzione Se a 0 il motore si comporta come se fosse collegato alla rete. Se la compensazione è attiva, il sistema allinea la frequenza di statore con il rotore, di conseguenza i giri reali del motore aumentano e si portano in linea con i giri teorici di targa dati motore, Il motore viene alimentato con la stessa tensione e frequenza, la corrente però aumenta e i giri si portano ai giri di targa. Valore impostato = 1 (scorrimento compensato)	

Variante segnale di uscita per leggere il numero di giri del motore (opzionale)


Per avere un'uscita analogica 4-20 mA che indica il numero di giri del motore ai morsetti: X5-13 (Aout 0-20 mA) e X5-16 (A GND), impostare i parametri sotto indicati:

Parametro			
4.100	Uscita analogica AO1	Selezione opzioni uscita analogica Nel nostro caso per avere un'uscita proporzionale al numero di giri, impostare 19. Valore impostato = 19 (valore effettivo numero di giri)	
4.101	Valore minimo uscita analogica AO1	Segnale in uscita a 0-20 mA Per avere un segnale in 4-20 mA con (4 mA = 0 giri motore) seguire l'esempio: esempio: se il motore gira al massimo a 2900 rpm si calcola: 2900 / 20 x 4 = 580 che è il valore in negativo che corrisponde a 0 mA dai cui partire. Per cui risulterà: 0 mA = - 580,	
		20 mA = 2900 Valore impostato = - xxx (nell'esempio -580)	
4.102	Valore massimo uscita analogica AO1	Valore massimo giri motore per 20 mA Valore impostato = xxxx (nell'esempio sopra 2900)	

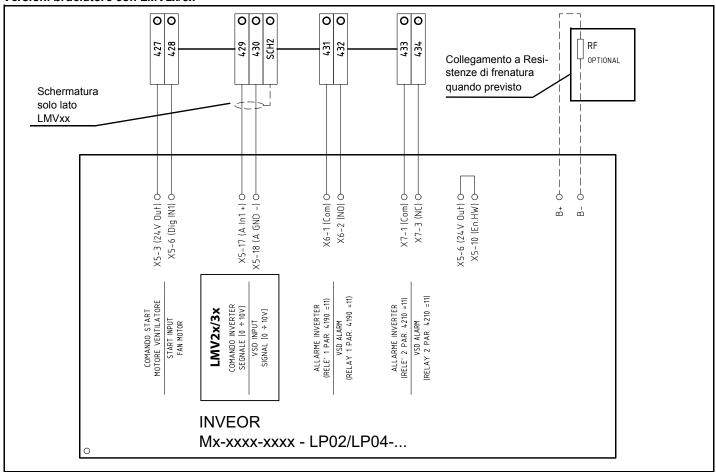
NOTA 1	Se il sistema entra in pendolazione con LMV / ETAMATIC agire sui parametri 34.090 e 34.091 aumentandoli, in particolare sul parametro 34.090 , procedere a step di 100mA/rad/sec.
NOTA 2	Con LMV 2x/3x con controllo INVERTER, l'apparecchiatura controlla i giri in standby con il param. 653 . Se dopo lo spegnimento del ventilatore, l'apparecchiatura LMV 2x/3x vede che il motore continua a girare, compare errore 83 diagnostica 32 . Questo si verifica se ci sono grandi inerzie della ventola (es. su bruciatori con pale avanti molto pesanti), quindi disattivare sempre il parametro 653 impostandolo a 0 .
NOTA 3	Con LMV 2x/3x il segnale 0-10V per il comando giri motore durante la standardizzazione si porta a circa 9,7 V e vengono memorizzati i giri del motore ventilatore. Sul manuale LMV è scritto di impostare INVERTER con Hz max = 52,5 Durante la standardizzazione INVERTER viene pilotato a circa 51 ÷ 51,5 Hz e può succedere che si vada fuori assorbimento con il motore. Per tale motivo impostare sull'INVERTER Hz max = 51,5 Durante la standardizzazione INVERTER arriverà a 50Hz e si ridurrà il problema del fuori assorbimento.
NOTA 4	Sull'INVERTER se viene visualizzato l' <u>errore rottura cavo analogico</u> e il segnale 4-20 mA dell'Inverter continua ad oscillare tra 1 ÷ 6 mA, non sempre vuol dire che l'apparechiatura LMV 2x/3x o ETAMATIC è guasta, potrebbe trattarsi del firmware vecchio dell'INVERTER e quindi andrebbe aggiornato. Nel caso contattare il Service.

ERRORI/ PROBLEMI SOLUZIONI		
Parametro 36.020	se compare errore 36	Problemi rilevati alla rete di alimentazione. Impostando questo parametro a 0, l'INVERTER non controlla piu la rete e il messaggio di errore scompare. E' consigliato lasciare il parametro a 1.
Parametro 33.105	se durante il funzionamento la tensione di rete scende	Calando la tensione di rete, l'INVERTER fa diminuisce i giri motore. Per ridurre questa variazione impostare il parametro a 0, così si dovrebbe risolvere il problema.

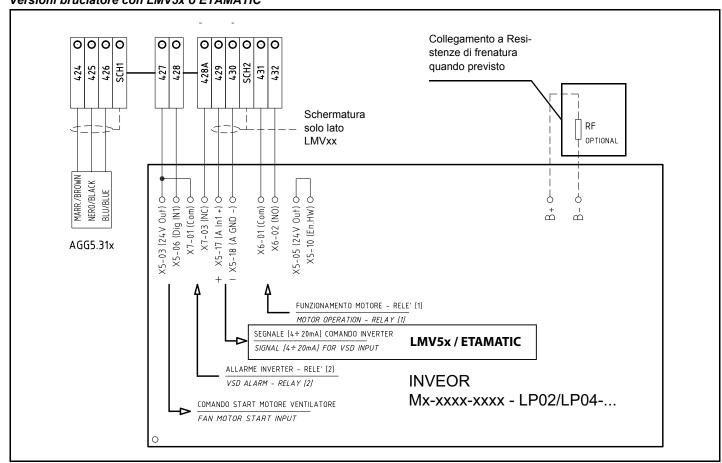
Collegamenti chopper di frenatura

Collegamenti chopper di frenatura

N. morsettiera	Denominazione	Assegnazione
1	B+	Collegamento resistenza di frenatura (+)
2	B-	Collegamento resistenza di frenatura (-)


Assegnazione opzionale chopper di frenatura

Parametro	
Resistenza di frenatura	Attivo o Non attivo



Morsettiera bruciatore con interfaccia INVERTER

Versioni bruciatore con LMV2x/3x

Versioni bruciatore con LMV5x o ETAMATIC

C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it