KTP1030 KTP1050 KTP1080 Progressive and fully-modulating gas - heavy oil dual fuel burners MANUAL OF INSTALLATION - USE - MAINTENANCE **CIB** UNIGAS BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### **WARNINGS** THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE.. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made har- - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - For all the units that have been modified or have options fitted then original accessory equipment only shall be used. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. ## 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used. - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains. - b) Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### **Special warnings** - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firehox - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance; - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - e make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of repeated burner shut-downs, do not continue re-setting the unit manually. Contact qualified personnel to take care of such defects. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. ## 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED ## 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - © do not touch the unit with wet or damp parts of the body and/or with bare feet; - © do not pull electric cables; - © do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - © do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - the burner firing system, to make sure that it is supplied for the designed fuel type; - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room: - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. #### **DIRECTIVES AND STANDARDS** #### Gas burners ### **European directives:** - Directive 90/396/CEE Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/CEE on electromagnetic compatibility #### Harmonised standards: - -UNI EN 676 (Gas Burners; - -CEI EN
60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### Light oil burners #### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/CEE on electromagnetic compatibility #### Harmonised standards: - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Heavy oil burners #### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/CEE on electromagnetic compatibility #### Harmonised standards: - -CEI EN 60335-1 Household and similar electrical appliances SafetyPart 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Gas - Light oil burners #### **European directives:** - Directive 90/396/CEE Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/CEE on electromagnetic compatibility ## Harmonised standards : - -UNI EN 676 Gas Burners - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods ## Gas - Heavy oil burners #### **European directives:** - Directive 90/396/CEE Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/CEE on electromagnetic compatibility #### Harmonised standards: - -UNI EN 676 (Gas Burners; - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### **PART I: INSTALLATION MANUAL** #### **GENERAL FEATURES** This series of industrial burners is designed for all those applications that require big-sized air fans or air-flue heat exchangers to be installed in sound-proof areas to reduce noise. They can be provided with built-in or separately-mounted control panel (console or wall-mounted). - 1 Adjusting cam - 2 Actuator - 3 Bellows - 4 Air inlet flange - 5 Junction box - 6 Combustion head adjusting screw - 7 Gas filter - 8 Gas valves group - 9 Cover - 10 Ignitor gas train - 11 Combustion head-blast tube group - 12 Burner flange **Gas operation:** the gas coming from the supply line, passes through the valves group provided with filter and stabiliser. This one forces the pressure in the utilisation limits. The actuator (2) moves proportionally the air damper and the gas butterfly valve It drives an adjusting cam (13) with variable shape. This one allows the optimisation of the gas flue values, as to get an efficient combustion. **Heavy oil operation:** the fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame. In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle. The pump main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure governors: one for the high and one for low pressure (in double-stage systems with one nozzle). The adjustable combustion head can improve the burner performance. The combustion head determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber). Note: the picture shows one of the possible installations. Fan, electrical panel and pumping unit can be placed according to the customer needs. #### How to choose the burner To check if the burner is suitable for the boiler to which it must be installled, the following parameters are needed: - fue - furnace input, in kW or kcal/h (kW = kcal/h / 860); - boiler type; - combustione head type (reverse flame or three phase)' - temperature or pressure of the thermal carrier fluid - Comburent air temperature - Air duct positioning - Pressure in the combustion chamber - Elevation (altitude) of burner installation - Gas train (only for gas burners) - Pumping unit (only for light-oil or heavy-oil burners) - Air fan - Bilt-in or separated control panel - backpressure (data are available on the boiler's ID plate or in the user's manual). Burners provided with built-in control panel are designed for IP40 index of protection. For other values of IP, please contact the manifacturer Technical Dpt. #### Data requested: - furnace input; - air temperature - altitude - generator pressure or temperature #### Example: furnace input: 9600kW air temperature: 15°C altitude: 0m Fig. 2 See the diagram in Fig. 2, as to find the burners that better suite the power range requested in the exmple (9600kW). Once the models are founded out, the choice regards technical and economical features. Technical features can be summarised in a higher modulation ratio (fewer start-ups, less consumption, fewer swigings in the generator temperature and pressure values. ## Checking the proper gas train size To check the proper gas train size, it is necessary to the available gas pressure value upstream the burner's gas valve. Then subtract the backpressure. The result is called p_{gas} . Draw a vertical line matching the furnace input value (600kW, in the example), quoted on the x-axis, as far as intercepiting the network pressure curve, according to the installed gas train (DN65, in the example). From the interception point, draw an horizontal line as far as matching, on the y-axis, the value of pressure necessary to get the requested furnace input. This value must be lower or equal to the p_{gas} value, calculated before. Fig. 3 ## **Burner model identification** Burners are identified by burner type and model. Burner model identification is described as follows. | Type KTP1030 | Model | MN. | PR. | S. | *. | A. | 1. | 80 | | | | |---------------------|---------------|-----|-----|-----|-----------|---------|------------------|----------------|-------------|----------------|-----------------| | (1) | | (2) | (3) | (4) | (5) | (6) | (7) | (8) | | | | | (1) BURNER TYPE | | | | ŀ | (TP10 | 30 - K | TP105 | 0 - TP1080 | | | | | (2) FUEL | | | | N | /ID - D | ual fue | el gas- | heavy oil <= 5 | 50° E @ 50 | | <= 7° E @ 50° C | | (3) OPERATION (Ava | ilable versio | ns) | | F | R - Pr | ogress | sive | MD | - Fully mo | odulating | | | (4) BLAST TUBE | | | | 5 | S - Star | ndard | | | | | | | (5) DESTINATION CO | DUNTRY | | | * | - see | data p | late | | | | | | (6) BURNER VERSIC | N | | | P | - Star | ndard | | Y - | Special | | | | (7) EQUIPMENT | | | | 1 | = 2 va | alves + | gas | oroving syster | n | | | | | | | | 8 | s = 2 va | alves + | gas _l | oroving syster | n + high ga | as pressure sw | vitch | | (8) GAS CONNECTIO | N | | | 8 | 10 = 01 | 180 | | 100 = DN100 | | 125 = DN125 | | ## Technical specifications | BURNER TYPE | | KTP1030 | KTP1050 | TP1080 | | |-------------------------|-------------------------------|--------------|--------------------|------------|--| | Output | min - max kW | 2550-13300 | 3500-15500 | 4500-19000 | | | Fuel | | Na | atural gasHeavy o | il - | | | Category | | (5 | see next paragrap | h) | | | Gas rate | minmax. (Stm ³ /h) | 270-1376 | 370-1641 | 476-2010 | | | Viscosity | °E, 50 °C | | 50 | | | | Heavy oil rate | min max. kg/h | 227 - 1158 | 312 - 1381 | 401- 1693 | | | Power supply | | | 400V 3N~ 50Hz | | | | Pump motor | kW | 5.5 | 5.5 | 5.5 | | | Pre-heating resistors | kW | 24+24 | 24+24 | 24+24 | | | Total power consumption | kW | | 54 | | | | Protection | | | IP40 | | | | Operation | | Progre | essive - Fully mod | ulating | | | Pressure | | | (see Note 2) | | | | Gas train 80 | ØValves - Connection | | 80 / DN80 | | | | Gas train 100 | ØValves - Connection | | 100 / DN100 | | | | Gas train 125 | ØValves - Connection | | 125 / DN125 | | | | Weight | kg | | 300 | | | | Operating temperature | °C | -10 ÷ +50 | | | | | Storage Temperature | °C | -20 ÷ +60 | | | | | Working service* | | Internittent | | | | | Note1: | all gas flow rates are referred to Stm³/h (1013 mbar absolute pressure, 15 °C temperature) and are valid for G20 natu- | |--------|--| | | ral gas (net calorific value H _i = 34.02 MJ/Stm³). | | Note2: | Maximum gas pressure = 500mbar (with Siemens VGD gas valves). | | | Minimum gas pressure = see gas curves. | *NOTE ON THE BURNER WORKING SERVICE: for safety reasons, one controlled shutdown must be performed every 24 hours of continuous operation. ## Country and usefulness gas categories | GAS
CATEGORY | | COUNTRY |---------------------|----|---------| | I _{2H} | AT | ES | GR | SE | FI | IE | HU | IS | NO | CZ | DK | GB |
IT | PT | CY | EE | LV | SI | MT | SK | BG | LT | RO | TR | СН | | I _{2E} | LU | PL | | | - | - | | | - | - | - | - | | - | | - | | - | - | - | - | - | | | - | | I _{2E(R)B} | BE | - | | I _{2L} | NL | - | - | | - | - | - | - | - | - | - | - | - | - | - | - | | - | - | - | - | - | | | - | | I _{2ELL} | DE | - | | I _{2Er} | FR | - | ## Overall dimensions (mm)Overall dimensions (mm) **NOTE:** the overall dimensions are referred to burners provided with Siemens VGD valves. | | DN | Α | В | С | CC | D | E | F | G | Н | J | JJ | K | KK | L | M | N | 0 | 00 | Р | Q | R | RR | S | SS | TT | U | ٧ | W | Υ | Z | |---------|-----|------|-----|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|----|-----|------|-----|------|-----|-----| | KTP1030 | 80 | 1864 | 544 | 1320 | 348 | 1898 | 1301 | 597 | 464 | 504 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 936 | 200 | 265 | 736 | 80 | 587 | 1092 | 322 | 1175 | 372 | 330 | | KTP1030 | 100 | 1864 | 544 | 1320 | 348 | 1914 | 1317 | 597 | 464 | 504 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 842 | 200 | 265 | 642 | 80 | 587 | 1092 | 382 | 1175 | 372 | 330 | | KTP1050 | 80 | 1864 | 544 | 1320 | 348 | 1898 | 1301 | 597 | 489 | 539 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 936 | 200 | 265 | 736 | 80 | 587 | 1092 | 322 | 1175 | 408 | 330 | | KTP1050 | 100 | 1864 | 544 | 1320 | 348 | 1914 | 1317 | 597 | 489 | 539 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 842 | 200 | 265 | 642 | 80 | 587 | 1092 | 382 | 1175 | 408 | 330 | | KTP1080 | 100 | 1864 | 544 | 1320 | 348 | 1914 | 1317 | 597 | 514 | 564 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 842 | 200 | 265 | 642 | 80 | 587 | 1092 | 382 | 1175 | 408 | 330 | | KTP1080 | 125 | 1864 | 544 | 1320 | 348 | 1946 | 1349 | 597 | 514 | 564 | 710 | 185 | 660 | 660 | 845 | M16 | 651 | 460 | 1000 | 460 | 954 | 200 | 265 | 754 | 80 | 587 | 1192 | 480 | 1175 | 408 | 330 | ## Performance curves ## KTP1030 ## KTP1050 ## KTP1080 Performance range To get the input in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: 1013mbar, 15°C. ## Pressure in the network / gas rate curves ## KTP1030 GAS PRESSURE IN THE NETWORK mbar Gas rate Stm³/h ## KTP1050 GAS PRESSURE IN THE NETWORK mbar Gas rate Stm³/h ## KTP1080 GAS PRESSURE IN THE NETWORK mbar Gas rate Stm³/h #### **INSTALLATION** ## **Packing** The burners are despatched in wodden crates whose dimensions are: KTP1030 - KTP1050: 2180mm x 1180mm x 1210mm (L x P x H) **KTP1080:** 2180mm x 1580mm x 1560mm (L x P x H) Packing cases of this type are affected by humidity and are not suitable for stacking. In each packing case, find: - burner with gas train detached; - 1 gasket to be inserted between the burner and the boiler; - 2 flexible oil pipes; - 1 oil filter; - 1 envelope containing this manual To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials. ## Handling the burner ATTENTION! Handling operations must be performed by trained personnel specialised on handling loads. If these operations are not carried out correctly, the residual risk for the machine to overturn and fall down remains. To handle the machine, use means suitable to handle requested loads (see par. "Technical specifications")." The burner is provided with eye-bolts for lifting. #### Fitting the burner to the boiler - 1 To perform the installation, it is necessary to drill the boiler door as described on paragraph "Overall dimensions"; - 2 screw the studbolts (5) on the boiler door, according to the drilling plate (see paragraph "Overall dimensions"); - 3 move the burner towards the boiler: lift the burner by means of the eyebolts placed on its top side; - 4 place the flange to the boiler and a gasket between them; - 5 fit the glass fibre plait; - 6 replace the blast tube: before fastening completely the screws, avoid any misalignement between the blast tube axis and the combustion head axis; - 7 install the burner to the boiler; - 8 fix the burner to the stud bolts, by means of the fixing nuts, according to Fig. 4. - 9 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). ## Fan installation Pay attention when designing the air duct: dimensioning must be performed according to the flow rate, the temperature, the distance between the fan and the burner and according to the fan features as well. **ATTENTION!** The bellows unit provided is made of canvas and is provided with blocking spacers to avoid breaking it during installation: **first** place the bellows unit between flanges, **then** remove the spacers. Canvas has to be stretched after the installation, but not stressed. ## Matching the burner to the boiler To correctly match the burner to the boiler verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube length follow the instructions of the boiler manufacturer. In absence of these consider the following: - Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than 100 mm into the combustion chamber. - Pressurised boilers with flame reversal: in this case the blast tube must penetrate at least 50 100 mm into combustion chamber in respect to the tube bundle plate. The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards. #### **GAS TRAIN CONNECTIONS** The diagrams show the components of the gas trai included in the delivery and which must be fitted by the installer. The diagrams are in compliance with the current laws. ATTENTION: BEFORE EXECUTING THE CONNECTIONS TO THE GAS PIPE NETWORK, BE SURE THAT THE MANUAL CUTOFF VALVES ARE CLOSED. Gas train - 1 (DN80/100): Gas train with valves group VGD40 with built-in gas pressure governor + VPS504 gas proving system **Gas train 2** (DN80/100): Gas train with valves group MBC 1900/3100/5000SE (2 valves + gas filter + pressure governor + pressure switch) + VPS504 gas proving system **Gas train - 3**: Gas train with valves group VGD 40 with built-in gas pressure governor + gas leakage pressure switch (PGCP) for Siemens LDU/LMV burner control #### Key - 1 Burner - 2 Butterfly valve - 3 Gas proving system - 4 Low gas pressure switch - 5 High gas pressure switch (option) - 6 Gas filter - 7 Bellow joint - 8 Manual cutoff valve - 11 VGD Valves group - 14 Pressure governor with filter - 15 Ignitor gas valve - 19 MBC Valves group (DN80/100) ## Connecting the pilot gas train The pilot gas train is already installed to the burner, the following connections must be executed: - connection from the filter with stabiliser to the gas supply network - connection from the valve to the main gas train, by means of the pipe provided with the burner. Fig. 5 - pipe port (3) for connecting the pilot gas train to the valves group of the main gas train ## Assembling the gas train To assemble the main gas train, proceed as follows: Fig. 6 - Example of gas train 1) in case of flanged joints: place a gasket (no. 1A..1E - Fig. 6) between the elements 2) fasten all the items by means of screws, according to the shcemes shown before, obesrving the mounting direction for each item. **NOTE:** the bellow joint, the manual valve and the gaskets are not part of the standard supply. **ATTENTION:** once the gas train is mounted according to the diagram on Fig. 6, the gas proving test mus be performed, according to the procedure set by the laws in force. The procedures of installation fo the gas valves are showed in the next paragraphs, according to the gas train used: • flanged gas trains with Multibloc Dungs MBC..SE 1900-3100-5000 or Siemens VGD40.. (flanged valves group) ## Siemens VGD20.. and VGD40.. gas valves - with SKP2.. (pressure stabiliser) - When mounting the VGD.. double gas valve, two flanges are required; - to prevent cuttings from falling inside the valve, first fit the flanges to the piping and then clean the associated parts; - install the valve; - the direction of gas flow must be in accordance with the direction of the arrow on the valve body; - ensure that the bolts on the flanges are properly tightened; - ensure that the connections with all components are tight; - make certain that the O-rings and gaskets between the flanges and the double gas valve are fitted. - Connect the reference gas pipe (**TP** in figure), to the gas pressure nipples placed on the gas pipe, downstream the gas valves: gas pressure must be measured at a distance that must be at least 5 times the pipe size. Leave the blowhole free (**SA** in figure). Should the spring fitted not permit satisfactory regulation, ask one of our service centres for a suitable replacement. Δ WARNING: removing the four screws BS causes the device to be unserviceable! ## MULTIBLOC DUNGS MBC1900-3100-5000SE (Flanged valves group) #### Mounting - 1. Insert setscrews A - 2. Insert seals - 3. Insert setscrews B - 4. Tighten setscrews A + B. Ensure correct seating of the seal! - 6. After installation, perform leakage and functional test. - 7. Disassembly in reverse order. ## Pressure adjusting range The pressure adjusting range, upstream the gas valves group, changes according to the spring provided with the valve group. **DUNGS MBC..SE** Siemens SKP actuator ##
Keys 1 spring 2 cap ## **DUNGS MBC valves:** | Performance range (mbar) | 4 - 20 | 20 - 40 | 40 - 80 | 80 - 150 | |--------------------------|--------|---------|---------|----------| | Spring colour | - | ed | black | green | ## Siemens VGD valves with SKP actuator: | Performance range (mbar) | 0 - 22 | 15 - 120 | 100 - 250 | |--------------------------|---------|----------|-----------| | Spring colour | neutral | yellow | red | Once the train is installed, connect electrically all its elements: gas valves group, pressure switches, gas proving system. **ATTENTION:** once the gas train is mounted according to the diagram on Fig. 6, the gas proving test mus be performed, according to the procedure set by the laws in force. ## Hydraulic system The pumps that are used can be installed both into single-pipe and double-pipe systems. **Single-pipe system:** a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass plug, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. **Double-pipe system:** as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pump's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-ble-eding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-pipe systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug **G** (as for ccw-rotation-referring to the pump shaft). Caution: Changing the direction of rotation, all connections on top and side are reversed. ## **Bleed** Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system. ### About the use of fuel pumps - Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result. - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream of the fuel unit. #### Suntec T pump | Viscosity | 4 - 800 cSt | |--------------------------|-----------------------------| | Oil temperature | 0 - 140 °C | | Minimum suction pressure | - 0,45bar to prevent gasing | | Maximum suction pressure | 5 bar | | Rated speed | 3600 rpm max. | | Vau | · | #### Key - 1 To pressure adjusting valve G3/4 - 2 Pressure/vacuum gauge port to measure the inlet pressure/vacuum G1/4 - 3 Pressure gauge port G1/4 - 4 Inlet G3/4 ## Suntec TV Pressure governor #### Pressure adjustment Remove cap-nut 1 and the gasket 2, unscrew the lock nut 4. To increase pressure, twist adjusting screw 3 clockwise. To decrease the pressure, twist screw counterclockwise. Tight the lock nut 4, refit the gasket 2 and the cap nut 1. ## Key - 1 Cap nut - 2 Gasket - 3 Adjusting screw - 4 Lock nut - 5 Gasket Fig. 11 ## Assembling the light oil flexible hoses To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided: - 1 remove the closing nuts **A** and **R** on the inlet and return connections of the pump; - 2 screw the rotating nut of the two flexible hoses on the pump **being careful to avoid exchanging the inlet and return lines**: see the arrows marked on the pump that show the inlet and the return (see prevoius paragraph). ## Connections to the oil gun - 1 Inlet (C) - 2 Return (B) - 3 Lance opening (A) - 4 Heating wire (only for high density oil burners) - 5 Cartdrige-type heater (only for Ecoden or heavy oil burners) #### Gun with the oil nozzle inside ## Connecting the burner to the oil pumping unit Follow the scheme in the picture below to connect the burner to the oil pumping unit. The pump sends the oil coming from the tank to the burner. The pressure governor makes the oil reach the nozzle at the required pressure, while the excess of oil goes back to the tank. To change the delivery pressure act on the adjusting screw of the delivery pressure governor. #### Guidelines for the appropriate use of heavy oil For a correct operation of heavy oil or dual fuel burners (gas - heavy oil), the supply plant must be correctly build and it must ensure two fundamental conditions: - CONSTANT PRESSURE - CONSTANT TEMPERATURE Here below we explain why it is essential to heat the oil and keep it under pressure. Consider, as an example, a fuel oil with the following properties: - Fuel oil BTZ (low sulphur rate) - Viscosity from 3 to 5 °E at 50 °C Such a fuel (see curve n. 3 in Fig. 12), at a temperature of 20° C, changes its viscosity from 3 - 5 °E to 15-20 °E and, at 10° C the viscosity exceeds 40° E. In such conditions, obviously, the fuel couldn't be carried from the tank to the burner. Once the oil has been heated, it can't be sucked by the burner pump, unless you keep it in pressure. In fact, as showed on drawing in Fig. 14, the pump manufacturer states that the minimum feeding pressure must be 1 bar at 40 °C temperature. Should you try to suck the heated oil directly from the tank, you could get cavitation. The burner pump would constantly loose pressure as long as you heat the fuel. In this way you bring the nozzle pressure to values different from the one stated by the nozzle manufacturer. In such way the atomization would result incorrect. From the diagram in Fig. 13, you will find the pre-heating temperature of the oil according to viscosity and, from diagram in Fig. 14, you get the pump feeding pressure according to temperature. Therefore, it is necessary in order to set up a suitable oil circuit, look at the diagrams in Fig. 16 and Fig. 17, taken from UNI 9248 "FEE-DING LINES FOR LIQUID FUELS TRANSPORT FROM TANK TO BURNER". In any case, whatever is the choosen solution to realise the oil circuit, you must act according to what is mentioned here above (constant pressure and constant temperature). After setting up the feeding circuit, you have to decide the temperature and pressure values to be set up in the components of the feeding pipeline and of the burner. Please find here below, a set up table regarding several types of fuels. | FUEL | AT 5 | OSITY
60 °C | PIPELINE
PRESSURE | PIPELINE
TEMPERATURE* | PUMP SUPPLY
TEMPERATURE
(DIAGRAM IN Fig. 12) | |-----------------------------|------|----------------|----------------------|--------------------------|--| | | ٥ | E | bar | °C | °C | | Fluid BTZ
(ecoflu) | 3 | 7 | 1 - 2 | 20 | 30 | | High viscosity BTZ (Ecoden) | 7 | 15 | 1 - 2 | 50 | 50 | | High viscosity | 15 | 50 | 1 - 2 | 65 | 80 | Tab. 1 - Supply pipeline | FUEL | | OSITY
50 °C | NOZZLE
PRESSURE
MEASURED IN
THE GUN | RET
NOZ
PRES | | TEMPERA
THE PRE-
RESIS
THERM | HEATING
TORS | TEMPERATURE OF THE RESISTORS SAFETY THERMOSTAT | TEMPERATURE
ON THE OIL
ENABLING
THERMOSTAT
TCN | TEMPERATURE
ON THE PLANT
ENABLING
THERMOSTAT
TCI | |-----------------------------|----|----------------|--|--------------------|------|---------------------------------------|-----------------|--|--|--| | | | | | min. | max. | min. | max. | TRS | | | | | ٥ | E | bar | b | ar | °(| C | °C | °C | °C | | Fluid BTZ
(ecoflu) | 3 | 7 | 25 | 7 | 20 | 100 | 115 | 190 | 80 | - | | High viscosity BTZ (Ecoden) | 7 | 15 | 25 | 7 | 20 | 125 | 140 | 190 | 100 | 60 - 80 | | High viscosity | 15 | 50 | 25 | 7 | 20 | 145 | 160 | 190 | 110 | 70 - 90 | Tab. 2 - Burner ^{*} The temperature in the pre-heater must be set to get a viscosity in the nozzle from 1.4 to 1.6 °E. | VISCOSITY UNITS CONVERSION TABLE | | | | | | | | | | | |--------------------------------------|------------------------------------|------------------------------------|---|---|------------------------------------|-------------------------------------|--|--|--|--| | Cinematics
Engler
(Degrees) °E |
Cinematics
(Centistokes)
cSt | Cinematics
(Centipoises)
cps | Saybolt
Universal
(Seconds)
S.S.U. | Saybolt
Furol
(Seconds)
S.S.F. | Redwood n. 1
(Seconds)
R.S.I | Redwood n. 2
(Seconds)
R.S.II | | | | | | 2.95 | 20.60 | 20.60 | 100 | | 88.4 | | | | | | | 3.21 | 23.00 | 23.00 | 110 | | 97.1 | | | | | | | 3.49 | 25.3 | 25.3 | 120 | | 105.9 | | | | | | | 3.77 | 27.5 | 27.5 | 130 | | 114.8 | | | | | | | 4.04 | 29.8 | 29.8 | 140 | | 123.6 | | | | | | | 4.32 | 32.1 | 32.1 | 150 | | 132.4 | | | | | | | 4.59 | 34.3 | 34.3 | 160 | | 141.1 | | | | | | | 4.88 | 36.5 | 36.5 | 170 | | 150.0 | | | | | | | 5.15 | 38.7 | 38.7 | 180 | | 158.8 | | | | | | | 5.44 | 41.0 | 41.0 | 190 | | 167.5 | | | | | | | 5.72 | 43.2 | 43.2 | 200 | 23 | 176.4 | | | | | | | 6.28 | 47.5 | 47.5 | 220 | 25.3 | 194.0 | | | | | | | 6.85 | 51.9 | 51.9 | 240 | 27.0 | 212 | | | | | | | 7.38 | 56.2 | 56.2 | 260 | 28.7 | 229 | | | | | | | 7.95 | 60.6 | 60.6 | 280 | 30.5 | 247 | | | | | | | 8.51 | 64.9 | 64.9 | 300 | 32.5 | 265 | | | | | | | 9.24 | 70.4 | 70.4 | 325 | 35.0 | 287 | | | | | | | 9.95 | 75.8 | 75.8 | 350 | 37.2 | 309 | | | | | | | 10.7 | 81.2 | 81.2 | 375 | 39.5 | 331 | | | | | | | 11.4 | 86.6 | 86.6 | 400 | 42.0 | 353 | | | | | | | 12.1 | 92.0 | 92.0 | 425 | 44.2 | 375 | | | | | | | 12.8 | 97.4 | 97.4 | 450 | 47.0 | 397 | | | | | | | 13.5 | 102.8 | 102.8 | 475 | 49 | 419 | | | | | | | 14.2 | 108.2 | 108.2 | 500 | 51 | 441 | | | | | | | 15.6 | 119.2 | 119.2 | 550 | 56 | 485 | | | | | | | 17.0 | 120.9 | 120.9 | 600 | 61 | 529 | | | | | | | 18.5 | 140.7 | 140.7 | 650 | 66 | 573 | | | | | | | 19.9 | 151.3 | 151.3 | 700 | 71 | 617 | | | | | | | 21.3 | 162.3 | 162.3 | 750 | 76 | 661 | | | | | | | 22.7 | 173.2 | 173.2 | 800 | 81 | 705 | | | | | | | 24.2 | 184.0 | 184.0 | 850 | 86 | 749 | | | | | | | 25.6 | 194.8 | 194.8 | 900 | 91 | 793 | | | | | | | 27.0 | 206 | 206 | 950 | 96 | 837 | | | | | | | 28.4 | 216 | 216 | 1000 | 100 | 882 | | | | | | | 34.1 | 260 | 260 | 1200 | 212 | 1058 | 104 | | | | | | 39.8 | 303 | 303 | 1400 | 141 | 1234 | 122 | | | | | | 45.5 | 346 | 346 | 1600 | 160 | 1411 | 138 | | | | | | 51 | 390 | 390 | 1800 | 180 | 1587 | 153 | | | | | | 57 | 433 | 433 | 2000 | 200 | 1703 | 170 | | | | | | 71 | 541 | 541 | 2500 | 250 | 2204 | 215 | | | | | | 85 | 650 | 650 | 3000 | 300 | 2646 | 255 | | | | | | 99 | 758 | 758 | 3500 | 350 | 3087 | 300 | | | | | Tab. 3 Fig. 12 Burners must be supplied with fuel at a minimum temperature at the pump inlet, as a function of the oil viscosity, as shown in Fig. 12, Fig. 13 and Fig. 15. ## Minimum feeding temperature vs. oil viscosity Fig. 13 Fig. 14 The use of heavy oil forces to feed the burner to a pressure strictly related to the oil temperature. This avoids damage to the pump caused by gassification. ## **VISCOSITY vs. TEMPERATURE DIAGRAM** Fig. 15 Fig. 16 - Hydraulic diagram 3ID0023 - Single burner configuration Fig. 17 - Hydraulic diagram 3ID0014 - Two or more burners configuration #### Hydraulic Diagram 3ID0014 - 1 Main tank - 2 Bottom valve - 3 Main tank pre-heating pipe - 4 Oil filter (filtration, 1mm) - 5 Circuit pressure regulator - 6 Manometer - 7 Pressure regulation by-pass valve - 8 Manual valve - 9 Oil pump - 10 Pump pressure regulator - 11 Unidirectional valve - 12 Service tank pre-heating resistor - 13 Service tank pre-heating thermostat - 14 Burner consent thermostat - 15 Thermometer - 16 Consent pressure switch for service tank resistor - 17 Service tank heating pipe - 18 Service tank air drain valve - 19 Service tank - 20 Oil filter - 21 Fuel solenoid valve - 22 Fuel valve - 23 Burner pump flexible hoses - 24 Burner oil pump - 25 Pre-heating tank resistor - 26 Pre heating tank - 27 Oil consent thermostat - 28 Heather safety thermostat - 29 Thermostat for oil temperature setting - 30 Tank filter - 31 Thermometer - 32 Check valve - 35 Oil needle drive piston - 36 Oil rate regulator - 37 Burner consent thermostat - 42 Burner start consent thermostat - 43 Burner - 45 Thermostat for pipes pre-heating pumps - 46 Water pump for service tank pre-heating (1) - 47 Water pump for main tank pre-heating (19) - 48 Water pre-heating balance setting valve - 50 Oil circulation pump - 52 Oil ring max. pressure switch #### **Hydraulic Diagram 3ID0023** - 1 Main tank - 2 Bottom valve - 3 Main tank pre-heating pipe - 4 Oil filter - 5 Circuit pressure regulator - 6 Manometer - 7 Pressure regulation by-pass valve - 8 Manual valve - 9 Oil pump - 10 Pump pressure regulator - 11 Unidirectional valve - 12 Service tank pre-heating resistor - 13 Service tank pre-heating thermostat - 14 Burner consent thermostat - 15 Thermometer - 16 Consent pressure switch for service tank resistor - 17 Service tank heating pipe - 18 Service tank air drain valve - 19 Service tank - 20 Oil filter - 21 Fuel solenoid valve - 22 Fuel valve - 23 Burner pump flexible hoses - 24 Burner oil pump - 25 Pre-heating tank resistor - 26 Pre heating tank - 27 Oil consent thermostat - 28 Pre-heating tank resistors safety thermostat - 29 Thermostat for oil temperature setting - 30 Pre-heating tank filter - 31 Thermometer - 32 Check valve - 33 Return pressure regulator - 35 Oil needle drive piston - 36 Three way valve for piston drive - 37 Burner consent thermostat - 42 Air separation bottle - 43 Burner - 45 Thermostat for pipes pre-heating pumps - 46 Water pump for service tank pre-heating (1) - 47 Water pump for main tank pre-heating (19) - 48 Valves for setting of pre-heating water balance - 52 Oil ring max. pressure switch #### Electrical connections Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. ATTENTION: before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the Electrical connections" section. To execute the electrical connections, proceed as follows: - remove the cover from the electrical board, unscrewing the fixing screws; - to execute the electrical connections see chapter "Electric wiring diagrams"; 2 - check the direction of the fan motor (see next paragraph) 3 - refit the panel cover. WARNING: The burner is provided with an electrical bridge between terminals 6 and 7; when connecting the high/ low flame thermostat, remove this bridge before connecting the thermostat. IMPORTANT: Connecting electrical supply wires to the burner teminal block MA, be sure that the ground wire is longer than phase and neutral ones. To execute the electrical connections see the "ELECTRICAL WIRING DIAGRAMS". #### Rotation of fan motor and pump motor Once the electrical connection of the burner is executed, remember to check the rotation of the motors. The motor should rotate according to the indication on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor. Connecting the oil heating resistors #### **PUMP MOTOR CONNECTION** ### Connecting the fan motor In case of star-delta start-up, connect all the 6 wires, according to the sequence shown in the "Electrical wiring diagrams" chapter. If the start-up is performes by means of inverter, follow the instructions on the related manual. #### Oil thermostat adjustment To find the thermostats, remove the cover of the burner switchboard. Adjust them using a screwdriver on the VR screw as shown in the next picture. NOTE: thermostat TCI is provided on burners fired with fuel oil having a 50° E at 50° C viscosity only. ## TCN - Oil enabling thermostat (Fig. 18) Adjust this thermostat to a value 10% lower than that showed in the viscosity-temperature diagram (Fig. 12). ## TRS - Resistor safety thermostat (Fig. 18) The thermostat is set during factory testing at about 190° C. This thermostat trips when the operating temperature exceeds the set limit. Ascertain the cause of the malfunction and reset the thermostat by means of the PR button. ## TR - Resistor thermostat (Fig. 18) Adjust this thermostat to the correct value according to the viscositytemperature diagram (Fig. 12) and check the temperature by using a thermometer with a scale of up to 200° C mounted on the pre-heating tank. Fig. 18 ## TCI - Installation enabling thermostat (Fig. 18) This thermostat is fitted on burners fired with oil at a viscosity of 50° E at 50° C only. Set the thermostat according to the data showed on page 20. #### **ADJUSTMENT** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed. **ATTENTION:** During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the gas decrease slowly until the normal combustion values are achieved. WARNING: EVER LOOSE THE SEALED SCREWS, OTHERWISE THE DEVICE WARRANTY WILL BE IMMEDIATELY INVALIDATE! IMPORTANT! the combustion air excess must be adjusted according to the in the following chart: | Recommended combustion parameters | | | | | | | | | | | |--|-----------|-----------|--|--|--|--|--|--|--|--| | Fuel Recommended (%) CO ₂ Recommended (%) | | | | | | | | | | | | Natural gas | 9 ÷ 10 | 3 ÷ 4.8 | | | | | | | | | | Heavy oil <=7°E a 50 °C | 11 ÷ 12 | 4.2 ÷ 6.2 | | | | | | | | | | Heavy oil >=7°E a 50 °C | 11 ÷ 12.5 | 4.7 ÷ 6.7 | | | | | | | | | ## Combustion head gas pressure curves depending on the flow rate ## Curves are referred to pressure = 0mbar in the combustion head! The curves referred to the gas pressure in the combustion head, depending on the gas flow rate, are referred to the burner properly adjusted (percentage of residual O_2 in the
flues as shown in the "Recommended combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the servocontrol are at the maximum opening. Refer to Fig. 19, showing the correct way to measure the gas pressure, considering the values of pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications. Fig. 19 ## Key - 1 Generator - 2 Pressure outlet on the combustion chamber - 3 Gas pressure outlet on the butterfly valve - 4 Differential pressure gauge ## Measuring the gas pressure in the combustion head In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet (Fig. 19-2) to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner (Fig. 19-3). On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on the next paragraph), it is easy to find out the burner's output in Stm³/h (quoted on the x axis) from the pressure measured in the combustion head (quoted on the y axis). The data obtained must be considered when adjusting the gas flow rate. NOTE: THE PRESSURE-RATE CURVES ARE GIVEN AS INFORMATION ONLY; FOR A PROPER SETTING OF THE GAS RATE, PLEASE REFER TO THE GAS METER READING. ## Pressure - rate in combustion head curves KTP1030 Gas pressure in combustion head Gas rate Stm3/h #### KTP1050 Gas pressure in combustion head Gas rate Stm³/h Gas pressure in combustion head Gas rate Stm³/h #### ADJUSTING AIR AND GAS FLOW RATES ## Keys - 1 Gas filter - 2 Gas proving system - 3 Gas valves - 4 Adjusting cam - 5 Actuator ## Gas Filter The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burner valves, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices. #### VPS504 Gas proving system The VPS504 check the operation of the seal of the gas shut off valves. This check is carried out as soon as the boiler thermostat gives a start signal to the burner, creating, by means of the diaphragm pump inside it, a pressure in the test space of 20 mbar higher than the supply pressure. When wishing to monitor the test, install a pressure gauge ranged to that of the pressure supply point PA. If the test cycle is satisfactory, after a few seconds the consent light LC (yellow) comes on. In the opposite case the lockout light LB (red) comes on. To restart it is necessary to reset the appliance by pressing the illuminated pushbutton LB. ## Adjusting the injector gas flow rate: Brahma EG12*R valve and pressure governor To change the injector gas valve flow rate, proceed as follows: - 1 remove the protection on the bottom of the valve, moving it counterclockwise (see next picture); - 2 rotate clockwise the nut 1 as shown, to close the valve; counterclockwise to open the valve. To perform a finest adjustment, act directly on the pressure governor as follows (see next picture): remove the cap T: to increase theoutlet gas pressure, use a screwdriver on the screw TR as shown in the picture below. Screw to increase the pressure, unscrew to decrease; once the regulation is performed, replace cap T. #### Adjustments - brief description Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively. - Check that the combustion parameters are in the suggested limits. - Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head" on page 28. - Then, adjust the combustion values corresponding to the points between maximum and minimum: set the shape of the adjusting cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the throttle gas valve. - Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. Now, adjust the burner according to the actuator model provided. ## Adjustment procedure To change the burner setting during the testing in the plant, follow the next procedure. On the DUNGS MBC..SE gas valves group, set the pressure regulator to 1/3 of its stroke, using a 2.5 allen key. Pressure setting - 1 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage. - 2 cam IV (stroke limitation cam) must be set a little higher than the cam III to limit the output in the first seconds the flame appears; **NOTE:** cam IV must shift according to cam III. ## Servocontrol cams I High flame II Stand-by and Ignition III Low flame (gas) IV Low flame (oil) / Stroke limitation - 1 turn the burner on by selecting GAS fuel by means of the burner CM switch (it is placed on the burner control panel see Đèñ. 58) - 2 check the fan motor rotation. - 3 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage. - 4 Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the burner starts up: - 5 drive the burner to high flame stage, by means fo the thermostat **TAB**. - Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the gas by means of the valves group stabiliser. - 7 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps quoted below; - acting on the pressure stabiliser of the valves group, adjust the **gas flow rate in the high flame stage** as to meet the values requested by the boiler/utilisation: - Siemens VGD valves group: remove cap T and act on the VR adjusting screw to increase or decrease the pressure and consequently the gas rate; screwind VR the rate increases, unscrewing it decreases (see next figure). - Dungs MBC..SE valves group: act on its pressure governor to increase or decrease the pressure and consequently the gas rate. To adjust the air flow rate in the high flame stage, loose the RA nut and screw VRA as to get the desired air flow rate: moving the rod TR towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases. **Note:** once the procedure is performed, be sure that the blocking nut **RA** is fasten. Do not change the position of the air damper rods. **Note:** once the procedure is performed, be sure that the blocking nut **RA** is fasten. Do not change the position of the air damper rods. 10 Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the **VB** screw and move progressively back the combustion head towards the MIN position, by turning clockwise the **VRT** ring nut. Fasten **VB** screw when the adjustment is accomplished. Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above. - 11 the air and gas rate are now adjusted at the maximum power stage, go on with the point to point adjustement on the **SV1** (gas side) adjusting cam as to reach the minimum output point. - 12 as for the point-to-point regulation, move the gas low flame microswitch (cam III) a little lower than the maximum position (90°); - 13 set the TAB thermostat to the minimum in order that the actuator moves progressively towards the low flame position; - 14 move cam III to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V1** to increase the rate, unscrew to decrease. - 15 Move again cam III towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point. - 16 Now adjust the pressure switches (see next paragraph). ## Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: - Remove the transparent plastic cap. - Once air and fuel setting have been accomplished, startup the burner. - During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%. - Repeat the ignition cycle of the burner and check it runs properly. - Refit the transparent plastic cover on the pressure switch. ## Calibration of minimum gas pressure switch As for the gas pressure switch calibration, proceed as follows: - Be sure that the filter is clean. - Remove the transparent plastic cap. - While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch. - Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the limits laid down by law, slowly open the cutoff valve as to get values lower than these limits. - Check that the burner is operating correctly. - Clockwise turn the pressure switch adjusting
ring nut (as to increase the pressure value) until the burner stops. - Slowly fully open the manual cutoff valve. - Refit the transparent plastic cover on the pressure switch. #### Adjusting the high gas pressure switch (when provided) To calibrate the high pressure switch, proceed as follows: - remove the plastic cover; - measure the gas pressure in the network, when flame is off; - by means of the adjusting ring nut VR, set the value read on step 2, increased by the 30%; - replace the plastic cover. #### PGCP Gas leakage pressure switch (witn SiemensLDU/Siemens LMV burner control) - remove the pressure switch plastic cover; - adjust the PGCP pressure switch to the same value set for the minimum gas pressure switch; - replace the plastic cover.; #### Fully modulating burners To adjust the fully-modulating burners, use the **CMF** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**. The **CMF** position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set CMF=2. To move the adjusting cam set CMF=1 or 2 and then CMF=0. CMF = 0 stop at the current position CMF = 1 high flame operation CMF = 2 low flame operation CMF = 3 automatic operation ## Adjusting heavy oil flow rate The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the chart below and the diagram on Fig. 22 (as far as reading the pressure values, see next paragraphs). | NOZZLE | DELIVERY
PRESSURE
bar | RETURN
PRESSURE MAX.
bar | RETURN
PRESSURE MIN.
bar | |--------------|-----------------------------|--------------------------------|--------------------------------| | FLUIDICS WR2 | 25 | 20 | 7 (recommended) | | BERGONZO B/C | 25 | 20 | 7 (recommended) | Tab. 4 FLOW RATE kg/h **DIMENSIONS** Min Max Fig. 22 ------Atomisation angle according to the return pressure _____ % Flow rate Fig. 23 - Bergonzo nozzle - example with 850kg/h nozzle - Once the air and gas flow rates are adjusted, turn the burner off, turn the burner on again by means of the **CM** selector to switch to the heavy oil operation (OIL, on the burner control panel (see page 28). - 2 with the electrical panel open, prime the oil pump acting directly on the related CP contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged; 3 bleed the air from the M pressure gauge port (Fig. 24) by loosing the cap without removing it, then release the contactor. Fig. 24 - 4 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to achieve safely the high flame stage. - 5 record the high flame value set during the gas operation adjustments (see previous paragraphs); - 6 start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the bruner starts up; - 7 drive the burner to high flame stage, by means fo the thermostat **TAB**. - Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the oil pressure (see next step). #### Actuator cams High flame II Stand-by and Ignition III Low flame (gas) IV Low flame (oil) V Stroke limitation 9 the nozzle suplly pressure already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port showed on Fig. 25 and act on on the pump adjusting screw **VR** (see Fig. 24 and page 17) as to get the nozzle pressure at 25bar (Bergonzo nozzle - see page 34). - 10 in order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge) without changing the air flow rate set during the gas operation adjustments (see previous paragraph): checking always the combustion parameters, the adjustment is to be performed by means of the **SV2** adjusting cam screw (see picture) when the cam has reached the high flame position. - 11 as for the point-to-point regulation in order to set the cam foil shape, move the oil low flame microswitch (cam IV) a little lower than the maximum position (90°); - 12 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position; - 13 move cam IV (oil low flame) towards the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to a lower position: screw **V2** to increase the rate, unscrew to decrease, in order to get the pressure as showed on chart/diagram on page 34, according to the requested rate. - 14 Move again cam V towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point. - 15 The low flame position must never match the ignition position that is why cam **IV** must be set 20°- 30° more than the ignition position. - 16 Set cam V ("stroke limitation cam") 5° higher than the lowest "low flame cam" (cam III or cam IV). - 17 Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. - 18 Replace the actuator and control panel covers. As far as fully-modulating burners, see paragraph "Fully modulating burners" on page 34. # Heavy oil gun #### **PART II: OPERATION** #### LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE. OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH. AND ON THE RESET BUTTON. IN THE EVENT OF REPEATED LOCKOUTS, DO NOT PERSIST WITH THE RESET BUTTON AND CONTACT QUALIFIED PERSONNEL WHO WILL PROCEED TO ELIMINATE THE MALFUNCTION. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. #### **OPERATION** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". - Choose the type of fuel by turning the burner switch, on the burner control panel. CAUTION: if the fuel chosen is heavy oil, be sure the cutoff valves on the supply and return pipes are open. - Check the control box is not locked (signalling light on); if so, reset it by means of the reset pushbutton. - Check the series of thermostats and pressure switches turn the burner to on. ### Gas operation Check the gas feeding pressure is sufficient (signalling lamp on). **Burners provided with gas proving system:** the gas proving system test begins; when the test is performed the proving system LED turns on. At the end of the test, the burner staring cycle begins: in case of leakage in a valve, the gas proving system stops the burner and the related lamp turns on. Reset it, by means of the reset pushbutton on the device, in burners with VPS504 (pushbutton **LB** in picture), or by the pushbutton on the burner panel if this one is fitted with LDU11 proving system. **NOTE:** if the burner is fitted with Dungs VPS504, the pre-purgue phase starts once the gas proving system is successfully performed. Since the pre-purgue phase must be carried out with the maximum air rate, the control box drives the actuator opening and when the maximum opening position is achieved, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator drives the complete closing (ignition with gas position) and, as this is achieved the ignition transformer is energised; the ignitor gas valves and the main gas valves open. - Few seconds after the valves opening, the transformer is de-energised and the related lamp turns off. - The burner is now operating, meanwhile the actuator goes to the high flame position and, after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by the related lamp on the burner control panel. ### Heavy oil operation - The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts. - At the end of the pre-purge time, the actuator is in the oil ignition position: the ignition transformer is energised (related lamp on); the ignitor gas valves and the oil valves open. Few seconds after the valves opening,
the transformer is de-energised and lamp turns off. - The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by the related lamps on the burner control panel. #### **PART III: MAINTENANCE** At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL. #### **ROUTINE MAINTENANCE** - Clean and examine the gas filter cartridge and replace it if necessary (see next paragraph). - Check and clean the oil filter cartridge; replace it if necessary (see next paragraphs). - Examine the condition of the oil flexible hoses and check for possible leaks. - Check and clean if necessary the oil heaters and the tank, according to the fuel type and its use; remove the heaters flange fixing nuts and remove the heaters from the tank: clean by using steam or solvents and not metallic things. **CAUTION:** avoid the contact of steam, solvent and other liquids with the electric terminals of the resistor. On flanged heaters, replace the seal gasket before refitting it. Routine inspections must be carried out to determine the frequency of cleaning. - Clean and examine the filter inside the oil pump. Filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit. - Remove and clean the combustion head (page 41). - Examine and clean the ignition electrodes, adjust and replace if necessary (see page 42). - Examine and clean the detection probe, adjust and replace if necessary (see page 43). - Examine the detection current (see page 43). - Remove and clean (page 42) the heavy oil nozzle (Important: use solvents for cleaning, not metal utensils) and at the end of the maintenance procedures, after replacing the burner, turn it on and check the shape of the flame; if in doubt replace the nozzle. Where the burner is used intensively it is recommended to replace the nozzle as a preventive measure, at the begin of the operating season. - Clean and grease joints and rotating parts. IMPORTANT: Remove the combustion head before checking the ignition electrodes. CAUTION: avoid the contact of steam, solvent and other liquids with the electric terminals of the resistor. On flanged heaters, replace the seal gasket before refitting it. Periodic inspections must be carried out to determine the frequency of cleaning. **ATTENTION:** when servicing, if it was necessary to disassemble the gas train parts, remember to execute the gas proving test, once the gas train is reassembled, according to the procedure imposed by the law in force. ### Gas filter maintenance **ATTENTION:** Before opening the filter, close the manual cutoff valve downstream the filter and bleed the gas; check that inside the filter there is no pressurised gas. To clean or remove the filter, proceed as follows: - 1 remove the cap unscrewing the fixing screws (A); - 2 remove the filtering cartridge (B), clean it using water and soap, blow it with compressed air(or replace it, if necessary) - 3 replace the cartridge in its proper position taking care to place it inbetween the guides as not to hamper the cap replacement; - 4 be sure to replace the Or ring into its place (C) and replace the cover fastening by the proper screws (A). ## Replacing the spring in the gas valve group To replace the spring in the gas valve group, proceed as follows: - 1 Carefully twist the protection cap 1 and the O-ring 2. - 2 remove the "set value" spring 3 from housing 4. - 3 Replace spring 3. - 4 Carefully insert the new "set value" spring. Pay attention to mount properly. First insert the spring part with smaller diameter in the housing. - 5 Place O-ring 2 in protective cap 1. Screw in the protective cap with the O-ring in it. Stick the adhesive label for spring identification on the type plate. **DUNGS MBC..SE** **SKP Siemens actuator** ### Self-cleaning filter Fitted only on high viscosity oil burners. Periodically turn the knob to clean the filter. ## Removing the combustion head - 1 Remove the cover H. - 2 Slide the photoresistance out of its housing. - 3 Unscrew the V screws that block the gas collector G, loosen the three joints E and remove the ass.y as shown on the following picture. - 4 Clean the combustion head by means fo a vacuum cleaner; scrape off the scale by means fo a metallic brush. Note: to remount the burner, floow the same procedure in the reversed order. #### Key - 1 Inlet - 2 Return - 3 Gun opening - E Oil piping connections - H Cover - L Oil gun # Adjusting the ignition electrode ATTENTION: avoid the ignition electrode to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrode position after any intervention on the combustion head. 5mm (P) and ignition electrode (E) Fig. 30 - Detailed view of the diffuser with pilot Fig. 31 - Detailed view of the combustion head with pilot (P) and ignition elecctrode (E) Fig. 32 Observe the values quoted on Fig. 32. # Replacing the ignition electrode ATTENTION: avoid the ignition electrode to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrode position after any intervention on the combustion head. To replace the ignition electrode, proceed as follows: - remove the burner cover - 2 disconnect the electrode (E) cable (CE); - remove the combustion head (see par. "Removing the combustion head"); 3 - loose screw (B) that fasten the ignition electrode (E) to the burner pilot (P); 4 - remove the electrode and replace it, referring to the values quoted on Fig. 32. 5 ## Cleaning and replacing the detection photocell The photocell working life is about 10000 working hours (about 1 year), at max 50°C after which it must be replaced. To clean/replace the detection photocell, proceed as follows: - 1 Disconnect the system from the electrical power supply. - 2 Shut off the fuel supply; - 3 remove the photocell from its slot (see next figure); - 4 clean the bulbe if dirty, taking care not to touch it with bare hands; - 5 if necessary, replace the bulb; - 6 replace the photocell into its slot. ### Checking the detection current To check the detection signal follow the scheme in Fig. 33. If the signal is lower than the value quoted, check the position of the UV detector (photocell), the electrical contacts and, if necessary, replace the UV detector. Fig. 33: Detection by photocell QRA.. # Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner's main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel cock of the supply line ### Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". 43 # **TROUBLESHOOTING** | CAUSE / TROUBLE | THE BURNER
DOESN'T START | CONTINUES WITH
PRE-PRGE® | DOESN'T START
AND LOCK-OUT | DOESN'T START
AND REPEATS
THE CYCLE | STARTS AND
REPEATS THE
CYCLE | DOESN'T SWITCH
TO HI FLAME | LOCKOUT DURING
OPERATION | TURNS OFF AND
REPEATS CYCLE
DURING
OPERATION | |--|-----------------------------|-----------------------------|-------------------------------|---|------------------------------------|-------------------------------|-----------------------------|---| | MAIN SWITCH OPEN | • | | | | | | | | | LACK OF GAS | • | | | | | | | | | HIGH GAS PRESSURE SWITCH
DEFECTIVE | • | | | | | | | | | DEFECTIVE THERMOSTAT | • | | | | | | | | | OVERLOAD TRIPPED INTERVENTION | • | | | | | | | | | AUXILIARIES FUSES INTERRUPTED | • | | | | | | | | | DEFECTIVE AIR PRESSURE SWITCH | • | | | | | | | | | DEFECTIVE CONTROL BOX | • | | • | | | | • | | | DEFECTIVE ACTUATOR | • | • | • | | | | • | | | AIR PRESSURE SWITCH FAULT OR BAD SETTING | | • | | | | | | | | GAS PRESSURE SWITCH BAD SETTING | | | | | | | • | | | IGNITION TRANSFORMER FAULT | | | • | • | • | | | • | | DETECTION ELECTRODE BAD POSITION | | | • | | | | | | | BUTTERFLY VALVE BAD SETTING | | | • | | | | | | | DEFECTIVE GAS GOVERNOR | | | • | | | | | | | DEFECTIVE GAS GOVERNOR | | | | • | • | | | • | | DEFECTIVE HI-LO FLAME
THERMOSTAT | | | | | | • | | | | ACTUATOR CAM WRONG SETTING | | | | | | • | | | | PHOTODETECTOR FAULT OR WRONG
SETTING | | | | | | | • | | ## **ELECTRICAL WIRING DIAGRAMS** - WARNING 1 Electrical supply 400V 50Hz 3N a.c. 2 Do not reverse phase with neutral - 3 Ensure burner is properly earthed # Wiring diagram 12-143 | SIGLA/ITEM | FOGLIO/SHEET | FUNZIONE | | | | FUNCTION | | | | | |------------|--------------|--------------------------------------|---|-------------------------------------|------------------|---|---------------------------------------|------------|--------|--| | CM | 2 | | IONAMENTO 1)GAS 0)S | SPENTO 2)NAFTA | | MANUAL OPERATION SV | VITCH 1)GAS 0)SPENT | 0 2)0IL | | | | CMF | 6 | | | | MMA 3)AUTOMATICO | MANUAL SWITCH
0)0FF | | | OMATIC | | | EV1 | 4 | ELETTROVAL VOLA O | AS LATO RETE (O GRU | JPPO VALVOLE) | | UPSTREAM GAS SOLEN | DID VALVE (OR VALV | ES GROUP) | | | | EV2 | 4 | ELETTROVAL VOLA O | IAS LATO BRUCIATORI | E (O GRUPPO VALVOLE |) | DOWNSTREAM GAS SOL | ENOID VALVE (OR VA | LVES GROUP | | | | EVN | 4 | ELETTROVAL VOLA N | IAFTA | · | | OIL SOLENOID VALVE | · · · · · · · · · · · · · · · · · · · | | | | | EVP1/2 | 3 | ELETTROVAL VOLE P | ILOTA GAS | | | PILOT GAS ELECTRO-VA | ALVES | | | | | FC | 5 | SONDA UV RILEVAZI | ONE FIAMMA | | | UV FLAME DETECTOR | | | | | | FILTRO | 1 | FILTRO ANTIDISTURE | 30 | | | ANTIJAMMING FILTER | | | | | | FU | 6 | FUSIBILE | | | | FUSE | | | | | | FU1.3 | 1 | FUSIBILI LINEA MOTO | RE VENTILATORE | | | FAN MOTOR LINE FUSES | | | | | | FU1.6 | 1 | FUSIBILE LINEA RESI | STENZE AUSILIARIE | | | LINE AUXILIARY RESIST | ORS FUSE | | | | | IGB | 1 | INTERRUTTORE GENE | RALE CON BLOCCO PO | RTA | | MAIN SWITCH WITH DOC | R INTERLOCK | | | | | IP1 | 1 | MAGNETOTERMICO P | ROTEZIONE LINEA AUS | ILIARI | | AUXILIARY SUPPLY PROTECTION MAGNETOTHERMIC | | | | | | IRA | 1 | INTERRUTTORE RESI | STENZE AUSILIARIE | | | AUXILIARY RESISTORS SWITCH | | | | | | KA2.2 | 2 | RELE' AUSILIARIO | | | | AUXILIARY RELAY | | | | | | KA2.2A | 2 | RELE' AUSILIARIO | | | | AUXILIARY RELAY | | | | | | KA3.5 | 3 | RELE' AUSILIARIO | | | | AUXILIARY RELAY | | | | | | KA4.8 | 4 | RELE' AUSILIARIO | | | | AUXILIARY RELAY | | | | | | KA5.0 | 5 | RELE' AUSILIARIO | | | | AUXILIARY RELAY | | | | | | KM3.1 | 3 | CONTATTORE MOTOR | RE VENTILATORE (LINE | (A) | | FAN MOTOR CONTACTOR (LINE) | | | | | | KM3.2S | 3 | CONTATTORE MOTOR | RE VENTILATORE (STE | LLA) | | FAN MOTOR CONTACTOR (STAR) | | | | | | KM3.3D | 3 | CONTATTORE MOTOR | RE VENTILATORE (TRIA | ANGOLO) | | FAN MOTOR CONTACTOR (DELTA) | | | | | | KT3.1 | 3 | TEMPORIZZATORE S | TELLA/TRIANGOLO | | | STAR/DELTA DELAYED RELAY | | | | | | KT3.3 | 3 | RELE' TEMPORIZZAT | ORE | | | DELAYED RELAY | | | | | | LB | 2 | LAMPADA SEGNALA | ZIONE BLOCCO BRUCIA | TORE | | INDICATOR LIGHT FOR BURNER LOCK-OUT | | | | | | LEVP | 3 | LAMPADA SEGNALA | ZIONE APERTURA EVP | 1/2 | | INDICATOR LIGHT FOR O | PENING OF ELECTRO- | VALVES EVP | 1/2 | | | LFG | 4 | LAMPADA SEGNALA | ZIONE FUNZIONAMENT | O BRUCIATORE A GAS | | BURNER GAS OPERATIO | N INDICATOR LIGHT | | | | | LF0 | 4 | LAMPADA SEGNALA | ZIONE FUNZIONAMENT | O BRUCIATORE A NAF | ΓΑ | BURNER OIL OPERATION INDICATOR LIGHT | | | | | | LL | 1 | QUADRO IN TENSION | QUADRO IN TENSIONE | | | SUPPLY ELECTRIC BOX | | | | | | LRA | 1 | LAMPADA SEGNALA | AMPADA SEGNALAZIONE FUNZIONAMENTO RESISTENZE AUSILIARIE | | | INDICATOR LIGHT FOR OPERATION AUXILIARY RESISTORS | | | | | | LS | 4 | AMPADA SEGNALAZIONE SOSTA BRUCIATORE | | INDICATOR LIGHT FOR BURNER STAND-BY | | | | | | | | LSPG | 4 | LAMPADA SEGNALA | ZIONE BLOCCO CONTRO | DLLO TENUTA VALVOL | E | INDICATOR LIGHT FOR L | EAKAGE OF VALVES | | | | 21/03/2008 Revisione 00 Dis. N. 12 - 143 8 10 SEGUE TOTALE | SIGLA/ITEM | FOGLIO/SHEET | FUNZIONE | | | | FUNCTION | | | | | |-------------------|--------------|--------------------|---|-------------------|-----|-------------------------------|---------------------|-------|--|--| | LT | 2 | LAMPADA SEGNALA | ZIONE BLOCCO TERMIC | O MOTORE VENTILAT | DRE | INDICATOR LIGHT FOR F | AN OVERLOAD TRIPPE | :D | | | | MV | 1 | MOTORE VENTILATO | RE | | | FAN MOTOR | | | | | | PA | 4 | PRESSOSTATO ARIA | | | | AIR PRESSURE SWITCH | | | | | | PGMAX | 4 | PRESSOSTATO GAS | DI MASSIMA PRESSIOI | NE (OPTIONAL) | | MAXIMUM PRESSURE GA | S SWITCH (OPTIONAL) |) | | | | PGMIN | 4 | PRESSOSTATO GAS | DI MINIMA PRESSIONE | | | MINIMUM GAS PRESSURI | E SWITCH | | | | | PGP | 4 | PRESSOSTATO PILO | TA GAS | | | PILOT MINIMUM GAS PRE | SSURE SWITCH | | | | | PS | 2 | PULSANTE SBLOCCO | FIAMMA | | | LOCK-OUT RESET BUTT | 0N | | | | | PT100 | 6 | SONDA DI TEMPERAT | URA | | | TEMPERATURE PROBE | | | | | | RA | 1 | RESISTENZE AUSILIA | RIE | | | AUXILIARY RESISTORS | | | | | | SD-PRESS | 6 | SONDA DI PRESSIONI | | | | PRESSURE PROBE | | | | | | SD-TEMP. | 6 | SONDA DI TEMPERAT | URA | | | TEMPERATURE PROBE | | | | | | SD - 0÷10V | 6 | TRASDUTTORE USCI | TA IN TENSIONE | | | TRANSDUCER VOLTAGE OUTPUT | | | | | | SD - 4÷20mA | 6 | TRASDUTTORE USCI | TA IN CORRENTE | | | TRANSDUCER CURRENT OUTPUT | | | | | | SIEMENS LFL1.xx | 2 | APPARECCHIATURA | CONTROLLO FIAMMA | | | CONTROL BOX | | | | | | SIEMENS RWF40.000 | 6 | REGOLATORE MODUL | ANTE | | | BURNER MODULATOR | | | | | | SQM10 | 5 | SERVOCOMANDO SEF | RANDA ARIA | | | AIR DAMPER ACTUATOR | ₹ | | | | | ST | 4 | SERIE TERMOSTATI/ | PRESSOSTATI | | | SERIES OF THERMOSTA | TS OR PRESSURE SWI | TCHES | | | | TA | 3 | TRASFORMATORE DI | ACCENSIONE | | | IGNITION TRANSFORMER | | | | | | TC | 6 | TERMOCOPPIA | ERMOCOPPIA | | | THERMOCOUPLE | | | | | | TCI | 5 | TERMOSTATO CONSE | ERMOSTATO CONSENSO IMPIANTO | | | PLANT CONSENT THERMOSTAT | | | | | | TV | 1 | TERMICO MOTORE VE | NTILATORE | | | FAN MOTOR THERMAL | | | | | | VPS504 | 4 | CONTROLLO DI TENU | ONTROLLO DI TENUTA VALVOLE GAS (OPTIONAL) | | | GAS PROVING SYSTEM (OPTIONAL) | | | | | | Data 21/03/2008 | PREC. | FOGLIO | |------------------|-------|--------| | Revisione 00 | 8 | 9 | | 40 447 | SEGUE | TOTALE | | Dis. N. 12 - 143 | 10 | 10 | 0 - STOP 1 - HAIGH FLAME 2 - LOW FLAME 3 - AUTOMATIC | Data 21/03/2008 | PREC. | FOGLIO | |------------------|-------|--------| | Revisione 00 | 9 | 10 | | 10 117 | SEGUE | TOTALE | | Dis. N. 12 — 143 | 1 | 10 | # **Pumping Unit Electric Wiring Diagrams** | | | 2 | 3 | | 5 | 6 | 7 | 8 | 9 | | |------------|-------------|---------------------|---|--------------------|----------|--|--------------------|--------------------|---|--| | SIGLA/ITEM | FOGLIO/SHEE | T FUNZIONE | | | | FUNCTION | | | | | | IGB | 1 | INTERRUTTORE GENE | RALE CON BLOCCO PO | RTA | | MAIN SWITCH WITH DOO | R INTERLOCK | | | | | IP1 | 1 | MAGNETOTERMICO PE | ROTEZIONE RESISTENZ | E PRERISCALDATOR | E [RPA] | PRE-HEATING RESISTOR | S [RPA] MAGNETOTH | HERMIC SWITCH | | | | IP2 | 1 | MAGNETOTERMICO PE | ROTEZIONE RESISTENZ | E PRERISCALDATOR | E [RPB] | PRE-HEATING RESISTOR | S [RPB] MAGNETOTH | ERMIC SWITCH | | | | IP3 | 1 | MAGNETOTERMICO PE | ROTEZIONE MOTORE P | OMPA [MP] | | [MP] PUMP MOTOR PROT | ECTION MAGNETOTH | ERMIC | | | | KA2.2 | 2 | RELE' AUSILIARIO SE | GNALAZIONE GUASTO | CONTATTORE RESIS | TENZE | AUXILIARY RELAY FOR | TRIM HEATER CONTA | CTOR FAILURE | | | | KA2.4 | 2 | RELE' AUSILIARIO SE | GNALAZIONE GUASTO | CONTATTORE RESIS | TENZE | AUXILIARY RELAY FOR | TRIM HEATER CONTA | CTOR FAILURE | | | | KM2.3 | 2 | CONTATTORE RESIST | TENZE PRERISCALDAT | ORE [RPA] | | PRE-HEATING RESISTOR | S [RPA] CONTACTOR | | | | | KM2.5 | 2 | CONTATTORE RESIST | TENZE PRERISCALDAT | ORE [RPB] | | PRE-HEATING RESISTOR | S [RPB] CONTACTOR | | | | | KM2.7 | 2 | CONTATTORE MOTOR | RE POMPA GASOLIO | | | LIGHT OIL PUMP MOTOR | CONTACTOR | | | | | LBR | 2 | LAMPADA SEGNALA | ZIONE TENSIONE QUAD |)RO | | INDICATOR LIGHT FOR EI | ECTRIC BOX SUPPLY | 1 | | | | LRA | 2 | LAMPADA SEGNALA | ZIONE FUNZIONAMENT | O RESISTENZE AUSIL | .IARIE | INDICATOR LIGHT FOR OPERATION AUXILIARY RESISTORS | | | | | | LRPA | 2 | LAMPADA SEGNALA | ZIONE FUNZIONAMENT | O PRERISCALDATOR | E [RPA] | INDICATOR LIGHT FOR PRE-HEATING RESISTOR [RPA] OPERATION | | | | | | LRPB | 2 | LAMPADA SEGNALA | ZIONE FUNZIONAMENT | O PRERISCALDATOR | E [RPB] | INDICATOR LIGHT FOR P | RE-HEATING RESISTO | OR [RPB] OPERATION | | | | LT | 2 | LAMPADA SEGNALA | ZIONE BLOCCO TERMIC | O POMPA | | INDICATOR LIGHT FOR PUMP OVERLOAD TRIPPED | | | | | | LTRSA | 2 | LAMPADA SEGNALA | ZIONE BLOCCO TERMOS | STATO DI SICUREZZA | (TRSA) | INDICATOR LIGHT FOR [TRSA] SAFETY THERMOSTAT | | | | | | LTRSB | 2 | LAMPADA SEGNALA | ZIONE BLOCCO TERMOS | STATO DI SICUREZZA | \ [TRSB] | INDICATOR LIGHT FOR [TRSB] SAFETY THERMOSTAT | | | | | | MP | 1 | MOTORE POMPA NAF | TA | | | OIL PUMP MOTOR | | | | | | RA | 2 | RESISTENZE AUSILIA | RIE | | | AUXILIARY RESISTORS | | | | | | RF | 2 | RESISTENZA AUSILIA | ARIA FILTRO NAFTA | | | OIL FILTER AUXILIARY RESISTOR | | | | | | RPA | 1 | RESISTENZE PRERISO | CALDATORE NAFTA | | | PRE-HEATING TANK RESISTORS | | | | | | RPB | 1 | RESISTENZE PRERISO | CALDATORE NAFTA | | | PRE-HEATING TANK RES | SISTORS | | | | | TCNA | 2 | TERMOSTATO CONSE | NSO NAFTA PRERISCA | ALDATORE [RPA] | | OIL CONSENT THERMOST | AT FOR PRE- HEATI | NG [RPA] RESISTORS | | | | TCNB | 2 | TERMOSTATO CONSE | NSO NAFTA PRERISCA | ALDATORE [RPB] | | OIL CONSENT THERMOST | AT FOR PRE- HEATI | NG [RPB] RESISTORS | | | | TL | 2 | TERMOSTATO LIMITE | FILTRO NAFTA | | | FILTER SAFETY THERMO | STAT | | | | | TR | 2 | TERMOSTATO REGOL | AZIONE FILTRO NAFT. | A | | OIL FILTER REGULATION THERMOSTAT | | | | | | TRA | 2 | TERMOSTATO DI REG | TERMOSTATO DI REGOLAZIONE PRERISCALDATORE [RPA] | | | REGULATION THERMOST | AT FOR PRE-HEATIN | G [RPA] RESISTORS | | | | TRB | 2 | TERMOSTATO DI REG | OLAZIONE PRERISCAL | DATORE [RPB] | • | REGULATION THERMOST | AT FOR PRE-HEATIN | G [RPB] RESISTORS | | | | TRSA | 2 | TERMOSTATO DI SICI | JREZZA PRERISCALDA | TORE [RPA] | | PRE-HEATING [RPA] A S | AFETY THERMOSTA | Т | | | | TRSB | 2 | TERMOSTATO DI SICI | JREZZA PRERISCALDA | TORE [RPB] | | PRE-HEATING (RPB) A SAFETY THERMOSTAT | | | | | # **SPARE PARTS** | Desription | | Code | | |--|-------------|-------------|-------------| | · | KTP1030 | KTP1050 | KTP1080 | | SIEMENS LDU GAS PROVING SYSTEM | 2020413 | 2020413 | 2020413 | | SIEMENS LFL CONTROL BOX | 2020448 | 2020448 | 2020448 | | DETECTION ELECTRODE | 2080258 | 2080258 | 2080258 | | OIL FILTER | 2090018 | 2090018 | 2090018 | | GAS FILTER DN80 | 2090112 | - | - | | GAS FILTER DN100 | 2090113 | 2090113 | 2090113 | | GAS FILTER DN125 | 2090128 | 2090128 | 2090128 | | AIR PRESSURE SWITCH DUNGS GW50 A6GW50
A6 | 2160085 | 2160085 | 2160085 | | GAS PRESSURE SWITCH GW500 A5DUNGS GW500 A5 | 2160089 | 2160089 | 2160089 | | IGNITION TRANSFORMER | 2170301 | 2170301 | 2170301 | | GAS VALVE GROUP SIEMENS VGD DN80 | 2190169 | 2190169 | 2190169 | | GAS VALVE GROUP SIEMENS VGD DN100 | 2190174 | 2190174 | 2190174 | | GAS VALVE ACTUATOR SKP15 | 2190181 | 2190181 | 2190181 | | GAS VALVE ACTUATOR SKP25 | 2190183 | 2190183 | 2190183 | | GAS VALVE GROUP SIEMENS VGD DN125 | 2190184 | 2190184 | 2190184 | | GAS VALVE GROUP DUNGS MBC3100SE DN80 | 21903M7 | 21903M7 | 21903M7 | | GAS VALVE GROUP DUNGS MBC5000SE DN100 | 21903M8 | 21903M8 | 21903M8 | | PILOT GAS ELECTROVALVE | 2190502 | 2190502 | 2190502 | | OIL SOLENOID VALVE | 2190403 | 2190750 | 2190750 | | OIL SOLENOID VALVE | 2190750 | 2190750 | 2190750 | | GAS PROVING SYSTEM VPS504 | 2191604 | 2191604 | 2191604 | | GAS FLEXIBLE HOSES | 234FX07 | 234FX07 | 234FX07 | | FLEXIBLE HOSES L=1500 | 2340004 | 2340004 | 2340004 | | FLEXIBLE HOSEL L=800 | 234FX07 | 234FX07 | 234FX07 | | FLEXIBLE HOSE L=347 | 234FX24 | 234FX24 | 234FX24 | | FLEXIBLE HOSE L=435 | 2340089 | 2340089 | 2340089 | | FLEXIBLE HOSE L=485 | 234FX31 | 234FX31 | 234FX31 | | SMALL ADJUSTING CAM FOIL | 2440013 | 2440013 | 2440013 | | BIG ADJUSTING CAM FOIL | 2440014 | 2440014 | 2440014 | | ACTUATOR | 2480004 | 2480004 | 2480004 | | UV PROBE | 2510001 | 2510001 | 2510001 | | BURNER MODULATOR | 2570112 | 2570112 | 2570112 | | NOZZLE FLUIDICS | 2610203 | 2610203 | 2610203 | | NOZZLE BERGONZO B | - | 2610210 | 2610210 | | NOZZLE BERGONZO C | - | - | 2610213 | | PRESSURE STABILISER WITH FILTER | 2800085 | 2800085 | 2800085 | | COMBUSTION HEAD | 3060277 | 3060292 | 3060292 | | BLAST TUBE | 30910N9 | 30910Q9 | 30910Q8 | | IGNITION CABLE | 6050143 | 6050143 | 6050143 | | OIL HEATER RESISTOR 24 kW | 6060008 x 2 | 6060008 x 2 | 6060008 x 2 | | OIL HEATER RESISTOR | 60600010 | 60600010 | 60600010 | # **BURNERS EXPLODED VIEW** | 1 | 1 | AIR INLET | |------------------|----------|----------------------------------| | 2 | | BURNER BODY | | 2.1 | | REMOVABLE COVER | | 3 | 1 | | | _ | | FIBRE GLASS PLAIT | | 4 | 1 | PLATE | | 5 | 1 | INLET | | 6 | 1 | PERSPEX | | 7 | 1 | PHOTOCELL | | 8 | 1 | GLASS FRAME | | 9 | 4 | FEMALE EYEBOLT | | 10 | 1 | BLAST TUBE | | 11 | 1 | AIR PRESSURE SWITCH | | 12 | 1 | BLACK CONNECTOR | | 13.1 | 1 | GAS FILTER | | 13.2 | | FLANGE | | 13.3 | 1 | | | | | FLANGED REVERSIBLE CURVE | | 13.4 | 1 | REVERSIBLE PIPE | | 13.5.1 | 1 | MINIMUM GAS PRESSURE SWITCH | | 13.5.2 | 1 | GAS VALVE GROUP | | 13.5.3 | 1 | GAS VALVE ACTUATOR SKP15 | | 13.5.4 | 1 | GAS VALVE ACTUATOR SKP25 | | 13.5.5 | 1 | GAS LEAKAGE CONTROL UNIT | | 14.1 | 1 | EXTENSION SCREW | | 14.2 | 1 | PLAIN INLET | | 14.3 | 1 | COUNTERNUT | | 14.4 | 1 | MINIMUM GAS PRESSURE SWITCH | | 14.5 | 2 | | | _ | | EG12 GAS ELECTROVALVE | | 14.6 | 1 | BELLOW JOINT | | 14.7 | 1 | SUPPORT FOR PILOT FLEXIBLE HOSES | | 14.8 | 1 | GAS STABILISER | | 15.1 | 1 | INLET NET | | 15.2 | 1 | INLET NET | | 15.3 | 3 | INTERNAL AIR DAMPER | | 15.4 | 1 | AIR INLET | | 15.5 | 1 | SHORT DAMPER SHAFT | | 15.6 | 1 | SHORT DAMPER SHAFT | | 15.7 | 1 | SHORT DAMPER SHAFT | | 15.8.1 | 1 | COMPLETE ACTUATOR BRACKET | | 15.8.2 | <u> </u> | | | 15.8.3 | | ACTUATOR | | | 1 | ACTUATOR | | 16.1 | 1 | FAN | | 16.2 | 1 | FAN MOTOR | | 17.1 | 1 | ELECTRIC BOARD | | 17.2 | 1 | COVER BOARD | | 17.3.1 | 1 | BURNER MODULATOR | | 17.4.1 | 1 | CONTROL BOX | | 17.4.2 | 1 | CONTROL BOX SOCKETB | | 17.4.3 | 1 | TRANSFORMER | | 17.4.4 | 1 | CONTACTOR | | 17.4.5 | 1 | BIMETAL RELAY | | 18.1 |
1 | OR-RING | | 18.2 | 1 | | | | | PRESSURE OUTLET | | 18.3 | 1 | THROTTLE SHAFT | | 18.4 | 1 | BUTTERFLY VALVE | | 18.5 | 1 | GAS MANIFOLD | | 18.6 | 1 | COMBUSTION HEAD | | | | ICNITION ELECTRODE | | 18.6.1 | 1 | IGNITION ELECTRODE | | 18.6.1
18.6.2 | 1 | PILOT | | | | | 55 C.I.B. UNIGAS - M039207CB #### **APPENDIX** #### SIEMENS LFL 1.3.. CONTROL BOX Automatic programme in the event of interruption and indication of position when interrupted By default, in the event of any kind of interruption, the flow of fuel is immediately interrupted. At the same time the programmer stops and this indicates the position at the time of the interruption. A symbol on the indicator disc shows each time the type of stoppage: - No start-up (for example fault in the CLOSED signal for the limit contact "Z" at terminal 8 or some other contact between the terminals 12 and 4 or 4 and 5 is not closed). - Start-up suspended because of a fault in the OPEN signal for the limit contact "A" at terminal 8. - P Block due to absence of air pressure signal. From this moment onwards any absence of air pressure will cause a block. - Block due to malfunction of the flame detector circuit. - Start-up interrupted because there is a fault in the MINMUM signal for the auxiliary contact of the damper servo motor at terminal 8 - 1 Block due to absence of flame signal at the end of the 1st safety period. From this moment onwards any absence of a flame signal will cause a block. - Blockdue to absence of flame signal at the end of the 2nd safety period (flame signal of main burner). - Blockdue to absence of flame signal or air pressure during operation. Where a block stoppage occurs at any moment between switch on and pre-ignition without registering any symbol, the cause is normally an unscheduled flame signal. - a-b Start-up programme - b-b' For time variants:move the programmer on to the automatic stop after the burner starts up (b' = position of the programmer during normal burner operation). b(b')-aPost-ventilation programme after a regulation stop.At the start-up position "a" the programmer stops automatically. - . Safety time duration for mono-tube burners - .. Safety time duration for twin-tube burners The apparatus can be reset immediately after a block. After resetting (and after the elimination of any problem causing the stoppage or after a power failure) the programmer returns to its start-up position. In this event only the terminals 7, 9, 10 and 11 are live in accordance with the monitoring programme. Only after this the device programs a new startup. #### Operation The wiring system and also the control system of the programmer "P" have already been given in this manual. The response signals required for the active parts and the flame monitor circuit are shown by a hatching. In the absence of these response signals the mechanism interrupts the start-up programme; the exact time of the interruption can be identified from the visual indicator and will cause a block if the safety code requires it. - A consent to start-up by means of the thermostat or pressostat "R' - A-B start-up program - B-C normal burner operation - C regulation stop caused by "R" - C-D programmer returns to start-up position A. During the regulation stop only terminals 11 and 12 are live and the damper, through the limit contact "Z" of its servo-motor is in the CLOSED position. The flame detector circuit F is activated (terminals 22 and 23 or 23/4) for the detector test and the paracitic light test. Where the burners do not have dampers (or have an independent 00 damper control mechanism) there must be a bridge between terminals 6 and 8, otherwise the mechanism will not start up the burner. For a burner to start up the following conditions must be met: - Mechanism not blocked/reset. - Damper closed.Limit contact switchZ must be in the CLOSED position and allow current to flow between terminals 11 and 8. - Any contacts checking that the fuel valve (bv...) is closed, or other contacts with similar functions, must be closed between terminal 12 and the air pressostat LP. - The contact for the air pressostat LP must be in the off position (LP test) so as to feed terminal 4. - The gas pressostat contacts GP and the safety thermostat and pressostat contacts W must also be closed. #### Start-up program A Start-up (R closes the start-up control ring between terminals 4 and 5) The programmer starts up.At the same time the ventilator motor is fed through terminal 6 (only for pre-ventilation) and, after t7, the ventilator motor or the combustion gas exhaust fan is fed through terminal 7 (pre-ventilation and post-ventilation). At the end of 116, the command opening the damper passes through terminal 9; during the damper opening time the programmer does not move since terminal 8, through which the programmer is fed, is dead. Only once the damper is fully open and the limit contact switch A has switched on, feeding terminal 8, does the programme proceed. t1 Pre-ventilation time with damper fully open (nominal air flow). Shortly after the beginning of the pre-ventilation time, the air pressostat should switch off the current between terminals 4 and 13;otherwisethe apparatus would block (air pressure monitor). At the same time the terminal 14 should be live since current feeding the ignition transformer and the fuel valves passes through this circuit. During pre-ventilation time the flame detector circuit is checked and in the event of an operational defect the monitor brings about a block. At the end of the pre-ventilation time the monitor automatically moves the damper servo-motor, through terminal 10, to the flame ignition position which is governed by the auxiliary contact "M". During this period the programmer stops until terminal 8, is again activated through contact "M". After a few seconds the little programmer motor is directly fed by the active part of the apparatus. After this point terminal 8 plays no further part in the burner ignition process. ## Mono-tube burner - t3 Pre-ignition time waiting the response from the fuel valve at terminal 18. - t2 Safety time (start up flame strenght); at the end of the safety time a flame signal should appear at terminal 22 of the amplifier and it should stay on until a regulation stop; if this does not happen the mechanism will block. - t4 Interval; at the end of t4, terminal 19 is live. - t5 Interval At the end of t5 terminal 20 is live. At
the same time the monitor outlets from 9 and 11 and terminal 8 into the active part of the apparatus are kept galvanically separatedso as to protect the monitor itself from recovery voltage through the capacity regulator circuit. #### Twin-tube burners (**) - t3 Preignition time until the all clear to the pilot burner valve at terminal 17 - t2 First safety time (pilot flame strenght); at the end of the safety time a flame signal should appear at terminal 22 of the amplifier and it should stay on, until a regulation stop; if it does not, the apparatus will block. - t4 Interval until the consent to the fuel valve at terminal 19, for the first flame of the main burner. - t9 2nd safety time; at the end of the second safety time the main burner should be lit by means of the pilot. At the end of this period, terminal 17 is dead and therefore the pilot burner will be out. - t5 Interval; at the end of t5 terminal 20 is live. At the same time the monitor outlets from 9 to 11 and the terminal 8at the input of the active part of the apparatus are galvanically separated so as to protect the apparatus itself from recovery voltage through the strenght regulator circuit. When the strenght regulator LR at terminal 20 gives the consent, the start-up programme for the apparatus comes to an end. Depending on time variants, the programmer stops either immediately or at the end of a set time, without effecting the position of the contacts. B Operational position of the burner B-C Burner operation (production of heat) While the burner is working the strnght regulator controls the damper, according to the demand for heat, by means of the positioning at nominal load of the auxiliary contact "V" of the damper servocontrol. C Regulation stop for operation of "R" When there is a regulation stop the fuel valves immediately close. At the same time the programmer starts to programme: t6 Post-ventilation time (post-ventilation with the ventilator "G" at terminal 7). Shortly after beginning of the post-ventilation time terminal 10 becomes live and moves the damper to the "MIN" position. The full closure of the damper only happens towards the end of the post-ventilation time and is prompted by an automatic signal from terminal 11 t13 Admissible post-ignition time During this time the flame monitor circuit may still receive a flame signal without the apparatus blocking. D-A End of automatic programme At the end of t6, at the point where the programmer and the automatic contacts have reverted to the starter position, the detection probe test restarts. During an operational stop even an unscheduled flame signal lasting a few seconds can cause a block because during this period an NTC in the circuit acts as retarder. This means that brief unscheduled influences cannot cause a block. (**) Times t3, t2 and t4 only apply only to safety devices in the series 01. #### **Specifications** Mains voltage 220V -15%...240V +10% Frequency 50Hz -6%...60Hz +6% Absorbed capacity 3.5 VA Built-in fuse T6.3/250E slow action DIN41571 No. 451915070 External fuse max. 16A Interference N-VDE0875 Flow permitted at terminal 1 5A (DIN 0660 AC3) Flow permitted at control terminals 4A (DIN 0660 AC3) Flow at monitor contacts: input at terminals 4 & 5 1A, 250V input at terminals 4 & 11 1A, 250V input at terminals 4 & 14 function of the load at terminals 16 and 19, min.1A, 250V Emplacement Any Protection IP40 Permitted ambient temp -20...+60° C Min.temperature (trans/storage) -50° C Weight: apparatus approx. 1,000g. base approx. 165g. #### Ionisation monitor voltage in detector electrode normal working $330V \pm 10\%$ test $380V \pm 10\%$ short circuit current max. 0,5 mA lonisation current, min.request 6 µA max. permitted length for connecting cables normal cable (laid separately**) 80m armoured cable(high frequency) protection at terminal 22 140m **UV** monitor Voltage in UV detector normal working $330V \pm 10\%$ test $380V \pm 10\%$ Detector current, min. request* $70\mu\text{A}$ Max. detector current normal working 630 μ A test 1300 μ A Max.length of connecting cable normal cable (laid separately**) 100m armoured cable (high frequency) protected at terminal 22 200m Weight QRA2 60 g QRA10 450 g. *Connect up in parallel to the measuring device a condenser 100 μF , 10...25V. ** The wire connecting up the detector electrode should not be in the same sleeve as the other conductor wires. Ignition spark monitor with QRE1 series 02 detector Minimum detector current 30µA #### Operating times t7 initial delay for ventilator G2 2 t16 initial delay of air damper OPEN consent 4 t11 opening time for damper any t10 initial delay for air pressure monitor8 t1 pre-ventilation time with damper open36 t12 travel time for air damper to MIN positionany t3 t3' pre-ignition time t3 t3 't2 t2' safety time (1st safety time for burners with intermittent pilot lighter t2 2 t4 t4' interval between start of t2 and response to valve at terminal 19 t4 10 t4 '- t9 2nd safety time for burners with intermittent pilot lighter 2 t5 interval between end of t4 and response at terminal 20 10 t20 interval before programmer cuts out after start-upduration of start-up 60 t6 post-ventilation time (G2 only) 12 t13 permitted post-ignition time 12 t16 initial delay from opening consent of the air damper t20 interval until the automatic shut-off of the programming mechanism after the burner start Key A limit contact switch for damper OPEN position Al block remote signal AR main relay (working network) with contacts "ar" AS Monitor fuse BR block relay with "br" contacts BV fuel valve FK reset button FE detector electrode of ionisation circuit FR flame relay with "fr" contacts G ventilator motor or burner motor GP gas pressure switch H main interruptor switch L block stoppage LED LK air damper LP air pressostat LR safety regulator M auxiliary contact switch for damper "MIN" position QRA UV detector QRE ignition spark detector R thermostat or pressostat S fuse SA damper servo-motor SM synchronous programmer motor V flame signal amplifier V in case of servo-motor: auxiliary contact for response to fuel valve with regard of damper position W safety pressostat or thermostat Z ignition transformer Z in case of servomotor: end of limit contact switch for damper CLOSED position ZBV pilot burner fuel valve o for mono-tube burners o for twin-tube burners (1) input for raising QRA detector voltage to test level (2) input for excitation of flame relay during flame detector test circuit (contact XIV) and during safety time (contact IV) (3) Do not press EK for more than 10 seconds #### Programmer diagram t1 pre-ventilation time t2 safety time *t2 '1st safety time t3 pre-ignition time *t3 t4 interval for creating current between terminals 18 and 19 *t4 'interval for creating current between terminals 17 and 19 t5 interval for creating current between terminals 19 and 20 t6 post-ventilation time 'pre-ignition time t7 interval between startup consent and current created at terminal 7 t8 duration of start-up *t9 2nd safety time t10 interval before air pressure monitoring begins t11 damper opening travel time t12 damper closure travel time t13 permissible post-combustion time t16 initial delay of damper OPEN response t20 interval before programmer automatically stops * These times are valid with the use of a series 01 safety device for monitoring burners with intermittent pilot lighter. C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change without notice. Errors and omissions excepted. # **USER MANUAL OF MULTI-THERMOSTAT** MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. ### **User interface:** Device: #### Note: In normal operation, the display A shows the oil tank resistor temperature (probe Pb1). In normal operation, the display B shows the oil output temperature (probe Pb3). ### Connections from terminal side: ### **Probe connection:** input Al1 = probe Pb1 = set-point "tr" = oil heater temperature probe; input Al2 = probe Pb2 = set-point "tCl" = plant consent temperature probe (when installed); input Al3 = probe Pb3 = set-point "OlL" = oil heater output temperature probe (PID regulation); input **AI4** = probe **Pb4** = set-point "**tcn**" = oil heater consent temperature probe. ## Menu: To enter the menu below, keep pushing **ENTER** for more than 3 s. | Menu code Sub-menu Function code | | Function | Notes | |----------------------------------|-----|------------------------|---| | Prb | | Probes values | You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,, Pb4) and the probe value is on display B (not fitted or out of work probes show ""). | | Log | | Login | It defines the access level to menu and parameters (password) | | | PAS | Password | Password input | | Par | | Parameters menu | Access to parameters (you have to login first) | | | CnF | Configuration menu | Parameter configuration | | | rEG | Regulation menu | Set to set-point, probe, thresholds etc. | | ALA | | Alarm menu | Access to alarm management | | | Act | Active alarms | Show the active alarms | | | rES | Reset alarms & Warning | Reset of the manual reset alarms and warning | | Loc | | Lock/Unlock functions | Not used | | InF | rEL | Software version | Installed software version | | tUN | | | Activation On, deactivation ESC PID parameter autotuning | # Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the
left lights, the output N05-C5 is active and the relay **KTRS** switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than **trS**, reset it through **ALA/rES**. In order to show active alarms and warnings, select the relevant menu through **ALA/Act**.and, using the **UP** and **DOWN** buttons, scroll the lines. In order to perform the manual reset, select ALA/rES. | Code | Description | Sourse | Active simbol | Reset type | |------|----------------------------------|-----------------------|---------------|------------| | trS | High temperature resistors alarm | probe Pb4 > value trS | red key | Manual | | EP1 | Probe Pb1 fault | Probe Pb1 fault | red triangle | Automatic | | EP2 | Probe Pb2 fault | Probe Pb2 fault | red triangle | Automatic | | EP3 | Probe Pb3 fault | Probe Pb3 fault | red triangle | Automatic | | EP4 | Probe Pb4 fault | Probe Pb4 fault | red triangle | Automatic | # Set point adjustment: All the parameters inside the Par menu are locked by a password. The user can modify only set points (menu **rEG**), without using any passwords. The oil viscosity at the nozzle, should be about 1,5%, which guarantees correct and safe functioning of the burner. The temperature values in the table, guarantee the respect of that parameter and are valid when the pre heating tank is installed on the burner. For different configurations, please refer to the chapter "Recommendations to design heavy oil feeding plants" in the burner manual. Here below recommended set points: | М | enu pa | ath | | Oil viscosity at 50 °C according to the letter show n in the burner model | | | | | | |-----|--------|-----|---|---|-----------|-----------------------|------------------------|-------------------------|--| | | | | | Р | | | | | | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | | 12 E | < 7℃ | > 7 €
< 15 € | > 15 ℃
< 50 ℃ | > 50 °E
< 530 °E | | | Par | | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | | Pb2 | tCl | Plant consent temperature probe (when installed) | 20 ℃ | 70 ℃ | 70 ℃ | 70 ℃ | | | | | Pb3 | Oil | oil heater output
temperature probe (PID
regulation); | 60-70 ℃ | 110-120 ℃ | 120-130 ℃ | 130-140 ℃ | 140-150° C | | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 ℃ | 120 ℃ | 130 ℃ | 140 ℃ | 150 ℃ | | | | Pb4 | tcn | Oil heater consent temperature probe | 40 ℃ | 100 ℃ | 100 ℃ | 110 ℃ | 120 ℃ | | | | | trS | Safety temperature tank resistors (manual reset) | 120 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | | The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications. # **CIB UNIGAS 600V** CONTROLLER # **USER'S MANUAL** COD. M12925CA Rel 1.2 08/2014 SOFTWARE VERSION 1.0x T73 code 80379 / Edition 01 - 06/2012 CE # 1 · INSTALLATION # · Dimensions and cut-out; panel mounting For correct and safe installation, follow the instructions and observe the warnings contained in this manual. ### Panel mounting: To fix the unit, insert the brackets provided into the seats on either side of the case. To mount two or more units side by side, respect the cut-out dimensions shown in the drawing. CE MARKING: The instrument conforms to the European Directives 2004/108/CE and 2006/95/CE with reference to the generic standards: EN 61000-6-2 (immunity in industrial environment) EN 61000-6-3 (emission in residential environment) EN 61010-1 (safety). MAINTENANCE: Repairs must be done only by trained and specialized personnel. Cut power to the device before accessing internal parts. Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene, etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case. **SERVICE:** GEFRAN has a service department. The warranty excludes defects caused by any use not conforming to these instructions. EMC conformity has been tested with the following connections | FUNCTION | CABLE TYPE | LENGTH | |--------------------|---------------------------------|--------| | Power supply cable | 1 mm ² | 1 m | | Relay output cable | 1 mm ² | 3,5 m | | TC input | 0,8 mm ² compensated | 5 m | | Pt100 input | 1 mm² | 3 m | | | | | | 2 · TECHNICA | AL SPECIFICATIONS | | | |---|---|--|--| | Display | 2x4 digit green, high display 10 and 7mm | | | | Keys | 4 of mechanical type (Man/Aut, INC, DEC, F) | | | | Accuracy | 0.2% f.s. ±1 digit ambient temperature 25°C | | | | Main input (settable digital filter) | TC, RTD, PTC, NTC
60mV,1V Ri≥1MΩ; 5V,10V Ri≥10KΩ; 20mA Ri=50
Tempo di campionamento 120 msec. | | | | Type TC Thermocouples (ITS90) | Type TC Thermocouples : J,K,R,S,T (IEC 584-1, CEI EN 60584-1, 60584-2); custom linearization is available / types B,E,N,L GOST,U,G,D,C are available by using the custom linearization. | | | | Cold junction error | 0,1° / °C | | | | RTD type (scale configurable within indicated range, with or without decimal point) (ITS90) | DIN 43760 (Pt100), JPT100 | | | | Max line resistance for RTD | 20Ω | | | | PTC type / NTC Type | 990Ω, 25°C / 1KΩ, 25°C | | | | Safety | detection of short-circuit or opening of probes,
LBA alarm | | | | °C / °F selection | configurable from faceplate | | | | Linear scale ranges | -1999 to 9999 with configurable decimal point position | | | | Controls | PID, Self-tuning, on-off | | | | pb - dt - it | 0,0999,9 % - 0,0099,99 min - 0,0099,99 min | | | | Action | Heat / Cool | | | | Control outputs | on / off | | | | Maximum power limit heat / cool | 0,0100,0 % | | | | Cycle time | 0200 sec | | | | Main output type | relay, logic, continuous (010V Rload \ge 250KΩ, 0/420mA Rload \le 500Ω) | | | | Softstart | 0,0500,0 min | | | | Fault power setting | -100,0100,0 % | | | | Automatic blanking | Displays PV value, optional exclusion | | | | Configurable alarms | Up to 3 alarm functions assignable to an output, configurable as: maximum, minimum, symmetrical, absolute/deviation, LBA | | | | Alarm masking | - exclusion during warm up
- latching reset from faceplate or external contact | | | | Type of relay contact | NO (NC), 5A, 250V/30Vdc cosφ=1 | | | | Logic output for static relays | 24V ±10% (10V min at 20mA) | | | | Transmitter power supply | 15/24Vdc, max 30mA short-circuit protection | | | | Power supply (switching type) | (std) 100 240Vac ±10%
(opt.) 1127Vac/dc ±10%;
50/60Hz, 8VA max | | | | Faceplate protection | IP65 | | | | Working / Storage temperature range | 050°C / -2070°C | | | | Relative humidity | 20 85% non-condensing | | | | Environmental conditions of use | for internal use only, altitude up to 2000m | | | | Installation | Panel, plug-in from front | | | | Weight | 160g for the complete version | | | # 5 · "EASY" PROGRAMMING and CONFIGURATION ### Prot # 6 · PROGRAMMING and CONFIGURATION N.B.: Once a particular configuration is entered, all unnecessary parameters are no longer displayed # · InFo Display # · CFG vote. Our and har only display configuration extent # • Hrd # • Lin # · U.CAL | U.CA | User calibration | | Val | Function | |------|------------------|---|-----|-----------------------------| | | | | 1 | - | | | | | 2 | Input 1 – custom 10V / 20mA | | | | | 3 | Input 1 - custom 60mV | | | | | 4 | Custom PT100 / J PT100 | | | | 1 | 5 | Custom PTC | | | | | 6 | Custom NTC | | | | | 7 | - | | | | - | | | Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n # 8 · PRE-HEATING FUNCTION Enable the pre-heating function by setting parameters GS.0, Ht.0, GS.1 other than zero. It consists of three phases that are activated sequentially at firing: - Ramp 0 phase - Enabled by setting GS.0 > 0. Starting from setpoint = PV (initial state), it reaches pre-heating set SP.0 with gradient GS.0 - Maintenance phase - Enabled by setting Ht.0 > 0. Maintains pre-heating setpoint SP.0 for time Ht.0 - Ramp 1 phase - Enabled by setting GS.1 > 0. Starting from pre-heating setpoint SP.0, it reaches active _SP set with gradient GS.1 In case of selftuning, the pre-heating function is not activated # 9 · ADJUSTMENT WITH MOTORIZED VALVE In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller. For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it. The adjustment valves vary the delivery in a modulated manner, producing finite variations in the fluid passage inner area corresponding to finite variations of the actuator input signal, coming from the controller. The servomechanism, for example, comprises an electric motor, a reducer and a mechanical transmission system which actions the valve. Various auxiliary components can be present such as the mechanical and electrical safety end travels, manual actioning systems. CONTROL EXAMPLE FOR V0 VALVE The controller determines, on the basis of the dynamics of the process, the control output for the valve corresponding to the opening of the same in such a way so as to maintain the desired value of the process variable. # Characteristic parameters for valves control - Actuator time (Ac.t) is the time employed by the valve
to pass from entirely open to entirely closed (or vice-versa), and can be set with a resolution of one second. It is a mechanical feature of the valve+actuator unit. NOTE: if the actuator's travel is mechanically limited it is necessary to proportionally reduce the Ac.t value. - Minimum impulse (t.Lo) expressed as a % of the actuator time (resolution 0.1%). Represents the minimum change in position corresponding to a minimum change in power supplied by the instrument below which the actuator will not physically respond to the command. This represents the minimum variation in position due to which the actuator does not physically respond to the command. The minimum duration of the movement can be set in t.Lo, expressed as a % of actuator time. - Impulsive intervention threshold (t.Hi) expressed as a % of the actuator time (resolution 0.1%) represents the position displacement (requested position – real position) due to which the manoeuvre request becomes impulsive. You can choose between 2 types of control: - 1) ON time of movement = t.on and OFF time proportional to shift and greater than or equal to t.Lo (we recommend setting t.on = t.Lo) (set t.oF = 0). - 2) ON time of movement = t.on and OFF time = t.oF. A value set for t.oF < t.on is forced to t.on. To activate this type, set t.oF <> 0. The type of movement approach allows fine control of the reverse drive valve (from potentiometer or not), especially useful in cases of high mechanical inertia. Set t.Hi = 0 to exclude modulation in positioning. This type of modulated approach allows precise control of the feedback actioned valve, by a potentiometer or not, and is especially useful in cases of high mechanical inertia. Setting t.Hi = 0 excludes modulation in positioning. - Dead zone(dE.b) is a displacement band between the adjustment setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF). It is expressed as a percentage of the bottom scale and is positioned below the setpoint. The dead zone is useful in an operative process to avoid straining the actuator with repeated commands and an insignificant effect on the adjustment. Setting dE.b = 0 the dead zone is excluded. Graph of behavior inside the band with integral time $\neq 0$. With integral time = 0, movement ON time is always equal to OFF time. t0 = t.Lo # Valve control modes With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats. #### V0 - for floating valve without potentiometer Model V0 have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays; every action updates the presumed position of the virtual potentiometer calculated on the basis of the actuator travel declared time. In this way there is always a presumed position of the valve which is compared with the position request of the controller. Having reached a presumed extreme position (entirely open or entirely closed determined by the "virtual potentiometer") the controller provides a command in the same direction, in this way ensuring the real extreme position is reached (minimum command time = t.on). The actuators are usually protected against the OPEN command in the entirely open position or CLOSE command in the entirely closed position. #### V3 - for floating valve, PI control When the difference between the position calculated by the controller and the only proportional component exceeds the value corresponding to the minimum impulse t.Lo the controller provides an OPEN or CLOSE command of the duration of the minimum impulse itself t.Lo. At each delivery the integral component of the command is set to zero (discharge of the integral). The frequency and duration of the impulses is correlated to the integral time (h.it or c.it). #### Non-movement behavior t.Hi = 0: with power = 100% or 0.0%, the corresponding open or close outputs always remain enabled (safety status). #### Movement behavior t.Hi <> 0: with position attained corresponding to 100% or 0.0%, the corresponding open or close outputs are switched off. If t.oF = 0, current function is maintained If t.oF ≠ 0 movement mode will be as shown on the graph # 10 · CONTROL ACTIONS #### Proportional Action: action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint). Derivative Action: action in which contribution to output is proportional to rate of variation input deviation. Integral Action: action in which contribution to output is proportional to integral of time of input deviation. #### Influence of Proportional, Derivative and Integral actions on response of process under control - * An increase in P.B. reduces oscillations but increases deviation. - * A reduction in P.B. reduces the deviation but provokes oscillations of the controlled variable (the system tends to be unstable if P.B. value is too low). - * An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation and prevents oscillation up to a critical value of Derivative Time, beyond which deviation increases and prolonged oscillations occur. - * An increase in Integral Action corresponds to a reduction in Integral Time, and tends to eliminate deviation between the controlled variable and the setpoint when the system is running at rated speed. If the Integral Time value is too long (Weak integral action), deviation between the controlled variable and the setpoint may persist. Contact GEFRAN for more information on control actions. # 11 · MANUAL TUNING - A) Enter the setpoint at its working value. - B) Set the proportional band at 0.1% (with on-off type setting). - C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure: D) The PID parameters are calculated s follows: Proportional band (V max - V min) is the scale range. Integral time: $It = 1.5 \times T$ Derivative time: dt = It/4 **E)** Switch the unit to manual, set the calculated parameters. Return to PID action by setting the appropriate relay output cycle time, and switch back to Automatic. **F)** If possible, to optimize parameters, change the setpoint and check temporary response. If an oscillation persists, increase the proportional band. If the response is too slow, reduce it. # 12 · SET GRADIENT SET GRADIENT: if set to $\neq 0$, the setpoint is assumed equal to PV at power-on and auto/man switchover. With gradient set, it reaches the local setpoint. Every variation in setpoint is subject to a gradient. The set gradient is inhibited at power-on when self-tuning is engaged. If the set gradient is set to $\neq 0$, it is active even with variations of the local setpoint. The control setpoint reaches the set value at the speed defined by the gradient. # 13 · SOFTWARE ON / OFF SWITCHING FUNCTION How to switch the unit OFF: hold down the "F" and "Raise" keys simultaneously for 5 seconds to deactivate the unit, which will go to the OFF state while keeping the line supply connected and keeping the process value displayed. The SV display is OFF. All outputs (alarms and controls) are OFF (logic level 0, relays de-energized) and all unit functions are disabled except the switch-on function and digital communication. How to switch the unit ON: hold down the "F" key for 5 seconds and the unit will switch OFF to ON. If there is a power failure during the OFF state, the unit will remain in OFF state at the next power-up (ON/OFF state is memorized). The function is normally enabled, but can be disabled by setting the parameter Prot = Prot + 16. #### 14 · SELF-TUNING The function works for single output systems (heating or cooling). The self-tuning action calculates optimum control parameter values during process startup. The variable (for example, temperature) must be that assumed at zero power (room temperature). The controller supplies maximum power until an intermediate value between starting value and setpoint is reached, after which it zeros power. PID parameters are calculated by measuring overshoot and the time needed to reach peak. When calculations are finished, the system disables automatically and the control proceeds until the setpoint is reached. #### How to activate self-tuning: # A. Activation at power-on - 1. Set the setpoint to the required value - 2. Enable selftuning by setting the Stun parameter to 2 (CFG menu) - 3. Turn off the instrument - 4. Make sure the temperature is near room temperature - 5. Turn on the instrument again #### B. Activation from keyboard - 1. Make sure that key M/A is enabled for Start/Stop selftuning (code but = 6 Hrd menu) - 2. Bring the temperature near room temperature - 3. Set the setpoint to the required value - 4. Press key M/A to activate selftuning (Attention: selftuning interrupts if the key is pressed again) The procedure runs automatically until finished, when the new PID parameters are stored: proportional band, integral and derivative times calculated for the active action (heating or cooling). In case of double action (heating or cooling), parameters for the opposite action are calculated by maintaining the initial ratio between parameters (ex.: CPb = HPb * K; where K = CPb / HPb when self-tuning starts). When finished, the Stun code is automatically cancelled. #### Notes: - -The procedure does not start if the temperature is higher than the setpoint (heating control mode) or if the temperature is lower than the setpoint (cooling control mode). In this case, the Stu code is not cancelled. - -It is advisable to eneable one of the configurable LEDs to signal selftuning status. By setting one of parameters LED1, LED2, LED3=4 or 20 on the Hrd menu, the respective LED will be on or flashing when selftuning is active. # 15 · ACCESSORIES # Interface for instrument
configuration Kit for PC via the USB port (Windows environment) for GEFRAN instruments configuration: Lets you read or write all of the parameters - · A single software for all models - · Easy and rapid configuration - · Saving and management of parameter recipes - · On-line trend and saving of historical data Component Kit: - Connection cable PC USB ... port TTL - Connection cable PC USB ... RS485 port - Serial line converter - CD SW GF Express installation | · ORDERING CODE | | | | |-----------------|-------------|--|--| | GF_eXK-2-0-0 | cod F049095 | | | # 16 · ORDER CODE #### WARNINGS WARNING: this symbol indicates danger. It is placed near the power supply circuit and near high-voltage relay contacts. Read the following warnings before installing, connecting or using the device: · follow instructions precisely when connecting the device. - · always use cables that are suitable for the voltage and current levels indicated in the technical specifications. - the device has no ON/OFF switch: it switches on immediately when power is turned on. For safety reasons, devices permanently connected to the power supply require a twophase disconnecting switch with proper marking. Such switch must be located near the device and must be easily reachable by the user. A single switch can control several units. - if the device is connected to electrically NON-ISOLATED equipment (e.g. thermocouples), a grounding wire must be applied to assure that this connection is not made directly through the machine structure. - if the device is used in applications where there is risk of injury to persons and/or damage to machines or materials, it MUST be used with auxiliary alarm units. You should be able to check the correct operation of such units during normal operation of the device. - before using the device, the user must check that all device parameters are correctly set in order to avoid injury to persons and/or damage to property. - the device must NOT be used in infiammable or explosive environments. It may be connected to units operating in such environments only by means of suitable interfaces in conformity to local safety regulations. - the device contains components that are sensitive to static electrical discharges. Therefore, take appropriate precautions when handling electronic circuit boards in order to prevent permanent damage to these components. Installation: installation category II, pollution level 2, double isolation The equipment is intended for permanent indoor installations within their own enclosure or panel mounted enclosing the rear housing and exposed terminals on the back. - · only for low power supply: supply from Class 2 or low voltage limited energy source - · power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label. • install the instrumentation separately from the relays and power switching devices - · do not install high-power remote switches, contactors, relays, thyristor power units (particularly if "phase angle" type), motors, etc... in the same cabinet. - · avoid dust, humidity, corrosive gases and heat sources. - do not close the ventilation holes; working temperature must be in the range of 0...50°C. - · surrounding air: 50°C - use 60/75°C copper (Cu) conductor only, wire size range 2x No 22 14AWG, Solid/Stranded - · use terminal tightening torque 0.5N m If the device has faston terminals, they must be protected and isolated; if the device has screw terminals, wires should be attached at least in pairs. - · Power: supplied from a disconnecting switch with fuse for the device section; path of wires from switch to devices should be as straight as possible; the same supply should not be used to power relays, contactors, solenoid valves, etc.; if the voltage waveform is strongly distorted by thyristor switching units or by electric motors, it is recommended that an isolation transformer be used only for the devices, connecting the screen to ground; it is important for the electrical system to have a good ground connection; voltage between neutral and ground must not exceed 1V and resistance must be less than 6Ohm; if the supply voltage is highly variable, use a voltage stabilizer for the device; use line filters in the vicinity of high frequency generators or arc welders; power supply lines must be separated from device input and output lines; always check that the supply voltage matches the - · Input and output connections: external connected circuits must have double insulation; to connect analog inputs (TC, RTD) you have to: physically separate input wiring from power supply wiring, from output wiring, and from power connections; use twisted and screened cables, with screen connected to ground at only one point; to connect adjustment and alarm outputs (contactors, solenoid valves, motors, fans, etc.), install RC groups (resistor and capacitor in series) in parallel with inductive loads that work in AC (Note: all capacitors must conform to VDE standards (class x2) and support at least 220 VAC. Resistors must be at least 2W); fit a 1N4007 diode in parallel with the coil of inductive loads that operate in GEFRAN spa will not be held liable for any injury to persons and/or damage to property deriving from tampering, from any incorrect or erroneous use, or from any use not conforming to the device specifications. # Set-up for 600V RRR0-1-T73 regulator # Set up for temperature probe Pt100 (ex Siemens QAE2120 130°C max.) The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x # Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 5 (hysteresis positive for output 1, terminals 21-22 (ex Q13-Q14) | |------|---| | Hy.n | -5 hysteresis negative for output ,1 terminals 21-22 (ex Q13-Q14) | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG
S.tun | | |--------------|------| | S.tun | 0 | | hPb | 1,2 | | hlt | 5,83 | | hdt | 1,33 | | | | | InP | | | | |--------------|-------------------------------------|--|--| | | | | | | tyP | 30 (Pt100) | | | | | | | | | dP_S
Lo.S | 1 (decimals num.) | | | | | 0 (min. sensor scale) | | | | Hi.S | 850,0 (max sensor scale) | | | | oFS | 0 (offset of input correction) | | | | Lo.L | 30,0 (lower set-point range limit) | | | | Hi.L | 130,0 (upper set-point range limit) | | | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (operating mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; | | | SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | | | | PAS | 99 then push and keep pushed F until visualization of Hrd | | | | | |-------|---|--|--|--|--| | | | | | | | | Hrd | | | | | | | | | | | | | | CtrL | 6 (PID warm) | | | | | | AL.nr | 1 | | | | | | but | 1 | | | | | | diSP | 0 | | | | | | Ld.1 | 1 | | | | | | Ld.2 | 28 | | | | | | Ld.3 | 20 | | | | | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. ### Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. ### Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # Set up for temperature probe Pt100 for high temperature (350°C max.) # Verify wiring of the sensor # Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) | | | | | |------|---|--|--|--|--| | Hy.n | -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14) | | | | | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG
S.tun
hPb
hlt | | |----------------------------|------| | S.tun | 0 | | hPb | 1,2 | | hlt | 5,83 | | hdt | 1,33 | | | | | InP | | | | |------|-------------------------------------|--|--| | | | | | | tyP | 30 (Pt100) | | | | | | | | | dP_S | 1 (decimals num.) | | | | Lo.S | 0 (min. sensor scale) | | | | Hi.S | 850,0 (max sensor scale) | | | | oFS | 0 (offset of input correction) | | | | Lo.L | 0,0 (lower set-point range limit) | | | | Hi.L | 350,0 (upper set-point range limit) | | | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol
running time: SQN72.4/STA12=12; SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | PAS | 99 then push and keep pushed F until visualization of Hrd | | | | | |-------|---|--|--|--|--| | | | | | | | | Hrd | | | | | | | | | | | | | | CtrL | 6 (PID warm) | | | | | | AL.nr | 1 | | | | | | but | 1 | | | | | | diSP | 0 | | | | | | Ld.1 | 1 | | | | | | Ld.2 | 28 | | | | | | Ld.3 | 20 | | | | | Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value. # Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. # Software switch off: By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # Set up for pressure transmitter 2 wires signal 4÷20mA With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt # Verify wiring of the sensor # Impostazione set-point | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | |-------------|--------|--------|-------|-------|-------|-------| | Set-point | 1bar | 1,5bar | 6bar | 6bar | 6bar | 6bar | To modify it directly use "up" and "down" arrows. # By pushing **F** you go to parameter: | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | |-------------|--------|--------|--------|--------|---------|-------| | Hy.P | 0,2bar | 0,5bar | 0,5bar | 0,8bar | 1,25bar | 2bar | | Hy.n | 0bar | 0bar | 0bar | 0bar | 0bar | 0bar | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG | | |-------|------| | S.tun | 0 | | hPb | 5 | | hlt | 1,33 | | hdt | 0,33 | | | | | InP | | |------|-------------------| | | | | tyP | 44 (4÷20mA) | | | | | dP S | 2 (decimals num.) | | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | | |-------------|--------|------|-------|-------|-------|-------|----------------------------| | Lo.S | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | min. sensor scale | | Hi.S | 1,60 | 3,00 | 10,00 | 16,00 | 25,00 | 40,00 | max sensor scale | | oFS | 0 | 0 | 0 | 0 | 0 | 0 | offset of input correction | | Lo.L | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | lower set-point setting | | Hi.L | 1,60 | 3,00 | 10,00 | 16,00 | 25,00 | 40,00 | upper set-point setting | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | PAS | 99 then push and keep pushed F until visualization of Hrd | |-------|---| | | | | Hrd | | | | | | CtrL | 6 (PID warm) | | AL.nr | 1 | | but | 1 | | diSP | 0 | | Ld.1 | 1 | | Ld.2 | 28 | | Ld.3 | 20 | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. # Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. # Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # Set -up for thermocouples type **K** or **J** # Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) | |------|---| | Hy.n | -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14) | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG
S.tun | | |--------------|------| | S.tun | 0 | | hPb | 1,2 | | hlt | 5,83 | | hdt | 1,33 | | | | | InP | | |------|---| | | | | tyP | 2 (thermocouple K 0÷1300°C) / 0 (thermocouple J 0÷1000°C) | | | | | dP_S | 0 (no decimal) / 1 (1 decimal) | | Lo.S | 0 (min. sensor scale) | | Hi.S | 1300 (max sensor scale for tc K) / 1000 (max sensor scale for tc J) | | oFS | 0 (offset of input correction) | | Lo.L | 0 (lower set-point range limit) | | Hi.L | 1300 (upper set-point range limit) per tc K / 1000 for tc J | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | PAS | 99 then push and keep pushed F until visualization of Hrd | |-------|---| | | | | Hrd | | | | | | CtrL | 6 (PID warm) | | AL.nr | 1 | | but | 1 | | diSP | 0 | | Ld.1 | 1 | | Ld.2 | 28 | | Ld.3 | 20 | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. # Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. # Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # RWF50.2x & RWF50.3x User manual M12922CB Rel.1.0 07/2012 **DEVICE INSTALLATION**Install the device using the relevant tools as shown in the figure. To wire the device and sensors, follow the instructions on the burner wiring diagram. # **FRONT PANEL** #### **NAVIGATION MENU** RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow: # Set-point: set or modification: When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the **Enter** button: on the lower display (green) **Opr** appears; push **Enter** again and in the same display **SP1** appears. Push **Enter** again and the lower display (green **SP1**) flashes. Using the **up and down arrows** change the set-point on the upper display (red). Push **Enter** to confirm and push **ESC** more times to get the home position. #### PID parameters set and modifications (see table below): - Push Enter button, on the green display Opr appears; using the down arrow, scroll until group PArA is reached and push Enter. - on the green display Pb1 e appears and on the red one the set parameter. - Push is sequence the **down or up** arrow the menu is scrolled. - Push **Enter** to select and the **arrows** to choose the desired value. **Enter** to confirm. | Parameter | Display | Range | Factory setting | Remarks | |---|---------|-----------------|-----------------|---| | Proportional band | PB.1 | 1 9999 digit | 10 | Typical value for temperature | | Derivative action | dt | 0 9999 sec. | 80 | Typical value for temperature | | Integral action | rt | 0 9999 sec. | 350 | Typical value for temperature | | Dead band (*) | db | 0 999,9 digit | 1 | Typical value | | Servocontrol running time | tt | 10 3000 sec. | 15 | Set servocontrol running time | | Switch-on differential (*) | HYS1 | 0,01999 digit | -5 | Value under setpoint below which the burner switches back on (1N-1P closes) | | Switch-off differential 2° stage (*) | HYS2 | 0,0 HYS3 | 3 | (enable only with parameter bin1 = 4) | | Upper switch-off differential (*) | HYS3 | 0,0 9999 digit | 5 | Value over setpoint above which the burner switches off (1N-1P opens) | | Switch-on differential on cooling controller (*) | HYS4 | 0,0 9999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Switch-off differential 2° stage on
cooling controller (*) | HYS5 | HYS60,0 digit | 5 | Do not used (enable only with parameters CACt = 0 and bin1 = 4) | | Upper switch-off
differential on cooling
controller (*) | HYS6 | 0,01999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Delay modulation | q | 0,0 999,9 digit | 0 | Do not alter | ^(*)Parameters affected by setting of decimal place (ConF > dISP parameter dECP) # Setting the kind of sensor to be connected to the device: - push the **Enter** button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **ConF.** Push **Enter** to confirm. - Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm. - You are inside InP1; the green display shows Sen1 (sensor type), while the red display shows the chosen sensor code - Push Enter to enter the Sen1 parameter, then choose the desired sensor using the arrows. Push Enter to confirm and ESC to escape. - Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below. # ConF > InP >InP1 | Parameter | Value | Description | |--------------------|------------------------|---| | SEn1 | 1 | Pt100 3 fili | | type of sensor for | 2 | Pt100 2 fili | | analog input 1 | 3 | Pt1000 3 fili | | | 4 | Pt1000 2 fili | | | 5 | Ni1000 3 fili | | | 6 | Ni1000 2 fili | | | 7 | 0 ÷ 135 ohm | | | 15 | 0 ÷ 20mA | | | 16 | 4 ÷ 20mA | | | 17 | 0 ÷ 10V | | | 18 | 0 ÷ 5V | | | 19 | 1 ÷ 5V | | OFF1 | | Using the measured value correction (offset), a measured | | sensor offset | -1999 0 +9999 | value can be corrected to a certain degree, either up or down | | SCL1 | | In the case of a measuring transducer with standard signal, the | | scale low level | | physical signal is assigned a display value here | | | -1999 0 +9999 | (for input ohm, mA, V) | | SCH1 | | In the case of a measuring transducer with standard signal, the | | scale high level | | physical signal is assigned a display value here | | | -1999 100 +9999 | (for input ohm, mA, V) | | dF1 | | Is used to adapt the digital 2nd order input filter | | digital filter | 0 0,6 100 | (time in s; 0 s = filter off) | | Unit | 1 | 1 = degrees Celsius | | temperature unit | 2 | 2 = degrees Fahrenheit | (**bold** = factory settings) # Remark: RWF50.2 e RWF50.3 cannot be connected to thermocouples. If thermocouples have to be connected, convert the signal to a 4-20 mA one and set the RWF accordingly. # ConF > Cntr | Parameter | Value | Description | |------------------------|------------------------|---| | CtYP | 1 | 1 = 3-position controller (open-stop-close only RWF50.2) | | controller type | 2 | 2 = continuative action controller (only RWF50.3) | | CACt | 1 | 1 = heating controller | | control action | 0 | 0 = cooling controller | | SPL | | | | least value of the | | set-point limitation prevents entry of values outside the defined | | set-point range | -1999 0 +9999 | range | | SPH | | | | maximum value of the | | set-point limitation prevents entry of values outside the defined | | set-point range | -1999 100 +9999 | range | | oLLo | | | | set-point limitation | | | | start, operation limit | | | | low | -1999 +9999 | lower working range limit | | oLHi | | | | set-point limitation | | | | end, operation limit | | | | high | -1999 +9999 | upper working range limit | (**bold** = factory settings) # ConF > rAFC Activation boiler shock termic protetion: RWF50.. can activate the thermal shock protection only on sites where the set-point is lower than 250°C and according to rAL parameter. **Parameter** Value Description FnCT Choose type of range degrees/time function 0 = deactivated 0 1 = Kelvin degrees/minute 1 2 2 = Kelvin degrees/hour rASL Slope of thermal shock protection (only with functions 1 and 2) ramp rate **0,0** ... 999,9 toLP width of tolerance band (in K) about the set-point 0 = tolerance band inactive tolerance band ramp 0...9999 40 7866d16/0911 t Ramp limit. When this value is lower than the temperature setrAL ramp limit point, the RWF controls the output increasing the temp set 0...250 point step by step according to rASL. If this is over the temp set point, the control is performed in cooling. (**bold** = factory settings) ConF > OutP (parameter under group only for RWF50.3) | Parameter | Value | Description | |-----------------------|------------------------|---| | FnCt | | 1 = analog input 1 doubling with possibility to convert | | tipo di controllo | 1 | (depending on par SiGn) | | | 4 | 4 = modulation controller | | SiGn | | physical output signal (terminals A+, A-) | | type of output signal | 0 | 0 = 0÷20mA | | | 1 | 1 = 4÷20mA | | | 2 | 2 = 0÷10V | | rOut | | | | Value when out of | | | | input range | 0 101 | signal (in percent) when measurement range is crossed | | oPnt | | value range of the output variable is assigned to a physical | | zero point | | output signal Per default, the setting corresponds to 0100% | | | | angular positioning for the controller outputs (terminals A+, A-) | | | -1999 0 +9999 | (effective only with FnCt = 1) | | End | | value range of the output variable is assigned to a physical | | End value | | output signal Per default, the setting corresponds to 0100% | | | | angular positioning for the controller outputs (terminals A+, A-) | | | -1999 100 +9999 | (effective only with FnCt = 1) | (**bold** = factory settings) # ConF > binF | Parameter | Value | Description | |---------------------|-------|--| | bin1 | | 0 = without function | | digital inputs | | 1 = set-point changeover (SP1 / SP2) | | (terminals DG - D1) | | 2 = set-point shift (Opr > dSP parameter = value of set-point | | | 0 | modify) | | | 1 | 4 = changeover of operating mode | | | 2 | open – modulating operation; | | | 4 | close – 2 stage operation. | (**bold** = factory settings) # ConF > dISP | Parameter | Value | Description | |---------------|------------------|---| | diSU | | display value for upper display: | | upper display | 0 | 0 = display power-off | | (red) | 1 | 1 = analog input value | | | 4 | 4 = Controller's angular positioning | | | 6 | 6 = set-point value | | | 7 | 7 = end value with thermal shock protection | | diSL | | display value for lower display: | | lower display | 0 | 0 = display power-off | | (green) | 1 | 1 = analog input value | | | 4 | 4 = Controller's angular positioning | | | 6 | 6 = set-point value | | | 7 | 7 = end value with thermal shock protection | | tout | | time (s) on completion of which the controller returns | | timeout | 0 180 250 | automatically to the basic display, if no button is pressed | | dECP | 0 | 0 = no decimal place | | decimal point | 1 | 1 = one decimal place | | | 2 | 2 = two decimal places | | CodE | 0 | 0 = no lockout | | level lockout | 1 | 1 = configuration level lockout (ConF) | | | 2 | 2 = Parameter and configuration level lockout (PArA & ConF) | | | 3 | 3 = keyboard lockout | (**bold** = factory settings) #### Manual control: - in order to manual change the burner load, while firing keep pushing the ESC button for more than 5 s; on the lower green display Hand appears. - using the **UP** and **DOWN** arrows, the load varies. - Keep pushing the ESC button for getting the normal operation again. - NB: every ime the device shuts the burner down (start led switched off contact 1N-1P open), the manual control is not active. # Device self-setting (auto-tuning): If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request Follow the below instructions: push the **UP** and **DOWN** arrows for more than 5 s; on the green lower display **TUNE** appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates PID parameters (**Pb1**, **dt** and **rt**). After the calculations, the TUNE is automatically deactivated and the device has already stored them. In order to stop the Auto-tuning function while it works, push again the **UP** and **DOWN** arrows for more than 5 s. The calculated PID parameters can be manually modified following the previously described instructions. 7866z04/0911 # Display of software version: The software version is shown by pushing $\mathbf{Enter} + \mathbf{UP} \ \mathbf{arrow}$ on the upper display 100020310911 #### **Electric connection:** With 7 pins connector version # With terminals version # Matches terminals between RWF50.2 and RWF40.0x0 | ka
⊙ ∅ | K2 | K3
∅ | 1N | SIE
1P
Ø | MENS
L1
Ø | RWF
N
Ø | 50.2 | | G- | G+ | 13 | 12 | 11
Ø | | |-----------|----|---------|----------|----------------|-----------------|---------------|-------------|----|---------|---------|----|---------|---------|--| | a Ø | Y1 | Y2 | Q13
Ø | SIEM
Q14 | ENS F | RWF4 | 0.0×0
TE | U1 | G-
Ø | G+
Ø | M1 | I1
Ø | G1+ | | # Parameters summarising for RWF50.2x: | Conf | | | | Conf | onf | | | | | | | | | | | |-------------------------|------|------|--------------|-------------|----------|-------------|------------------------|-------------|--|----|-----|-------|-------------|-------------|----------------| | Navigation menù | - | | | | | 0. | -4 | -I:OD | | | | _ | 3 A A | | 0 | | Types of probe | SEn1 | OFF1 | Inp1
SCL1 | SCH1 | Unit | SPL | Cntr diSP SPL SPH dECP | | PArA Pb. 1 dt rt tt HYS1 (*) HYS3 (*) | | | | | | Opr
SP1
(*) | | Siemens QAE2120 | 6 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80 °C | | Siemens QAM2120 | 6 | 0 | needless | needless | 1 | 0 | 80 | 1 | 10 | | 350 | l ` ′ | -2,5 | 2,5 | 40°C | | Pt1000 (130°C max.) | 4 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt1000 (350°C max.) | 4 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | | 350 | | | 10 | 80°C | | Pt100 (130°C max.) | 1 | 0 | needless | needless | 1 | 0 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt100 (350°C max) | 1 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | 80 | 350 | (#) | -5 | 10 | 80°C | | Probe 4÷20mA / 0÷1,6bar | 16 | 0 | 0 | 160 | needless | 0 | 160 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 100 kPa | | Probe 4÷20mA / 0÷3bar | 16 | 0 | 0 | 300 | needless | 0 | 300 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Probe 4÷20mA / 0÷10bar | 16 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Probe 4÷20mA / 0÷16bar | 16 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Probe 4÷20mA / 0÷25bar | 16 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Probe 4÷20mA / 0÷40bar | 16 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Siemens QBE2002 P4 | 17 | 0 | 0 | 400 | needless | 0 | 400 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Siemens QBE2002 P10 | 17 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Siemens QBE2002 P16 | 17 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Siemens QBE2002 P25 | 17 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Siemens QBE2002 P40 | 17 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Segnale 0÷10V | 17 | 0 | to be fixed | to be fixed | needless | to be fixed | to be fixed | to be fixed | 5 | 20 | 80 | (#) | to be fixed | to be fixed | to be fixed | | Segnale 4÷20mA | 16 | 0 | to be fixed | to be fixed | needless | to be fixed | to be fixed | to be fixed | 5 | 20 | 80 | (#) | to be fixed | to be fixed | to be fixed | ### NOTE: SQL33; STM30; SQM40; SQM50; SQM54 = **30** (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = **12** (secondi) (*)These values are factory set - values <u>must be</u> set during operation at the plant based on the real working temperature/pressure value. WARNING: With pressure probes the parameters SP1, SCH, SCL, HYS1, HYS3 must be selected, and visualized in kPa (kilo Pascal). (1bar = 100.000Pa = 100kPa) ^(#) tt – servo control run time #### **APPENDIX: PROBES CONNECTION** To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location. Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements. #### Ambient probes (or ambient thermostats) #### Installation The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by foreign factors. #### It's good to be admired ...even better to be effective Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system. #### Location On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold). # Installation position to be avoided near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them. # Outside probes (weather) #### Installation In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance. **General rule:** on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade. #### Positions to be avoided Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever roofs The sensor must not be painted (measurement error). #### **Duct or pipe sensors** # Installing temperature sensors For measuring outlet air: - after delivery fan or - after coil to be controlled, at a distance of at least 0,5 m For measuring room temperature: before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator. Bend 0.4m sensor by hand (never use tools) as illustrated. Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors. # Installing combined humidity sensors As max. humidity limit sensor on outlet (steam humidifiers). #### Installing pressure sensors - A installation on ducts carrying fluids at max. temperature 80°C - B installation on ducts at temperature over 80°C and for refrigerants - C installation on ducts at high temperatures: - increase length of siphon - place sensor at side to prevent it being hit by hot air coming from the pipe. #### Installing differential pressure sensors for water - Installation with casing facing down not allowed.-With temperature over 80°C, siphons are needed. - To avoid damaging the sensor, you must comply with the following instructions #### when installing: - make sure pressure difference is not greater than thevalue permitted by the sensor - when there are high static pressures, make sure you insert shutoff valves A-B-C. # **Putting into operation** Start disable 1=open C1=open C 2=open A2=close B 3=open B3=close A 4= close C #### Immersion or strap-on sensors Placing the probes (QAD22.../QAE21.../QAP21.../RCA...) #### Immersion probes installation Sensors must be installed on the stretch of pipe in which fluid circulates all the time. The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow. Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid. Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.) # Installing QAD2.. strap-on sensors Make sure fluid is circulating in the chosen location. Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe. Sensors come with straps for pipes up to 100 mm in diameter #### With pumps on outlet #### with 3 ways valves / with 4 ways valves With pumps on return with 3 ways valves / with 4 ways valves # Strap-on or immersion sensors? QAD2.. strap-on sensors #### Advantages: - 10 sec. time constant - Installed with system running (no plumbing work) - Installation can be changed easily if it proves incorrect. #### Limits: - Suitable for pipe diameters max. 100 mm - Can be affected by currents of air etc. # QAE2... immersion sensors # Advantages: - Measure "mean" fluid temperature - No external influence on measurement such as: currents of air, nearby pipes etc. #### Limits: - Time constant with sheath: 20 sec. - Hard to change installation position if it proves incorrect. # Installing differential pressure probes for air A - Control a filter (clogging) B - Control a fan (upstream/downstream) C - Measurement of difference in pressure between two ducts D - Measurement of difference in pressure between two rooms or of inside of duct and outside # **Basic principles** # Measuring static pressure(i.e. pressure exerted by air on pipe walls) # Measuring dinamic pressure $$Pd = \frac{y \vartheta^2}{2g}$$ # Key y Kg/m³, specific weight of air m/s, air speed g 9.81 m/s² gravity acceleration Pd mm C.A., dynamic pressure #### Measuring total pressure # Spare parts | Description | Code | |--|---------| | Modulator RWF50.2 (uscita a 3 punti - apri, fermo, chiudi) | 2570148 | | Modulator RWF50.3 (uscita continua 0÷20mA, 4÷20mA, 0÷10V) | 2570149 | | Temperature probe Siemens QAE2120.010A (30÷130°C) | 2560101 | | Temperature probe Siemens QAM2120.040 (-15÷+50°C) | 2560135 | | Thermoresistor Pt1000 ø6mm L100mm (30÷130°C) | 2560188 | | Thermoresistor Pt1000 ø10mm L200mm (0÷350°C) | 2560103 | | Thermoresistor Pt100 ø10mm L200mm (0÷350°C) | 2560145 | | Thermoresistor Pt100 ø8mm L85mm (0÷120°C) | 25601C3 | | Pressure probe Siemens QBE2 P4 (0÷4bar) | 2560159 | | Pressure probe Siemens QBE2 P10 (0÷10bar / signal 0÷10V) | 2560160 | | Pressure probe Siemens QBE2 P16 (0÷16bar / signal 0÷10V) | 2560167 | | Pressure probe Siemens QBE2 P25 (0÷25bar / signal 0÷10V) | 2560161 | | Pressure probe Siemens QBE2 P40 (0÷40bar / signal 0÷10V) | 2560162 | | Pressure probe Danfoss MBS 3200 P 1,6 (0÷1,6bar / signal 4÷20mA) | 2560189 | | Pressure probe Danfoss MBS 3200 P 10 (0÷10bar / signal 4÷20mA) | 2560190 | | Pressure probe Danfoss MBS 3200 P 16 (0÷16bar / signal 4÷20mA) | 2560191 | | Pressure probe Danfoss MBS 3200 P 25 (0÷25bar / signal 4÷20mA) | 2560192 | | Pressure probe Danfoss MBS 3200 P 40 (0÷40bar / signal 4÷20mA) | 2560193 | | Pressure probe Siemens 7MF1565-3BB00-1AA1 (0÷1,6bar / signal 4÷20mA) | 25601A3 | | Pressure probe Siemens 7MF1565-3CA00-1AA1 (0÷10bar / signal 4÷20mA) | 25601A4 | | Sonda di pressione Siemens 7MF1565-3CB00-1AA1 (0÷16bar / signal | 25601A5 | | Pressure probe Siemens 7MF1565-3CD00-1AA1 (0÷25bar / signal 4÷20mA) | 25601A6
| | Pressure probe Siemens 7MF1565-3CE00-1AA1 (0÷40bar / signal 4÷20mA) | 25601A7 | | Pressure probe Gefran E3E B1V6 MV (0÷1,6bar / segnale 4÷20mA) | 25601C4 | | Pressure probe Danfoss E3E B01D MV (0÷10bar / segnale 4÷20mA) | 25601C5 | | Pressure probe Danfoss E3E B16U MV (0÷16bar / segnale 4÷20mA) | 25601C6 | | Pressure probe Danfoss E3E B25U MV (0÷25bar / segnale 4÷20mA) | 25601C7 | | Pressure probe Danfoss E3E B04D MV (0÷40bar / segnale 4÷20mA)) | 25601C8 | # **KM3 Modulator** **USER MANUAL** # **MOUNTING** # **DISPLAY AND KEYS** | | Operator Mode | Editing Mode | |----|-----------------------------------|------------------------| | | Access to: | Confirm and go to | | | - Operator Commands | Next parameter | | | (Timer, Setpoint selection) | | | | - Parameters | | | | - Configuration | | | | Access to: | Increase the displayed | | | - Operator additional information | value or select the | | | (Output value, running time) | next element of the | | | | parameters list | | | Access to: | Decrease the displayed | | | - Set Point | value or select the | | | | previous element | | P | Programmable key: | Exit from Operator | | 74 | Start the programmed function | commands/Parameter | | | (Autotune, Auto/Man, Timer) | setting/Configuration | # **CONNECTIONS DIAGRAM** # Probe connection: - PT1000/NTC/PTC: between terminal 3 and 2 - PT 100: between terminal 3 and 2 with terminal 1 - Passive pressure probe 0/4-20 mA: between terminal 4 (+) e 1 (-) Note: out4 must be activated (IO4F must be setted to ON) - Powered pressure probe 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive) Note: set IO4F to ON to activate Out4 # Power supply connection: - Neutral wire: terminal 9 - Phase: terminal 10 (100...240 Vac) - Close terminals 15-16 to switch to the set point 2 # Output connection: - Channel 1: terminal 7 and 8 (burner on off) - Channel 2: terminal 11 and 12 (servomotor opens) - Channel 3: terminal 13 and 14 (servomotor closes) # **SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)** Push the button to enter into the setpoint configuration: To return to normal mode, press the 🖸 key for 3 seconds or wait the 10s timeout # Operation example # LIMITED ACCESS LEVEL Proceed as follows to change some parameters that are not visible in standard user mode: | Param | Description | Values | Default | |-------|-----------------------------------|---|----------------------| | SEnS | Input type | Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K | Depends on the probe | | SP | Set point 1 | SPLL SPLH | | | AL1 | AL1 threshold | AL1L AL1H (E.U.) | | | HAL1 | AL1 hysteresis | 1 9999 (E.U.) | | | Pb | Proportional band | 1 9999 (E.U.) | | | ti | Integral time | 0 (oFF) 9999 (s) | | | td | Derivative time | 0 (oFF) 9999 (s) | See page 7 | | Str.t | Servomotor stroke time | 51000 seconds | | | db.S | Servomotor dead band | 0100% | | | SPLL | Minimum set point value | -1999 SPHL | | | SPHL | Maximum set point value | SPLL 9999 | | | dp | Decimal point position | 0 3 | | | SP 2 | Set point 2 | SPLLSPLH | 60 | | A.SP | Selection of the active set point | "SP" " nSP" | SP | To exit the parameter setting procedure press the **w** key (for 3 s) or wait until the timeout expiration (about 30 seconds) # Probe parameters configuration MODULATORE ASCON KM3 | Parameter Group | lin | | | | | | AL1 | | rEG | | | | | SP | | | |---------------------------------------|--------|-----|-------|-------|------|---------------|--------------|---------------|----------|-------------|-------------|-------|------|------|------|-------------| | Parameter | Sens | dp | SSC | FSc | unit | 104.F
(**) | AL1
(***) | HAL1
(***) | Pb (***) | ti
(***) | td
(***) | Str.t | db.S | SPLL | SPHL | SP
(***) | | Probes | | Dec | Scale | Scale | | | Off | On | b | | ō | servo | Band | SP | SP | Set | | Pt1000 (130°C max) | Pt10 | - | | 505 | ပ | o | 2 | 10 | 10 | 350 | - | * | 5 | 30 | 95 | 80 | | Pt1000 (350°C max) | PT10 | _ | | | ပ | uo | 10 | 10 | 10 | 350 | _ | * | 2 | 0 | 350 | 80 | | Pt100 (130°C max) | PT1 | 1 | | | ၁့ | uo | 5 | 10 | 10 | 350 | 1 | * | 5 | 0 | 92 | 80 | | Pt100 (350°C max) | Pt1 | 1 | | | ၁့ | on | 10 | 10 | 10 | 350 | 1 | * | 5 | 0 | 350 | 80 | | Pt100 (0÷100°C 4÷20mA) | 4.20 | 1 | 0 | 100 | | uo | 5 | 10 | 10 | 350 | 1 | * | 5 | 0 | 92 | 80 | | Thermocouple K (1200°C max) | crAL | 0 | | | ၁့ | uo | 20 | 25 | 10 | 350 | 1 | * | 5 | 0 | 1200 | 80 | | Thermocouple J (1000°C max) | l
J | 0 | | | ာ့ | uo | 20 | 25 | 10 | 350 | 1 | * | 5 | 0 | 1000 | 80 | | 4-20mA / 0-1,6barPressure probe | 4.20 | 0 | 0 | 160 | | uo | 20 | 20 | 9 | 120 | 1 | * | 5 | 0 | 160 | 100 | | 4-20mA / 0-10bar Pressure probe | 4.20 | 0 | 0 | 1000 | | uo | 20 | 20 | 9 | 120 | 1 | * | 5 | 0 | 1000 | 009 | | 4-20mA / 0-16bar Pressure probe | 4.20 | 0 | 0 | 1600 | | on | 80 | 80 | 5 | 120 | 1 | * | 5 | 0 | 1600 | 009 | | 4-20mA / 0-25bar Pressure probe | 4.20 | 0 | 0 | 2500 | | on | 125 | 125 | 5 | 120 | 1 | * | 5 | 0 | 2500 | 009 | | 4-20mA / 0-40bar Pressure probe | 4.20 | 0 | 0 | 4000 | | uo | 200 | 200 | 9 | 120 | 1 | * | 5 | 0 | 4000 | 009 | | QBE2002 / 0-25bar Pressure probe 0.10 | 0.10 | 0 | 0 | 2500 | | 0n | 125 | 125 | 5 | 120 | _ | * | 5 | 0 | 2500 | 009 | .0+0 (*) Str.t - Servomotor stroke time SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (Seconds) STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (Seconds) (**) Out 4 ... on Display led °4 must be switched on, otherwise change the io4.F parameter value from "on" to "out4", confirm the value, quit the configuration mode then change again the io4.F parameter value from "out4" to "on". (***) Factory settings. These values must be adapted to machine conditions N.B. For pressure probe, SP, SPHL, SPLL parameters values are expressed in Kpa (1 bar = 100 Kpa). # CONFIGURATION # How to access configuration level The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions). - 1. Push the Dutton for more than 5 seconds. The upper display will show PASS while the lower display will show 0. - Using \triangle and ∇ buttons set the programmed password. According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section. - a. Enter "30" as password to view all the configuration parameters - b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv = A or Liv = O will be editable. Leave the password blank to edit "user level" parameters, that are identified by attribute Liv = O - 3. Push the Dutton. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: J. In other words the upper display will show: In other words the upper display will show. The instrument is in configuration mode. To press \square for more than 5 seconds, the instrument will return to the "standard display. # Keyboard functions during parameter changing: | | Operator Mode | |------|--| | | When the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group. | | Δ | Allows to increase the value of the selected parameter. | | V | Allows to decrease the value of the selected parameter. | | (P) | Short presses allow you to exit the current group of parameters and select a new group. A long press terminates the configuration procedure (the instrument returns to the normal display). | | \$+← | These two keys allow to return to the previous group. Proceed as follows: Push the button and maintaining the pressure, then push the release both the buttons. | # **Configuration Parameters** | inP | GRO | UP - inpu | t confiuration | | | |-----|-----|-----------|---|---|----------------------------| | Liv | N° | Param | Description | Values | Default | | A | 1 | SEnS | Input type | Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K | Depends
on the
probe | | Α | 2 | dp | Decimal point position | 0 3 | See page
7 | | Α | 3 | SSc | Initial scale read-out for linear inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values) | -1999 9999 | 0 | | С | 4 | FSc | Full scale read-out for linear input inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values) | -1999 9999 | Depends on the probe | | С | 5 | unit | Unit of measure (present only in the case of temperature probe) | °C/°F | °C | | С | 6 | Fil | Digital filter on the measured value | 0 (= OFF) 20.0 s | 1.0 | | С | 7 | inE | Selection of the Sensor Out of Range type that will enable the safety output value | or = Over range
ou = Under range
our = over e under range | or | | С | 8 | oPE | Safety output value | -100 100 | 0 | |---|----|-------|--
---|----| | С | 9 | io4.F | I/O4 function selection | on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12 24 VDC | on | | С | 10 | diF1 | Digital input 1 function | oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, 6 = HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, 10 = Timer Run/Hold, 11 = Timer Run/Reset with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Hold, 16 = Program Run/Hold, 17 = Program Run/Hold, 18 = Sequential SP selection, 19 = SP1 - SP2 selection, 20 = SP1 SP4 binary selection, 21 = Digital inputs in parallel | 19 | | С | 12 | di.A | Digital Inputs Action (DI2 only if configured) | 0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action 2 = DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action | 0 | | Out | GRO | UP- Outp | out parameters | | | |-----|-----|----------|--|---|---------| | Liv | N° | Param | Description | Values | Default | | С | 14 | o1F | Out 1 function | AL = Alarm output | AL | | С | 15 | o1AL | Initial scale value of the analog retransmission | -1999 Ao1H | 1 | | С | 18 | o1Ac | Out 1 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | rEUr.r | | С | 19 | o2F | Out 2 function | H.rEG = Heating output | H.rEG | | С | 21 | o2Ac | Out 2 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | dir | | С | 22 | o3F | Out 3 function | H.rEG = Heating output | H.rEG | | С | 24 | o3Ac | Out 3 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | dir | | AL1 | GRO | UP - Ala | rm 1 parameters | | | |-----|-----|----------|------------------|---|---------| | Liv | N° | Param | Descrizione | Values | Default | | С | 28 | AL1t | Tipo allarme AL1 | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the | HidE | | | | | | windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | | |---|----|------|--|---|---------------| | С | 29 | Ab1 | Alarm 1 function | 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change | 0 | | С | 30 | AL1L | For High and low alarms, it is the low limit of the AL1 threshold; For band alarm, it is low alarm threshold | -1999 AL1H (E.U.) | -199.9 | | С | 31 | AL1H | For High and low alarms, it is the high limit of the AL1 threshold; For band alarm, it is high alarm threshold | AL1L 9999 (E.U.) | 999.9 | | 0 | 32 | AL1 | AL1 threshold | AL1L AL1H (E.U.) | See
page 7 | | 0 | 33 | HAL1 | AL1 hysteresis | 1 9999 (E.U.) | See
page 7 | | С | 34 | AL1d | AL1 delay | 0 (oFF) 9999 (s) | oFF | | С | 35 | AL1o | Alarm 1 enabling during Stand-by mode and out of range conditions | 0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition | 1 | | Liv | N° | Param | Description | Values | Default | |-----|----|-------|---|---|---------| | С | 36 | AL2t | Alarm 2 type | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | SE.br | | С | 37 | Ab2 | Alarm 2 function | 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change | 0 | | С | 42 | AL2d | AL2 hysteresis | 0 (oFF) 9999 (s) | oFF | | С | 43 | AL2o | Alarm 2 enabling during Stand-by mode and out of range conditions | 0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition | 0 | | Liv N° | Param | Description | Values | Default | |--------|-------|--------------|---|---------| | 44 | AL3t | Alarm 3 type | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | nonE | | LbA | Gro | up - Loo | p break alarm | | | |-----|-----|----------|---------------|-----------------------|---------| | Liv | N° | Param | Descrizione | Values | Default | | С | 52 | LbAt | LBA time | Da 0 (oFF) a 9999 (s) | oFF | | rEG | Grou | ıp - Cont | rol parameters | | | |-----|------|-----------|--------------------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | С | 56 | cont | Control type | Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis nr = Heat/Cool ON/OFF control with neutral zone 3Pt = Servomotor control (available only when Output 2 and Output 3 have been ordered as "M") | 3pt | | С | 57 | Auto | Autotuning selection | -4 = Oscillating auto-tune with automaticrestart at power up and after all point change -3 = Oscillating auto-tune with manual start -2 = Oscillating -tune with auto-matic start at the first power up only -1 = Oscillating auto-tune with auto-matic restart at every power up 0 = Not used 1 = Fast auto tuning with automatic restart at every power up 2 = Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start 4 = FAST auto-tune with automatic restart at power up and after set point change 5 = Evo-tune with automatic restart at every power up 6 = Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start 8 = Evo-tune with automatic restart at power up and after a set point change | 7 | | С | 58 | tunE | Manual start of the Autotuning | oFF = Not active on = Active | oFF | | С | 59 | SELF | Self tuning enabling | no = The instrument does not perform the self-
tuning
YES = The instrument is performing the self-
tuning | No | |---|----|-------|----------------------------------|--|---------------| | Α | 62 | Pb | Proportional band | 1 9999 (E.U.) | See
page 7 | | Α | 63 | ti | Integral time | 0 (oFF) 9999 (s) | See
page 7 | | Α | 64 | td | Derivative time | 0 (oFF) 9999 (s) | See
page 7 | | С | 65 | Fuoc | Fuzzy overshoot control | 0.00 2.00 | 1 | | С
| 69 | rS | Manual reset (Integral pre-load) | -100.0 +100.0 (%) | 0.0 | | Α | 70 | Str.t | Servomotor stroke time | 51000 seconds | See
page 7 | | Α | 71 | db.S | Servomotor dead band | 0100% | 5 | | С | 72 | od | Delay at power up | 0.00 (oFF) 99.59 (hh.mm) | oFF | | SP | SP Group - Set point parameters | | | | | |-----|---------------------------------|-------|--|--|---------------| | Liv | N° | Param | Description | Values | Default | | С | 76 | nSP | Number of used set points | 1 4 | 2 | | Α | 77 | SPLL | Minimum set point value | -1999 SPHL | See
page 7 | | Α | 78 | SPHL | Maximum set point value | SPLL 9999 | See
page 7 | | 0 | 79 | SP | Set point 1 | SPLL SPLH | See
page 7 | | С | 80 | SP 2 | Set point 2 | SPLL SPLH | 60 | | | 83 | A.SP | Selection of the active set point | "SP" " nSP" | SP | | С | 84 | SP.rt | Remote set point type | RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc = The value will be scaled on the input range and this value will be used as remote SP | trin | | С | 85 | SPLr | Local/remote set point selection | Loc = Local
rEn = Remote | Loc | | С | 86 | SP.u | Rate of rise for POSITIVE set point change (ramp UP) | 0.01 99.99 (inF) Eng. units per minute | inF | | С | 87 | SP.d | Rate of rise for NEGATIVE set point change (ramp DOWN) | 0.01 99.99 (inF) Eng. units per minute | inF | | PAn | PAn Group - Operator HMI | | | | | | |-----|--------------------------|-------|--|---|---------|--| | Liv | N° | Param | Description | Values | Default | | | С | 118 | PAS2 | Level 2 password (limited access level) | oFF (Level 2 not protected by password) 1 200 | 20 | | | С | 119 | PAS3 | Level 3 password (complete configuration level) | 3 300 | 30 | | | С | 120 | PAS4 | Password livello (livello configurazione a codice) | 201 400 | 300 | | | С | 121 | uSrb | button function during RUN TIME | nonE = No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode | tunE | | | С | 122 | diSP | Display management | AAc = Alarm reset ASi = Alarm acknowledge chSP = Sequential set point selection St.by = Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. Str.t = Timer run/hold/reset P.run = Program run P.rES = Program reset P.r.H.r = Program run/hold/reset Spo = Operative set point | SPo | |---|-----|-------|--|--|------| | С | 123 | di.cL | Display colour | 0 = The display colour is used to show the actual | 2 | | | 123 | di.CL | Display Coloui | deviation (PV - SP) 1 = Display red (fix) 2 = Display green (fix) 3 = Display orange (fix) | 2 | | | | diS.t | Display Timeout | oFF (display always ON) | oFF | | | 125 | CI I | Elica de distribuit de la companya del companya de la companya del companya de la | 0.1 99.59 (mm.ss) | | | С | 126 | fiLd | Filter on the displayed value | oFF (filter disabled)
From 0.0 (oFF) to 20.0 (E.U.) | oFF | | С | 128 | dSPu | Instrument status at power ON | AS.Pr = Starts in the same way it was prior to the power down Auto = Starts in Auto mode oP.0 = Starts in manual mode with a power output equal to zero St.bY = Starts in stand-by mode | Auto | | С | 129 | oPr.E | Operative modes enabling | ALL = All modes will be selectable by the next parameter Au.oP = Auto and manual (OPLO) mode only will be selectable by the next parameter Au.Sb = Auto and Stand-by modes only will be selectable by the next parameter | ALL | | С | 130 | oPEr | Operative mode selection | If oPr.E = ALL: - Auto = Auto mode - oPLo = Manual mode - St.bY = Stand by mode If oPr.E = Au.oP: - Auto = Auto mode - oPLo = Manual mode If oPr.E = Au.Sb: - Auto = Auto mode - St.bY = Stand by mode | Auto | | Liv | N° | Param | Description | Values | Default | |-----|-----|-------|---|--|---------| | С | 131 | Add | Instrument address | oFF
1 254 | 1 | | С | 132 | bAud | baud rate | 1200 = 1200 baud
2400 = 2400 baud
9600 = 9600 baud
19.2 = 19200 baud
38.4 = 38400 baud | 9600 | | С | 133 | trSP | Selection of the value to be retransmitted (Master) | nonE = Retransmission not used (the instrument is a slave) rSP = The instrument becomes a Master and retransmits the operative set point PErc = The instrument become a Master and it retransmits the power output | nonE | | con | Grou | p - Cons | umption parameters | | | |-----|------|----------|------------------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | C | 134 | Co.tY | Count type | oFF = Not used 1 = Instantaneous power (kW) 2 = Power consumption (kW/h) 3 = Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program. A new program execution will reset the value 4 = Total worked days: number of hours the instrument is turned ON divided by 24. 5 = Total worked hours: number of hours the instrument
is turned ON. 6 = Total worked days with threshold: number of hours the instrument is turned on divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 7 = Total worked hours with threshold: number of hours the instrument is turned ON, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 8 = Totalizer of control relay worked days: number of hours the control relay worked hours: number of hours the control relay worked hours: number of hours the control relay worked hours: number of hours the control relay worked days with threshold: number of hours the control relay worked days with threshold: number of hours the control relay worked hours: number of hours the control relay worked hours with threshold: number of hours the control relay has been in ON condition divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 11 = Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. | off | | С | 138 | t.Job | Worked time (not resettable) | 0 9999 days | 0 | | cAL | cAL Group - User calibration group | | | | | |-----|------------------------------------|-------|--------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | С | 139 | AL.P | Adjust Low Point | From -1999 to (AH.P - 10) in engineering units | 0 | | С | 140 | AL.o | Adjust Low Offset | -300 +300 (E.U.) | 0 | | С | 141 | AH.P | Adjust High Point | From (AL.P + 10) to 9999 engineering units | 999.9 | | С | 142 | AH.o | Adjust High Offset | -300 +300 | 0 | # OPERATIVE MODES When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters. At power ON the instrument can start in one of the following mode depending on its configuration: **Automatic Mode** In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value. **Manual Mode** (OPLO): In Manual mode the upper display shows the measured value while the lower display shows the power output The lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made. **Stand by Mode** (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero. We define all the above described conditions as "Standard Display". As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected. # **AUTOMATIC MODE** Keyboard function when the instrument is in Auto mode: | | Modo Operatore | |---|---| | | Allows entry into parameter modification procedures | | | Allows you to start the "Direct set point modification" function (see below). | | V | Allows you to display the "additional informations" (see below). | | P | Performs the action programmed by [121] uSrb (button function during RUN TIME) parameter | #### **Additional information** This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available. - 1. When the instrument is showing the "standard display" push button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action - 2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below: - where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2).. - 3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter: P84.3 - 4. Push button again. When the wattmeter function is running the lower display will show U followed by the measured energy.. - 5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time. - 6. Push button. The instrument returns to the "standard display". Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display. # Direct set point modification This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress. - 1. Push volution. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value. - 2. By and buttons, assign to this parameter the desired value - 3. Do not push any button for more than 5 second or push the button. In both cases the instrument memorize the new value and come back to the "standard display". # Manual mode This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the \triangle and ∇ buttons. In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H100 (100% output power with reverse action) to C100 (100% output power with direct action). #### Notes: - During manual mode, the alarms are operative. - If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode. - If you set manual modes during self-tune execution, the self- tune function will be aborted. - During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.. # STAND-BY MODE This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY". #### Notes: - During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting. - If you set stand by mode during program execution, the program will be aborted. - If you set stand by mode during self-tune execution, the self- tune function will be aborted. - During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally. - When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed). # **AUTOTUNE (EVOTUNE)** Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press button for 3 seconds. # **ERROR MESSAGES** The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications: Over-range: Under-range U.U.U. The sensor break will be signalled as an out of range: ---- Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively. To check the out of span Error condition, proceed as follows: - 1. Check the input signal source and the connecting line. - 2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration. - 3. If no error is detected, send the instrument to your supplier to be checked. # List of possible errors **ErAT** Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message. **ouLd** Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate.. NoAt Auto-tune not finished within 12 hours. **ErEP** Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier. RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier. Errt Possible problem of the calibration memory. When this error is
detected, send the instrument to your supplier. # **FACTORY RESET** Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON). The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows: - 1. Press the button for more than 5 seconds. The upper display will show PASS while the lower display shows 0; - 2. Using \(\textbf{\Quad} \) and \(\textbf{\Quad} \) buttons set the value -481; - 3. Push Dutton; - 4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON. The procedure is complete. Note: The complete list of the default parameters is available in Chapter "Configuration". # **RWF55.5X & RWF55.6X** User manual # **DEVICE INSTALLATION** # Fixing system # Drilling dimensions: RWF55 is preset good for 90% of applications. However, you can set or edit parameters as follow: # Set-point: set or modification: When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the Enter button: on the lower display (green) Opr appears; push Enter again and in the same display SP1 appears. Push Enter again and the lower display (green SP1) flashes. Using the up and down arrows change the set-point on the upper display (red). Push Enter to confirm and push ESC more times to get the home position. # PID parameters set and modifications (PArA): Push **Enter** button, on the green display **Opr** appears; using the **down arrow**, scroll until group **PArA** is reached and push **Enter**. On the green display **Pb1** e appears and on the red one the set parameter. Push is sequence the **down or up** arrow the menu is scrolled. Push **Enter** to select and the **arrows** to choose the desired value. **Enter** to confirm | Parameter | Display | Range | Factory setting | Remarks | |---|---------|-----------------|-----------------|---| | Proportional band | Pb1 | 1 9999 digit | 10 | Typical value for temperature | | erivative action | dt | 0 9999 sec. | 80 | Typical value for temperature | | Integral action | rt | 0 9999 sec. | 350 | Typical value for temperatureT | | Dead band (*) | db | 0 999,9 digit | 1 | Typical value | | Servocontrol running time | tt | 10 3000 sec. | 15 | Set servocontrol running time | | Switch-on differential (*) | HYS1 | 0,01999 digit | -5 | Value under setpoint below which the burner switches back on (1N-1P closes) | | Switch-off differential 2° stage (*) | HYS2 | 0,0 HYS3 | 3 | (enable only with parameter bin1 = 4) | | Upper switch-off
differential
(*) | HYS3 | 0,0 9999 digit | 5 | Value over setpoint above which the burner switches off (1N-1P opens) | | Switch-on differential on cooling controller (*) | HYS4 | 0,0 9999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Switch-off differential 2° stage on cooling controller (*) | HYS5 | HYS60,0 digit | 5 | Do not used (enable only with parameter CACt = 0 and parameter bin1 =0) | | Upper switch-off
differential on cooling controller
(*) | HYS6 | 0,01999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Delay modulation | q | 0,0 999,9 digit | 0 | Do not alter | | T Outside temperature Curve point 1 (*) | At1 | -40120 digit | -10 | First point of external temperature for climatic curve | | Boiler temperature Curve point 1 (*) | Ht1 | SPLSPH | 60 | Set-point temperature for the external temperature 1 | | TT Outside temperature Curve point 2 (*) | At2 | -40120 digit | 20 | Second point of external temperature for climatic curve | | Boiler temperature Curve point 2 (*) | Ht2 | SPLSPH | 50 | Set-point temperature for the external temperature 2 | ^(*) Parameters affected by setting of decimal place (ConF > dISP parameter dECP) # Setting the kind of sensor to be connected to the device: Push the **Enter** button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **Conf.** Push **Enter** to confirm. Now on the green display the group **InP** appears. Push **Enter** and **InP1** is displaied. Enter to confirm. You are inside **InP1**; the green display shows **Sen1** (sensor type), while the red display shows the chosen sensor code Push **Enter** to enter the **Sen1** parameter, then choose the desired sensor using the **arrows**. Push **Enter** to confirm and **ESC** to escape. Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below: # ConF > InP >InP1 | Parameter | Value | Description | |---------------------------|------------------------|---| | SEn1 | 1 | Pt100 3 wire | | type of sensor for analog | 2 | Pt100 2 wire | | input 1 | 3 | Pt1000 3 wire | | ' | 4 | Pt1000 2 wire | | | 5 | Ni1000 3 wire | | | 6 | Ni1000 2 wire | | | 7 | 0 ÷ 135 ohm | | | 8 | Cu-CuNi T | | | 9 | Fe-CuNi J | | | 10 | NiCr-Ni K | | | 11 | NiCrSi-NiSi N | | | 12 | Pt10Rh-Pt S | | | 13 | Pt13Rh-Pt R | | | 14 | Pt30Rh-Pt6Rh B | | | 15 | 0 ÷ 20mA | | | 16 | 4 ÷ 20mA | | | 17 | 0 ÷ 10V | | | 18 | 0 ÷ 5V | | | 19 | 1 ÷ 5V | | OFF1 | -1999 0 +9999 | Correction value measured by the sensor | | Sensor offset | | | | SCL1 | -1999 0 +9999 | minimum scale value(for input ohm, mA, V) | | scale low level | | | | SCH1 | -1999 100 +9999 | maximum scale value(for input ohm, mA, V) | | scale high level | | | | dF1 | 0 0,6 100 | Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off) | | digital filter | | | | Unit | 1 | 1 = degrees Celsius | | | 2 | 2 = degrees Fahrenheit | | temperature unit | | | # ConF > InP >InP2 Input 2: this input can be used to specify an external setpoint or carry out setpoint shifting | Parameter | Value | Description | |-----------------------|------------------------|---| | FnC2 | 0 | 0= no function | | | 1 | 1= external setpoint (display SPE) | | | 2 | 2 =setpoint shifting (display dSP) | | | 3 | 3 = angular positioning feedback | | SEn2 | 1 | 0 ÷ 20mA | | tisensor type input 2 | 2 | 4 ÷ 20mA | | 31 1 | 3 | 0 ÷ 10V | | | 4 | 0 ÷ 5V | | | 5 | 1 ÷ 5V | | | 1 | 0 ÷ 20mA | | OFF2 | -1999 0 +9999 | Correction value measured by the sensor | | Sensor offset | | | | SCL2 | -1999 0 +9999 | minimum scale value(for input ohm, mA, V) | | scale low level | | | | SCH2 | -1999 100 +9999 | maximum scale value(for input ohm, mA, V) | | scale high level | | | | dF2 | 0 2 100 | Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off) | | digital filter | | | (**bold** = factory settings) # ConF > InP >InP3 Input 3: this input is used to acquire the outside temperature | Parameter | Value | Description | |---------------------------|----------------------|---| | SEn3 | 0 | 0 = | | sensor type input 3sensor | 1 | 1 = wire | | type input 2 | 2 | 2 = wire | | | | | | OFF3 | -1999 0 +9999 | Correction value measured by the sensor | | Sensor offset | | | | dF3 | 0 1278 1500 | Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off) | | digital filter | | | # ConF > Cntr Here, the type of controller, operating action, setpoint limits and presettings for self-optimization are selected | Parameter | Value | Description | |---|-----------------------|---| | CtYP | 1 | 1 = 3-position controller (open-stop-close) | | controller type | 2 | 2 = continuative action controller (0 ÷10V or 4 ÷ 20mA) | | CACt | 1 | 1 = heating controller | | control action | 0 | 0 = cooling controller | | SPL | -1999 0 +9999 | minimum set-point scale | | least value of the set-point range | | | | SPH | -1999 100 +999 | maximum set-point scale | | maximum value of the set-
point range | | · | | | 0 | 0 = Free | | Self-optimization | 1 | 1 = Locked | | | | Self-optimization can only be disabled or enabled via the ACS411 setup program. | | | | Self-optimization is also disabled when the parameter level is locked | | oLLo | -1999 +9999 | lower working range limit | | set-point limitation start, operation limit low | | | | oLHi | -1999 +9999 | upper working range limit | | set-point limitation end, operation limit high | | | (**bold** = factory settings) # ConF > rAFC Activation boiler shock termic protetion: RWF55.. can activate the thermal shock protection only on sites where the set-point is lower than 250°C and according to **rAL** parameter | Parameter | Value | Description | | |---------------------|---------------------|--|--| | FnCT | | tchoose type of range degrees/time | | | type of contol | o | 0 = deactived | | | | 1 | 1 = Kelvin degrees/minute | | | | 2 | 2 = Kelvin degrees/hour | | | rASL | | Slope of thermal shock protection (only with functions 1 and 2) | | | ramp rate | 0,0 999,9 | | | | toLP | 2 x (HYS1) = 109999 | width of tolerance band (in K) about the set-point | | | tolerance band ramp | | 0 = tolerance
band inactive | | | rAL | 0 250 | Ramp limit. When this value is lower than the temperature set-point, the | | | [· ·= | u 200 | Ramp limit. When this value is lower than the temperature set-point, the RWF controls the output increasing the temp set point step by step accor- | | | ramp limit | | ding to rASL . If this is over the temp set point, the control is performed in cooling | | # Alarm functionAF The alarm function can be used to monitor the analog inputs. If the limit value is exceeded, multifunctional relay K6 (terminals **6N** and **6P**) is activated (depending on the switching characteristic) The alarm function can have different switching functions (lk1 to lk8) and can be set to a deviation from the active setpoint or to a fixed limit value # Limit value **AL** relative to setpoint (x) # Fixed limit value AL # ConF > AF | Parameter | Value | Description | |--------------------------|--------|---| | FnCt | 0 | 0 = Without function | | type of control | 1 | lk1 = monitored input InP1 | | | 2 | lk2 = monitored input InP1 | | | 3 | lk3 = monitored input InP1 | | | 4 | lk4 = monitored input InP1 | | | 5 | lk5 = monitored input InP1 | | | 0 | lk6 = monitored input InP1 | | | /
R | lk7 = monitored input InP1 | | | 9 | lk8 = monitored input InP1 | | | 10 | lk7 = monitored input InP2 | | | 11 | lk8 = monitored input InP2 | | | 12 | lk7 = monitored input InP3 | | | | lk8 = monitored input InP3 | | Alarm value | -1999 | Limit value or deviation from setpoint to be monitored (see alarm functions | | AL | 0 | lk1 to lk8: limit value AL) | | | 1999 | Limit value range for lk1 and lk2 09999 | | HySt | 0 | Switching differential for limit value AL | | switching differential | 1 | | | | 9999 | | | ACrA | 0 | Switched-off | | response by out of range | 1 | ON | | | | Switching state in the case of measuring range overshoot or undershoot (Out of Range) | (**bold** = factory settings) # ConF > OutP For fuel-air ratio control purposes, the RWF55 has the binary outputs K2, K3 (terminals KQ,K2, K3) and the analog output (terminals A+, A-). The burner is released via relay K1 (terminals 1N, 1P). The binary outputs of the RWF55 offer no setting choices The RWF55 has an analog output. The analog output offers the following setting choices: | Parameter | Value | Description | |-------------------------|------------------------|---| | FnCt | 1 | 1 = analog input 1 doubling with possibility to convert | | type of control | 2 | 2 = analog input 2 doubling with possibility to convert | | | 3 | 3 = analog input 3 doubling with possibility to convert | | | 4 | 4 = Controller's angular positioning is delivered (modulating controller) | | SiGn | | physical output signal (terminals A+, A-) | | type of output signal | 0 | 0 = 0÷20mA | | | 1 | 1 = 4÷20mA | | | 2 | 2 = 0÷10V DC | | rOut | 0 101 | signal (in percent) when measurement range is crossed | | value when out of input | | | | range | | | | oPnt | -1999 0 +9999 | A value range of the output variable is assigned to a physical output signal (for | | zero point | | FnCt = 1, 2, 3) | | End | -1999 100 +9999 | A value range of the output variable is assigned to a physical output signal (for | | end point | | FnCt = 1, 2, 3) | # ConF > binF This setting decides on the use of the binary inputsD1, D2, DG b | Parameter | Value | Description | |------------------------------|-------|--| | bin1 | 0 | 0 = without function | | binary imput 1 (terminals DG | 1 | 1 = set-point changeover (SP1 / SP2) | | – D1) | 2 | 2 = Iset-point shift (Opr > dSP parameter = value of set-point modify) | | | 3 | 3 = input alarm | | bin2 | 4 | changeover of operating mode | | binary imput 2 (terminalsк | | DG-D2 open = modulating operation | | DG – D2) | | DG-D2 close = 2 stage operation | | | | | (**bold** = factory settings) # ConF > dISP .Both displays can be customized to suit your needs by configuring the displayed value, decimal, time out and blocking | Parameter | Value | Description | |-----------------------|------------------|---| | diSU | | Display value for upper display: | | pper display (red) | 0 | 0 = display power-off | | | 1 | 1 = analog input 1 (InP1) value | | | 2 | 2 = analog input 2 (InP2) value | | | 3 | 3 = analog input 3 (InP3) value | | | 4 | 4 = controller's angular positioning | | | 0
7 | 6 = set-point valueв | | | , | 7 = end value with thermal shock protection | | diSL | | Display value for lower display3: | | lower display (green) | 0 | 0 = display power-off | | | 1 | 1 = analog input 2 (InP2) value | | | 2 | 2 = analog input 2 (InP2) value | | | 3 | 3 = analog input 2 (InP2) value | | | 4
6 | 4 = controller's angular positioning | | | 0
7 | 6 = set-point valueв | | | 1 | 7 = end value with thermal shock protection | | tout | 0 180 250 | time (s) on completion of which the controller returns automatically to the | | timeout | | basic display, if no button is pressed | | dECP | 0 | 0 = no decimal place | | decimal point | 1 | 1 = one decimal place | | | 2 | 2 = two decimal place | | CodE | 0 | 0 = no lockout | | level lockout | 1 | 1 = configuration level lockout (ConF) | | | 2 | 2 = parameter and configuration level lockout (PArA & ConF) | | | 3 | 3 = keyboard lockout | #### ConF > IntF The controller can be integrated into a data network using an optional RS-485 (terminals R+ and R-) interface or an optional Profibus DP interface(only modelRWF55.6x terminalsC1-C2-C3-C4) | Parameter | Value | Description | |-------------------------|--------------|-----------------------------| | bdrt | 0 | 0 = 4800 baud | | baudrate | 1 | 1 = 9600 baud | | | 2 | 2 = 19200 baud | | | 3 | 3 = 38400 baud | | Adr | 0 | Address in the data network | | Device address Modbus | 1 | | | | 254 | | | dP | 0 125 | only withRWF55.6x | | Device address Profibus | | | | dtt | 0 | 0 = swiched-off | | Remote detection time | 30 | | | | 7200s | | (bold = factory settings) # Manual control: In order to manual change the burner load, while firing keep pushing the **ESC** button for more than 5 s; on the lower green display **Hand** appears. using the UP and DOWN arrows, the load varies. Keep pushing the ESC button for getting the normal operation again. NB: every time the device shuts the burner down (start led switched off - contact 1N-1P open), the manual control is not active. # Device self-setting (auto-tuning): If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request Follow the below instructions: push the **UP** and **DOWN** arrows for more than 5 s; on the green lower display **tUnE** appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates **PID** parameters (**Pb1**, **dt** and **rt**). After the calculations, the **tUnE** is automatically deactivated and the device has already stored them. In order to stop the Auto-tuning function while it works, push again the **UP** and **DOWN** arrows for more than 5 s. The calculated **PID** parameters can be manually modified following the previously described instructions. # Display of software version: The software version is shown by pushing Enter + UP arrow on the upper display. # Weather-compensated setpoint shifting(climatic regulation): The RWF55 can be configured so that weather-compensated setpoint shifting is activated when an LG-Ni1000 outside sensor or a Pt1000 is connected (see parameter InP3). To take into account the time response of a building, weather-compensated setpoint shifting uses the attenuated outside temperature rather than the current outside temperature The minimum and maximum setpoints can be set using the lower setpoint limit **SPL** and the upper setpoint limit **SPH** of the menù **Crtr**. The system also prevents the lower working range limit **oLLo** and upper working range limit **oLHi** from exceeding/dropping below the system temperature limits. The heating curve describes the relationship between the boiler temperature setpoint and the outside temperature. It is defined by 2 curve points. For 2 outside temperatures, the user defines the boiler temperature setpoint that is required in each case. The heating curve for the weather-compensated setpoint is calculated on this basis. The effective boiler temperature setpoint is limited by the upper setpoint limit **SPH** and the lower setpoint limit **SPL**. For setting climatic regulation function set: PArA > parametersAt1, Ht1, At2, Ht2 ConF > InP > InP3 parametersSEn3, FnC3 = 1 (Weather-compensated setpoint). # Modbus interface The tables that follow in this chapter specify the addresses of the readable and writable words that the customer is able to access. The customer may read and/or write the values using SCADA programs, PLCs, or similar. The entries under Access have the following meanings: R/O Read Only, value can only be read R/W Read/Write, value can be read and written The number of characters specified under Data type in the case of character strings includes the final \0. Char10 means that the text is up to 9 characters long. The final \0 character is then added to this # **User level** | Address | Access | Data type | Signal reference | Parameter | |---------|--------|-----------|------------------|--------------------------------| | 0x0000 | R/O | Float | X1 | Analog input InP1 | | 0x0002 | R/O | Float | X2 | Analog input InP2 | | 0x0004 | R/O | Float | X3 | Analog input InP2 | | 0x0006 | R/O | Float | WR |
Actual setpoint | | 0x0008 | R/W | Float | SP1 | Setpoint 1 | | 0x000A | R/W | Float | SP2 (= dSP) | Setpoint 2 | | 0x1035 | R/O | Float | | Analog input InP3 (unfiltered) | | 0x1043 | R/O | Float | | Actual angular positioning | | 0x1058 | R/O | Word | B1 | Burner alarm | # Parameter level | Address | Access | Data type | Signal reference | Parameter | | |---------|--------|-----------|------------------|-------------------------------------|--| | 0x3000 | R/W | Float | Pb1 | Proportional range 1 | | | 0x3004 | R/W | Float | dt | Derivative action time | | | 0x3006 | R/W | Float | rt | Integral action time | | | 0x300C | R/W | Float | db | Dead band | | | 0x3012 | R/W | Word | tt | Controlling element running time | | | 0x3016 | R/W | Float | HYS1 | Switch-on threshold | | | 0x3018 | R/W | Float | HYS2 | Switch-off threshold down | | | 0x301A | R/W | Float | HYS3 | Switch-off threshold up | | | 0x301C | R/W | Float | HYS4 | Switch-on threshold (cooling) | | | 0x301E | R/W | Float | HYS5 | Switch-off threshold down (cooling) | | | 0x3020 | R/W | Float | HYS6 | Switch-off threshold up (cooling) | | | 0x3022 | R/W | Float | q | Reaction threshold | | | 0x3080 | R/W | Float | At1 | Outside temperature 1 | | | 0x3082 | R/W | Float | Ht2 | Boiler temperature 1 | | | 0x3084 | R/W | Float | At2 | Outside temperature 2 | | | 0x3086 | R/W | Float | Ht2 | Boiler temperature 2 | | # **Configuration level** | Address | Access | Data type | Signal reference | Parameter | |---------|--------|-----------|------------------|---| | 0x3426 | R/W | Float | SCL1 | Start of display input 1 | | 0x3428 | R/W | Float | SCH1 | End of display input 1 | | 0x3432 | R/W | Float | SCL2 | Start value input 2 | | 0x3434 | R/W | Float | SCH2 | End value input 2 | | 0x3486 | R/W | Float | SPL | Start of setpoint limitation | | 0x3488 | R/W | Float | SPH | End of setpoint limitation | | 0x342A | R/W | Float | OFFS1 | Offset input E1 | | 0x3436 | R/W | Float | OFFS2 | Offset input E2 | | 0x343A | R/W | Float | OFFS3 | Offset input E3 | | 0x1063 | R/W | Word | FnCt | Ramp function | | 0x1065 | R/W | Float | rASL | Ramp slope | | 0x1067 | R/W | Float | toLP | Tolerance band ramp | | 0x1069 | R/W | Float | rAL | Limit value | | 0x1075 | R/W | Float | dtt | Remote Detection Timer | | 0x1077 | R/W | Float | dF1 | Filter constant input 1 | | 0x1079 | R/W | Float | dF2 | Filter constant input 2 | | 0x107B | R/W | Float | dF3 | Filter constant input 3 | | 0x107D | R/O | Float | oLLo | Lower working range limit | | 0x107F | R/O | Float | oLHi | Upper working range limit | | 0x106D | R/W | Word | FnCt | Alarm relay function | | 0x106F | R/W | Float | AL | Alarm relay limit value (limit value alarm) | | 0x1071 | R/W | Float | HYSt | Alarm relay hysteresis | # Remote operation | Address | Access | Data type | Signal reference | Parameter | | |---------|--------|-----------|------------------|---|--| | 0x0500 | R/W | Word | REM | Activation remote operation * | | | 0x0501 | R/W | Word | rOFF | Controller OFF in remote setpoint ** | | | 0x0502 | R/W | Float | rHYS1 | Switch-on threshold remote | | | 0x0504 | R/W | Float | rHYS2 | Switch-off threshold down remote | | | 0x0506 | R/W | Float | rHYS3 | Switch-off threshold up remote | | | 0x0508 | R/W | Float | SPr | Setpoint remote | | | | | | | | | | 0x050A | R/W | Word | RK1 | Burner release remote operation | | | 0x050B | R/W | Word | RK2 | Relay K2 remote operation | | | 0x050C | R/W | Word | RK3 | Relay K3 remote operation | | | 0x050D | R/W | Word | RK6 | Relay K6 remote operation | | | 0x050E | R/W | Word | rStEP | Step-by-step control remote operation | | | 0x050F | R/W | Float | rY | Angular positioning output remote operation | | | 0x0511 | R/W | Float | rHYS4 | Switch-on threshold remote (cooling) | | | 0x0513 | R/W | Float | rHYS5 | Switch-off threshold down remote (cooling) | | | 0x0515 | R/W | Float | rHYS6 | Switch-off threshold up remote (cooling) | | Legend ^{* =} Local ^{** =} Controller OFF # Dati dell'apparecchio | Address | Access | Data type | Signal reference | Parameter | |---------|--------|-----------|------------------|------------------| | 0x8000 | R/O | Char12 | | Software version | | 0x8006 | R/O | Char14 | | VdN number | # Stato dell'apparecchio | Address | Access | Data type | Signal reference | Parameter | |---------|--------|-----------|------------------|---------------------------------------| | 0x0200 | R/O | Word | | Outputs and states | | | | | Bit 0 | Output 1 | | | | | Bit 1 | Output 3 | | | | | Bit 2 | Output 2 | | | | | Bit 3 | Output 4 | | | | | Bit 8 | Hysteresis limitation | | | | | Bit 9 | Control system | | | | | Bit 10 | Self-optimization | | | | | Bit 11 | Second setpoint | | | | | Bit 12 | Measuring range overshoot InP1 | | | | | Bit 13 | Measuring range overshoot InP2 | | | | | Bit 14 | Measuring range overshoot InP3 | | | | | Bit 15 | Calibration mode | | 0x0201 | R/O | Word | | Binary signals and hardware detection | | | | | Bit 0 | Operation mode 2-stage | | | | | Bit 1 | Manual mode | | | | | Bit 2 | Binary input D1 | | | | | Bit 3 | Binary input D2 | | | | | Bit 4 | Thermostat function | | | | | Bit 5 | First controller output | | | | | Bit 6 | Second controller output | | | | | Bit 7 | Alarm relay | | | | | Bit 13 | Analog output available | | | | | Bit 14 | Interface available | # **Electric connections:** With 7 pins connector version With terminals version Corrispondences bornes entre RWF55.5x y RWF40.0x0Matches terminals betweenRWF55.5x and RWF40.0x0 #### 18 # Parameters summarising for RWF55.xx: | | ConF | | | | | ConF | | | | | | | | | | |------------------------|------|------|----------|----------|----------|----------|----------|----------|-------|----|-----|-----|----------|----------|-------------| | Navigation menù | | | Inp | 1 | | | | | | | | | | | | | | Inp1 | | | | Cntr | | diSP | PArA | | | | | Opr | | | | Types of probe | SEn1 | OFF1 | SCL | SCH | Unit | SPL | SPH | dECP | Pb. 1 | dt | rt | tt | HYS1 (*) | HYS3 (*) | SP1 (*) | | Siemens QAE2120 | 6 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80 °C | | Siemens QAM2120 | 6 | 0 | needless | needless | 1 | 0 | 80 | 1 | 10 | 80 | 350 | (#) | -2,5 | 2,5 | 40°C | | Pt1000 (130°C max.) | 4 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt1000 (350°C max.) | 4 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | 80 | 350 | (#) | -5 | 10 | 80°C | | Pt100 (130°C max.) | 1 | 0 | needless | needless | 1 | 0 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt100 (350°C max) | 1 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | 80 | 350 | (#) | -5 | 10 | 80°C | | Probe4÷20mA / 0÷1,6bar | 16 | 0 | 0 | 160 | needless | 0 | 160 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 100 kPa | | Probe4÷20mA / 0÷3bar | 16 | 0 | 0 | 300 | needless | 0 | 300 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Probe 4÷20mA / 0÷10bar | 16 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Probe 4÷20mA / 0÷16bar | 16 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Probe 4÷20mA / 0÷25bar | 16 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Probe 4÷20mA / 0÷40bar | 16 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Probe 4÷20mA / 0÷60PSI | 16 | 0 | 0 | 600 | needless | 0 | 600 | 0 | 5 | 20 | 80 | (#) | 0 | 30 | 300 (30PSI) | | Probe4÷20mA / 0÷200PSI | 16 | 0 | 0 | 2000 | needless | 0 | 2000 | 0 | 5 | 20 | 80 | (#) | 0 | 75 | 600 (60PSI) | | Probe4÷20mA / 0÷300PSI | 16 | 0 | 0 | 3000 | needless | 0 | 3000 | 0 | 5 | 20 | 80 | (#) | 0 | 120 | 600 (60PSI) | | Siemens QBE2002 P4 | 17 | 0 | 0 | 400 | needless | 0 | 400 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Siemens QBE2002 P10 | 17 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Siemens QBE2002 P16 | 17 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Siemens QBE2002 P25 | 17 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Siemens QBE2002 P40 | 17 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Signal 0÷10V | 17 | 0 | needless | needless | needless | needless | needless | needless | 5 | 20 | 80 | (#) | | | | | Signal 4÷20mA | 16 | 0 | needless | needless | needless | needless | needless | needless | 5 | 20 | 80 | (#) | | | | #### NOTE: (#) tt - servo control run time SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (secondi) (*)These values are factory set - values must be set during operation at the plant based on the real working temperature/pressure value. #### WARNING: With pressure probes in bar the parameters SP1, SCH, SCL, HYS1, HYS3 must be set and displayed in kPa (kilo Pascal); 1bar = 100,000Pa = 100kPa. With pressure probes in PSI the parameters SP1, SCH, SCL, HYS1, HYS3 must be set and displayed in PSI x10 (example: 150PSI > I display 1500). #### APPENDIX: PROBES CONNECTION To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location. Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements. #### Ambient probes (or ambient thermostats) #### Installation The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by foreign factors. #### It's good to be admired ...even better to be effective Heating
systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system. # Location On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold). #### Installation position to be avoided near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them. #### Outside probes (weather)Installation In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance. **General rule:** en on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade. # Positions to be avoidedH Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever The sensor must not be painted (measurement error) . # Duct or pipe sensors Installing temperature sensors For measuring outlet air: "after delivery fan or "after coil to be controlled, at a distance of at least 0,5 m For measuring room temperature: "before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator. Bend 0.4m sensor by hand (never use tools) as illustrated . Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors # Installing combined humidity sensors As max. humidity limit sensor on outlet (steam humidifiers) . # Installing pressure sensors - A installation on ducts carrying fluids at max. temperature 80°C - B installation on ducts at temperature over 80°C and for refrigerants - C installation on ducts at high temperatures : - · "increase length of siphon "place sensor at side to prevent it being hit by hot air coming from the pipe. #### Installing differential pressure sensors for water Installation with casing facing down not allowed. With temperature over 80°C, siphons are needed. To avoid damaging the sensor, you must comply with the following instructions : when installing: make sure pressure difference is not greater than the value permitted by the sensor when there are high static pressures, make sure you insert shutoff valves A-B-C. # **Putting into operation** Start disable 1=open C1=open C 2=open A2=close B 3=open B3=close A 4= close C #### Immersion or strap-on sensors #### Immersion probes installation Sensors must be installed on the stretch of pipe in which fluid circulates all the time. The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow. Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid. Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.) . # Installing QAD2.. strap-on sensors Make sure fluid is circulating in the chosen location. Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe. Sensors come with straps for pipes up to 100 mm in diameter . Placing the probes (QAD22.../QAE21.../QAP21.../RCA...) # With pumps on outlet # with 3 ways valves / with 4 ways valves # with 3 ways valves / with 4 ways valves # Strap-on or immersion sensors? # QAD2.. strap-on sensors # Advantages: - 10 sec. time constant - Installed with system running (no plumbing work) - Installation can be changed easily if it proves incorrect # ΠLimits: - Suitable for pipe diameters max. 100 mm - Can be affected by currents of air etc. # QAE2... immersion sensors #### Advantages: - Measure "mean" fluid temperature - No external influence on measurement such as: currents of air, nearby pipes etc. #### Limits: - Time constant with sheath: 20 sec. - Hard to change installation position if it proves incorrect # Duct pressure switches and sensors # Installing differential pressure probes for air A - Control a filter (clogging) B - Control a fan (upstream/downstream) C - Measurement of difference in pressure between two ducts D - Measurement of difference in pressure between two rooms or of inside of duct and outside # **Basic principles** # Measuring static pressure(i.e. pressure exerted by air on pipe walls) # Measuring dinamic pressure $$Pd = \frac{y \vartheta^2}{2g}$$ # Legend y Kg/m3, specific weight of air q m/s, air speed g 9.81 m/s2 gravity acceleration Pd mm C.A., dynamic pressure # Measuring total pressure # MANUALE USER SUPPORT # MULTI-THERMOSTAT MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. it works as follows: as soon as the burner control gives the GO to the digital 1 input (terminals DI1-COM), the adjustment program runs (the relevant LED is ON). Reading the outlet temperature through the probe **Pb3** (terminals AI3-COM), a PID signal is produced. This signal becomes the set-point for the electric resistors. The electric resistors temperature is read through the probe **Pb1** (terminals AI1-COM) so that a second PID signal is produced. This second PID drives a couple of SCR by means of 0-10 V impulses in order to control the electric resistors temperature. When the burner is in stand-by, resistor set-point is kept at the temperature set in parameter "p30" (see parameter group REG). Probe **Pb4** (terminals Al4-COM) controls the inner heater temperature. As soon the relevant set-point is got, it drives the output number 4 (terminals C4-NO4) linked to the relais KTCN. This allows the oil pump to start and also the burner control proceeds with its cycle. When set-point **trS** is got to, output number 5 is ON (terminals C5-NO5) linked to the relais KTRS. It switches the resistors off and activates an alarm on the device. Probe **Pb2** (terminals Al2-COM), when fitted, drives output number 2 (terminals C2-NO2) linked to the relais KTCI. This allows the burner control to proceed with ignition. See below the set-point recommended figures. #### User interface: #### Note: In normal operation, the display A shows the oil tank resistor temperature (probe Pb1). In normal operation, the display B shows the oil output temperature (probe Pb3). # Connections from terminal side: # Probe connection: input **Al1** = probe **Pb1** = set-point "tr" = oil heater temperature probe; input Al2 = probe Pb2 = set-point "tCl" = plant consent temperature probe (when installed); input Al3 = probe Pb3 = set-point "OIL" = oil heater output temperature probe (PID regulation); input **Al4** = probe **Pb4** = set-point "**tcn**" = oil heater consent temperature probe. (tCl - Pb2 probe only for mechanical atomizing burners) $\mbox{\bf Menu}$: To enter the menu below, keep pushing $\mbox{\bf ENTER}$ for more than 3 s. | Menu code | Sub-menu code | Function | Notes | |-----------|---------------|-----------------------|---| | Prb | | Probes values | You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,, Pb4) and the probe value is on display B (not fitted or out of work probes show ""). | | Log | | Login | It defines the access level to menu and parameters (password) | | | PAS | Password | Password input | | Par | | Parameters menu | Access to parameters (you have to login first) | | | CnF | Configuration menu | Parameter configuration | | | rEG | Regulation menu | Set to set-point, probe, thresholds etc. | | ALA | | Alarm menu | Access to alarm management | | | Act | Active alarms | Show the active alarms | | | rES | Reset alarms | Reset of the manual reset alarms | | Loc | | Lock/Unlock functions | Not used | | InF | rEL | Software version | Installed software version | | tUN | | Autotuning | Activation On, deactivation ESC PID parameter autotuning | # Login: All the parameters inside the **Par** menu are locked by a password. Without password, only set-points can be modified. To login, on the log menu, press **ENTER** for more than 3 s. Input your password (level 2 or 3) inside **PAS** With password for level 3 all the data can be set. # submenu CnF - configuration parameters group : | Menu | Parameter | Description | Additional description | Min | Max | Default | U.M. | Visibility condition | Password level | Modbus
index | |------|------------|-------------------------------------
---|--------|--------|---------|------|----------------------|----------------|-----------------| | CnF | | CONFIGURATION | | | | | | | 0 | | | | | | | | | | | | 0 | | | Al1 | | Analog Input 1 | T1: 11 11 11 11 | | | | | | 1 | | | | A4D | Ducks 4 Ducces | This parameter enables or disables the | 0 | | 4 | | | | 4 | | | A1P | Probe 1 Presence | probe | _ | 1 20.0 | 1 | 00 | AAD > 0 | 2 | 1 | | A 10 | A1C | Calibration Probe 1 | Don't modify it | -20,0 | 20,0 | 0,0 | °C | A1P >0 | 3 | 2 | | Al2 | | Analog Input 2 | This was a second as | | | | | | 1 | | | | A2P | Doob of Door on the | This parameter enables or disables the | | | 4 | | | | | | | A2P
A2C | Probe 2 Presence | probe Don't modify it | -20,0 | 1 00.0 | 0,0 | °C | A0D : 0 | 2 | 3 4 | | Al3 | A2C | Calibration Probe 2 | Don't modify it | -20,0 | 20,0 | 0,0 | -0 | A2P >0 | 3 | 4 | | AI3 | | Analog Input 3 | This was a second as | | | | | | 1 | | | | 400 | Doob - O Door | This parameter enables or disables the | | | 4 | | | | _ | | | A3P | Probe 3 Presence | probe | 0 | 4 | 1 | | 40D + 0 | 2 | 5 | | | A3L | Min. Value conversion Al3 | Don't modify it | -999,9 | 999,9 | 0,0 | | A3P >2 | 3 | 6 | | | A3H | Max. Value conversion Al3 | Don't modify it | -999,9 | 999,9 | 30,0 | 0.0 | A3P >2 | 3 | 7 | | | A3C | Calibration Probe 3 | Don't modify it | -20,0 | 20,0 | 0,0 | °C | A3P >0 | 3 | 8 | | Al4 | | Analog Input 4 | | | | | | | 1 | | | | | | This parameter enables or disables the | | | | | | | | | | A4P | Probe 4 Presence | probe | 0 | 4 | 1 | | | 2 | 9 | | | A4L | Min. Value conversion Al4 | Don't modify it | -999,9 | 999,9 | 0,0 | | A4P >2 | 3 | 10 | | | A4H | Max. Value conversion Al4 | Don't modify it | -999,9 | 999,9 | 30,0 | | A4P >2 | 3 | 11 | | | A4C | Calibration Probe 4 | Don't modify it | -20,0 | 20,0 | 0,0 | °C | A4P >0 | 3 | 12 | | dl | | Digital input | | | | | | | 1 | | | | dl1 | Input 1 polarity (Pump) | Change type of digital input (NC o NO) | 0 | 1 | 1 | | | 3 | 13 | | | dl2 | Alarm polarity from input 2 | Change type of digital input (NC o NO) | 0 | 2 | 2 | | | 2 | 14 | | | dl3 | Alarm polarity from input 3 | Change type of digital input (NC o NO) | 0 | 2 | 2 | | | 2 | 15 | | | dl4 | Alarm polarity from input 4 | Change type of digital input (NC o NO) | 0 | 2 | 2 | | | 2 | 16 | | | dI5 | Alarm polarity from input 5 | Change type of digital input (NC o NO) | 0 | 2 | 2 | | | 2 | 17 | | | dl6 | Alarm polarity from input 6 | Change type of digital input (NC o NO) | 0 | 2 | 2 | | | 2 | 18 | | dl | | Digital output
Alarm and Warning | | | | | | | 1 | | | ui | dO5 | Polarity output Warning | Change type of digital input (NC o NO) | 0 | 1 | 0 | | | 3 | 19 | | | dO6 | Polarity output Alarm | Change type of digital input (NC o NO) | 0 | 1 | 0 | | | 3 | 20 | | SIC | 400 | Safety probe | Onlinge type of digital input (140 o 140) | - 0 | ' | 0 | | | 1 | 20 | | 010 | | Galety probe | Probe which also activates the relay | | | | | | | | | | SIp | Selection of safety probe | Warning (ns. KTRS) | 0 | 4 | 4 | | | 3 | 21 | | SyS | ОГР | Syistem | Warning (ns. 141140) | 0 | | 7 | | | 0 | 21 | | Oyo | | Sylstelli | Probe temperature or set-point to be | | | | | | 0 | | | | dSA | display A output | displayed in the left display | 0 | 8 | 1 | | | 3 | 22 | | | USA | αιορίας Α υπίματ | Probe temperature or set-point to be | U | U | I | | | 3 | | | | dSb | display B output | displayed in the right display | 0 | 8 | 3 | | | 3 | 23 | | PAS | uob | Password | displayed in the right display | 0 | U | 3 | | | 1 | 23 | | PAS | DI 4 | I . | | | 9999 | 0 | | | 1 1 | 20 | | | PL1
PL2 | Password level 1 | | 0 | 9999 | U | | | 2 | 32
33 | | | | Password level 2 | <u> </u> | ŭ | | | | | | | | | PL3 | Password level 3 | | 0 | 9999 | | | | 3 | 34 | | Menu | Parameter | Description | Additional description | Min | Max | Default | U.M. | Visibility condition | Level | Modbus
index | |------|------------|---|------------------------|------|-------|---------|----------|----------------------|-------|-----------------| | tUN | T dramotor | Autotuning | Traditional accomption | | - Max | Donaut | <u> </u> | Condition | 3 | muox | | | tU1 | Output temperature hysteresis | Don't modify it | 0 | 50,0 | 0,5 | °C | | 3 | 35 | | | tU2 | Startup number | Don't modify it | 0 | 5 | 2 | | | 3 | 36 | | | tU3 | Measurement cycles number | Don't modify it | 1 | 4 | 2 | | | 3 | 37 | | | tU4 | Max. differential command exit | Don't modify it | 0,01 | 10,00 | 10,00 | V | | 3 | 38 | | | tU5 | Differential reduction exit command (%) | Don't modify it | 0 | 100 | 15 | | | 3 | 39 | | | | Calculating mode:
0= Symmetrical;
1=Asymmetrical; | Don't modify it | | | | | | | | | | tU6 | 2=Simple | | 0 | 2 | 2 | | | 3 | 40 | | | tU7 | Enabling | Don't modify it | 0 | 1 | 1 | | | 3 | 41 | # Submenu **REG – regulation parameters group**: | arameter | Description REGULATION | Additional description | Min | | | | | | index | |----------|--|--|--
--|--|--|--|--|--| | | | | | Max | Default | U.M. | condition | Level
0 | inuex | | | Probe 1 | | | | | | | 0 | | | | Set-point Probe 1 | Don't modify it | | | | | | | | | ES | (Tank resistor) | , | -50,0 | 200,0 | 0,0 | °C | | 3 | 42 | | | Probe 1 - Low Temperature Alarm | Don't modify it | | | | | | | | | L1 | Threshold | • | -50,0 | 200,0 | -50,0 | °C | | 3 | 43 | | | | Don't modify it | | | | | | | | | .H1 | | | | | | | | | 44 | | 01 | | | 0,0 | 20,0 | 3,0 | °C | | | 45 | | | | | | | | | | 0 | | | | | | | | | | | _ | | | CI | | | -50,0 | 200,0 | 120,0 | °C | | 0 | 46 | | | | Don't modify it | 50.0 | 000.0 | 50.0 | | | | 4-7 | | L2 | | D. 14 15 . 14 | -50,0 | 200,0 | -50,0 | 30 | | 2 | 47 | | 110 | | Don't modify it | 50.0 | 200.0 | 200.0 | °C | | | 48 | | | | | ,- | , - | | | | | 49 | | 02 | | | 0,0 | 20,0 | 3,0 | | | | 49 | | | | Type of regulation | | | | | | 0 | | | ≣3 | | | 0 | 1 | 1 | | | 3 | 50 | | | (On tariit oxit) | | † * | • | | | | | - 00 | | IL | Set-point Probe 3 (Oil tank exit) | | -50.0 | 200.0 | 130.0 | °C | | 0 | 51 | | | | Don't modify it | | | , . | | | _ | - | | L3 | Threshold (Oil tank exit) | , | -50,0 | 200,0 | -50,0 | °C | | 2 | 52 | | | Probe 3 - High Temperature Alarm | Don't modify it | | | | | | | | | .H3 | Threshold (Oil tank exit) | | -50,0 | 200,0 | 200,0 | °C | | 2 | 53 | | | | Proportional band for first PID regulation | | | | | | | | | b3 | , | | 0,0 | 200,0 | 60,0 | | | 3 | 54 | | | | Dead zone for first PID regulation | | | | | | | | | b3 | , | | 0,0 | 20,0 | 0,0 | °C | rE3 =1 | 3 | 55 | | 0 | | Integral time for first PID regulation | 0.0 | 1000.0 | 400.0 | | | | 50 | | 3 | | Desire ative time for first DID no seed ative | 0,0 | 1000,0 | 120,0 | S |
rE3 =1 | 3 | 56 | | +2 | | | 0.0 | 200.0 | 20.0 | | rE2 =1 | 2 | 57 | | ıo | | () | 0,0 | 300,0 | 30,0 | 5 | 1E3 -1 | 3 | 37 | | h3 | | Dead Zone for first FID regulation | 0.0 | 20.0 | 0.0 | °C | rE3 -1 | 3 | 55 | | L | 1
11
11
2
2
2
2
2
3
3
3
3
3
3 | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 differential Probe 2 Set-point Probe 2 (Plant Consent) Probe 2 - Low Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 2 differential Probe 3 Type of regulation of probe 3 (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Proportional band for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) DerivativeTime (Td) for PID Probe 3 (Oil tank exit) DerivativeTime (Td) for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 differential Probe 2 Set-point Probe 2 (Plant Consent) Probe 2 - Low Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 3 - Type of regulation of probe 3 (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Proportional band for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Derivative Time (Ti) for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 (Dead Zone for FID Probe 3 (Dead Zone for FID Probe 3 (Dead Zone for FID Probe 3 (Dil tank exit) Dead Zone for FID Probe 3 (Dead 3) (Dead Zone for FID Probe 3 | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 differential Probe 2 Set-point Probe 2 (Plant Consent) Probe 2 - Low Temperature Alarm Threshold Probe 2 - Low Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 3 - High Temperature Alarm Threshold Probe 3 Type of regulation of probe 3 (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold Don't modify it -50,0 Type of regulation 0 = thermostat; 1= PID (don't modify) Nozzle oil temperature according to the table "Set point adjustment" -50,0 Nozzle oil temperature according to the table "Set point adjustment" -50,0 Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Proportional band for PID Probe 3 (Oil tank exit) Don't modify it -50,0 Proportional band for first PID regulation (Oil tank exit) Dead Zone for PID Probe 3 (Oil tank exit) Derivative Time (Ti) for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 Dead Zone for PID Probe 3 (Oil tank exit) Dead Zone for PID Probe 3 Dead Zone for FID | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 differential Set-point Probe 2 Set-point Probe 2 (Plant Consent) Probe 2 - Low Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 2 - High Temperature Alarm Threshold Probe 3 - High Temperature Alarm Set-point adjustment* Probe 3 Type of regulation of probe 3 (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - Low Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) On't modify it -50,0 200,0 200,0 200,0 200,0 200,0 200,0 200,0 200,0 200 | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 differential Probe 2 Plant consent according to table Probe 2 Plant consent according to table Probe 2 - Low Temperature Alarm Don't modify it Probe 2 - Low Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 3 Type of regulation Destruction Probe 3 Type of regulation Destruction Destruction Destruction Destruction Destruction Destruction Destruction Don't modify it Don't modify Destruction | Probe 1 - Low Temperature Alarm Don't modify it -50,0 200,0 -50,0 °C | Probe 1 - Low Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 1 - High Temperature Alarm Threshold Probe 2 Probe 2 Plant consent according to table Set-point Probe 2 Plant consent according to table Set point adjustment Probe 2 Plant consent according to table Set point adjustment Probe 2 Plant consent according to table Set point adjustment Probe 2 Probe 2 - Low Temperature Alarm Don't modify it Probe 2 - High Temperature Alarm Don't modify it Probe 3 - High Temperature Alarm Don't modify it Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Probe 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Propos 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Propos 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Propos 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Propos 3 - High Temperature Alarm Threshold (Oil tank exit) Don't modify it Proportional band for PID Probe 3 Don't modify it Proportional band for PID Probe 3 Don't modify it Proportional band for PID Probe 3 Dead Zone for PID Probe 3 Derivative Time (Td) Dead Z | Probe 1 - Low Temperature Alarm Don't modify it -50,0 200,0 -50,0 °C 3 3 1 1 1 1 1 1 1 1 | | Menu | Parameter | Description | Additional description | Min | Max | Default | U.M. | Visibility condition | Level | Modbus
index | |-------|------------|--|--|--------|--------|---------|--------|----------------------|-------|-----------------| | Wienu | 1 arameter | Overshooting for Integral action | Don't modify it | IVIIII | IVIAA | Delault | U.IVI. | Condition | Level | IIIUEX | | | pi1 | (Oil tank exit) | Bont mount it | 100 | 1000 | 200 | | rE3 =1 | 3 | 58 | | | P | Derivative action enabling | Don't modify it | .00 | | 200 | | | | | | | pi2 | (Oil tank exit) | Jentinican, it | 0 | 1 | 1 | | rE3 =1 | 3 | 59 | | | 1 | Filtering factor for derivative action | Don't modify it | | | | | | | | | | pi3 | (Oil tank exit) | | | 100 | 20 | | rE3 =1 | 3 | 60 | | | | Duty cicle PWM for output DO3 | Don't modify it | | | | | | | | | | pi4 | and/or AO1 (0-10V) | | 1 | 300 | 5 | s | rE3 =1 | 3 | 61 | | | | Output selection DO3 and/or AO1 | Digital selection output for control | | | | | | | | | | SL3 | (0-10V) | thyristors; Don't modify it | 0 | 2 | AO1 | | | 3 | 62 | | | | Proportional band for PID Probe 1 | Proportional band for second PID | | | | | | | | | | p21 | (Tank resistor) | regulation | 0,0 | 200,0 | 50,0 | | rE3 =1 | 3 | 63 | | | | Dead Zone for PID Probe 1 | Dead zone for second PID regulation | | | | | | | | | | p22 | (Tank resistor) | | 0,0 | 20,0 | 0,0 | °C | rE3 =1 | 3 | 64 | | | | Integral Time (Ti) for PID Probe 1 | Integral time for second PID regulation | | | | | | | | | | p23 | (Tank resistor) | | 0,0 | 1000,0 | 110,0 | S | rE3 =1 | 3 | 65 | | | | DerivativeTime (Td) for PID Probe 1 | Derivative time for second PID regulation | | | | | | | | | | p24 | (Tank resistor) | | 0,0 | 300,0 | 23,0 | S | rE3 =1 | 3 | 66 | | | | Overshooting for Integral action | Don't modify it | | | | | | | | | | p25 | (Tank resistor) | | 100 | 1000 | 200 | | rE3 =1 | 3 | 67 | | | 00 | Derivative action enabling |
Don't modify it | | | | | F0 4 | | | | | p26 | (Tank resistor) | D 11 115 11 | 0 | 1 | 1 | | rE3 =1 | 3 | 68 | | | 0.7 | Filtering factor for derivative action | Don't modify it | | 400 | 00 | | F0 4 | | | | | p27 | (Tank resistor) | | 1 | 100 | 20 | | rE3 =1 | 3 | 69 | | | | Min Output PID Probe 3 | Minimum value tank resistor set-point | 0.0 | 1000.0 | 00.0 | °C | "FO =4 | | 70 | | | p28 | (Oil tank exit) | (delta of 100°C above p29) | 0,0 | 1000,0 | 80,0 | C | rE3 =1 | 3 | 70 | | | p29 | Max Output PID Probe 3 (Oil tank exit) | Maximum valuetank resistor set-point | 0.0 | 1000.0 | 180.0 | °C | rE3 =1 | 3 | 71 | | | p29 | Set-point Tank Resistor with oil | Cat point of maintaining registeres during | 0,0 | 1000,0 | 160,0 | L C | 1E3 - 1 | 3 | /1 | | | SP0 | pump stops (stand by) | Set-point of maintaining resistance during stand by "Set point adjustment" | -50.0 | 200.0 | 140,0 | °C | rE3 =1 | 0 | 72 | | Pb4 | 350 | Probe 4 | stand by Set point adjustment | -50,0 | 200,0 | 140,0 | C | 1E3 -1 | 0 | 12 | | F 04 | | Setpoint Probe 4 | Oil consent according table "Set point | | | | | | U | | | | tcn | (Oil consent) | adjustment" | -50,0 | 200,0 | 110,0 | °C | | 0 | 73 | | | AL4 | Low Threshold Probe 4 | aujustinent | -50.0 | 200,0 | -50,0 | °C | | 2 | 74 | | | AL4 | Probe 4 - High Temperature Alarm | Tank resistor safety temperature according | -50,0 | 200,0 | -50,0 | | | | 14 | | | | Threshold | table "Set point adjustment" | | | | | | | | | | trS | (Safety Thermostat) | table der politi aujustillerit | -50,0 | 200,0 | 190,0 | °C | | 0 | 75 | | | d04 | Probe 4 differential | | 0,0 | 20,0 | 3,0 | °C | | 2 | 76 | | | u04 | I TODE 4 UITIETETILIAI | | 0,0 | 20,0 | 3,0 | | | | 70 | # Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the left lights, the output N05-C5 is active and the relay **KTRS** switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than **trS**, reset it through **ALA/rES**. In order to show active alarms and warnings, select the relevant menu through **ALA/Act**.and, using the **UP** and **DOWN** buttons, scroll the lines. In order to perform the manual reset, select ALA/rES. | Code | Description | Sourse | Active simbol | Reset type | |------|----------------------------------|-----------------------|---------------|------------| | trS | High temperature resistors alarm | probe Pb4 > value trS | red key | Manual | | EP1 | Probe Pb1 fault | Probe Pb1 fault | red triangle | Automatic | | EP2 | Probe Pb2 fault | Probe Pb2 fault | red triangle | Automatic | | EP3 | Probe Pb3 fault | Probe Pb3 fault | red triangle | Automatic | | EP4 | Probe Pb4 fault | Probe Pb4 fault | red triangle | Automatic | # Set point adjustment: All the parameters inside the **Par** menu are locked by a password. The user can modify only set points, without using any passwords. The oil viscosity at the nozzle, should be about 1,5°E, which guarantees correct and safe functioning of the burner. The temperature values in the table, guarantee the respect of that parameter and are valid when the pre heating tank is installed on the burner. For different configurations, please refer to the chapter "Recommendations to design heavy oil feeding plants" on the burner manual Here below recommended set points: | M | enu pa | ıth | | Oil viscosity at 50 °C according to the letter shown in the burner model | | | | | | | | |-----|--------|-----|---|--|------------|-----------------------|------------------------|-------------------------|--|--|--| | | • | | | Р | N | E | D | Н | | | | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | | | | 12 °E | < 7°E | > 7 °E
< 15 °E | > 15 °E
< 50 °E | > 50 °E
< 530 °E | | | | | Par | | | | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | | | | Pb2 | tCl | Plant consent
temperature probe
(when installed) | 20 °C | 70 °C | 70 °C | 70 °C | | | | | | | Pb3 | Oil | oil heater output
temperature probe (PID
regulation); | 60-70 °C | 110-120 °C | 120-130 °C | 130-140 °C | 140-150 °C | | | | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 °C | 120 °C | 130 °C | 140 °C | 150 °C | | | | | | Pb4 | tcn | Oil heater consent temperature probe | 40 °C | 100 °C | 100 °C | 110 °C | 120 °C | | | | | | | trS | Safety temperature tank resistors (manual reset) | 120 °C | 190-200 °C | 190-200 °C | 190-200 °C | 190-200 °C | | | | The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications.