

HP91A-HP92A-HP93A HP512A-HP515A HP520A-HP525A

Progressive and fully-modulating gas - light oil burners

MANUAL OF INSTALLATION - USE - MAINTENANCE

CIB UNIGAS

BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ

DANGERS, WARNINGS AND NOTES OF CAUTION

THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER.

INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE.

THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT.

CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE.

1) GENERAL INTRODUCTION

- The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel.
- Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer.
- Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier.

The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful.

- Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided.
- Make sure that inlet or exhaust grilles are unobstructed.
- In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action.

Contact qualified personnel only.

Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories.

Failure to comply with the above instructions is likely to impair the unit's safety.

To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions.

- When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless.
- In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer.
- This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous.

The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things:

- Failure to comply with one of the WARNINGS in this chapter

- Incorrect handling, installation, adjustment or maintenance of the burner
- Incorrect use of the burner or incorrect use of its parts or optional supply

2) SPECIAL INSTRUCTIONS FOR BURNERS

- The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion.
- Only burners designed according to the regulations in force should be used.
- This burner should be employed exclusively for the use for which it was designed.
- Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel).
- Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped.

When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations:

- a Remove the power supply by disconnecting the power cord from the mains.
- b Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles.

Special warnings

- Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox.
- Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations:
- a set the burner fuel flow rate depending on the heat input of the appliance;
- b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force;
- c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force;
- d make sure that control and safety devices are operating properly;
- e make sure that exhaust ducts intended to discharge the products of combustion are operating properly;
- f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened;
- g make sure that a copy of the burner use and maintenance instructions is available in the boiler room.
- In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further.
- The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force.

3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED 3a) ELECTRICAL CONNECTION

- For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations.
- It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment.
- Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit.
- No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains.
- An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations.
- The use of any power-operated component implies observance of a few basic rules, for example:
 -do not touch the unit with wet or damp parts of the body and/or with
 - bare feet;
 - do not pull electric cables;
 - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so;
 - do not allow children or inexperienced persons to use equipment;
- The unit input cable shall not be replaced by the user.
- In case of damage to the cable, switch off the unit and contact qualified personnel to replace.

When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off.

3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL

- The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation.
- Before the burner is commissioned, qualified personnel should inspect the following:
- a the fuel supply system, for proper sealing;
- b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner;
- the burner firing system, to make sure that it is supplied for the designed fuel type;
- d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate;
- e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force.
- When the burner is to remain idle for some time, the fuel supply tap or taps should be closed.

SPECIAL INSTRUCTIONS FOR USING GAS

Have qualified personnel inspect the installation to ensure that:

- a the gas delivery line and train are in compliance with the regulations and provisions in force;
- b all gas connections are tight;
- c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion.
- Do not use gas pipes to earth electrical equipment.
- Never leave the burner connected when not in use. Always shut the gas valve off.
- In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off.

Precautions if you can smell gas

- a do not operate electric switches, the telephone, or any other item likely to generate sparks;
- b immediately open doors and windows to create an air flow to purge the room;
- c close the gas valves;
- d contact qualified personnel.
- Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures.

DIRECTIVES AND STANDARDS

Gas burners

- European directives
- -Regulation 2016/426/UE (appliances burning gaseous fuels)
- -2014/35/UE (Low Tension Directive) -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 676 (Automatic forced draught burners for gaseous fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

Light oil burners

European directives

-2014/35/UE (Low Tension Directive) -2014/30/UE (Electromagnetic compatibility Directive)

-20014/30/DE (Electromagnetic compatibility Directive -2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 267-2011(Automatic forced draught burners for liquid fuels)

-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)

-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);

-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).

-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Heavy oil burners

European Directives

-2014/35/UE (Low Tension Directive)

-2014/30/UE (Electromagnetic compatibility Directive)

-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 267(Automatic forced draught burners for liquid fuels)

-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

-EN 60204-1:2006 (Safety of machinery - Electrical equipment of machines.)

-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);

-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).

-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Gas - Light oil burners

European Directives

-Regulation 2016/426/UE (appliances burning gaseous fuels)

-2014/35/UE (Low Tension Directive) -2014/30/UE (Electromagnetic compatibility Directive)

-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 676 (Automatic forced draught burners for gaseous fuels)

-UNI EN 267(Automatic forced draught burners for liquid fuels)

-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

-EN 60204-1:2006 (Safety of machinery – Electrical equipment of machines.)

-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);

-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).

-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Gas - Heavy oil burners

European directives:

-Regulation 2016/426/UE (appliances burning gaseous fuels) -2014/35/UE (Low Tension Directive)

-2014/30/UE (Electromagnetic compatibility Directive)

-2006/42/EC (Machinery Directive)

Harmonized standards

-UNI EN 676 (Automatic forced draught burners for gaseous fuels)

-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

-EN 60204-1:2006 (Safety of machinery – Electrical equipment of machines.)

-CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);

-CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).

-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

Industrial burners

European directives

-Regulation 2016/426/UE (appliances burning gaseous fuels) -2014/35/UE (Low Tension Directive) -2014/30/UE (Electromagnetic compatibility Directive)

-2006/42/EC (Machinery Directive)

Harmonized standards

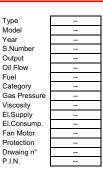
-EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

-EN 746-2 (Industrial thermoprocessing equipment - Part 2: Safety requirements for combustion and fuel handling systems)

-UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction);

-EN 60204-1:2006 (Safety of machinery – Electrical equipment of machines.)

-EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements)


Burner data plate

For the following information, please refer to the data plate:

- burner type and burner model: must be reported in any communication with the supplier
- burner ID (serial number): must be reported in any communication with the supplier
- date of production (year and month)

WARNING!

 information about fuel type and network pressure
 Protection

SYMBOLS USED

Failure to observe the warning may result in irreparable damage to the unit or damage to the environment

Failure to observe the warning may result in serious injuries or death.

Failure to observe the warning may result in electric shock with lethal consequences

Figures, illustrations and images used in this manual may differ in appearance from the actual product.

BURNER SAFETY

The burners - and the configurations described below - comply with the regulations in force regarding health, safety and the environment. For more in-depth information, refer to the declarations of conformity that are an integral part of this Manual.

DANGER! Incorrect motor rotation can seriously damage property and injure people.

Residual risks deriving from misuse and prohibitions

The burner has been built in order to make its operation safe; there are, however, residual risks.

Do not touch any mechanical moving parts with your hands or any other part of your body. Injury hazard Do not touch any parts containing fuel (i.e. tank and pipes).

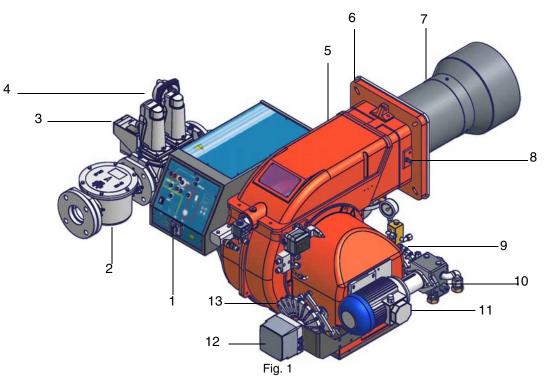
Scalding hazard Do not use the burner in situations other than the ones provided for in the data plate

vided for in the data plate. Do not use fuels other than the ones stated. Do not use the burner in potentially explosive environ-

ments. Do not remove or by-pass any machine safety devices. Do not remove any protection devices or open the burner or any other component while the burner is running. Do not disconnect any part of the burner or its components while the burner is running.

Untrained staff must not modify any linkages.

After any maintenance, it is important to restore the protection devices before restarting the machine. All safety devices must be kept in perfect working order. Personnel authorized to maintain the machine must always be provided with suitable protections.



ATTENTION: while running, the parts of the burner near the generator (coupling flange) are subject to overheating. Where necessary, avoid any contact risks by wearing suitable PPE.

PART I: INSTALLATION

GENERAL FEATURES

This series represents monobloc gas burners made in die-cast aluminium housing, that can burn either gas or light oil, thanks to the adjustable combustion head which allows a good performance with both fuels. They can be provided in progressive or fully-modulating version.

- 1 Control panel with startup switch
- 2 Gas filter
- 3 Gas proving system
- 4 Gas valve group
- 5 Cover
- 6 Flange
- 7 Blast tube-Combustion head group
- 8 Detection probe
- 9 Oil adjusting cam
- 10 Light oil pump
- 11 Pump motor
- 12 Actuator
- 13 Gas adjusting cam

Gas operation: the gas coming from the supply line, passes through the valves group provided with filter and stabiliser. This one forces the pressure in the utilisation limits. The actuator (12) moves proportionally the air damper and the gas butterfly valve It drives an adjusting cam (13) with variable shape. This one allows the optimisation of the gas flue values, as to get an efficient combustion.

Light oil operation: the fuel coming from the supply line, is pushed by the pump (10) to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame.

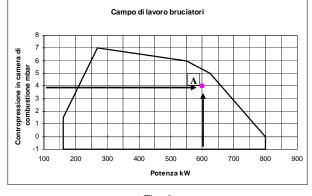
In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle.

The pump (8) main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure regulators: one for the high and one for low pressure (in double-stage systems with one nozzle).

The adjustable combustion head can improve the burner performance. The combustion head (7) determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber).

The control panel (1), placed on the burner front side, shows each operating stage.

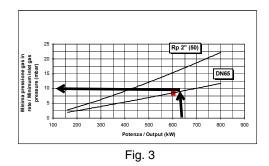
How to interpret the burner "Performance curve"


- To check if the burner is suitable for the boiler to which it must be installed, the following parameters are needed:
- furnace input, in kW or kcal/h (kW = kcal/h / 860);
- backpressure (data are available on the boiler's ID plate or in the user's manual).

Example:

Furnace input: 600kW

Backpressure: 4mbar


In the "Performance curve" diagram (Fig. 2), draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve.

Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C

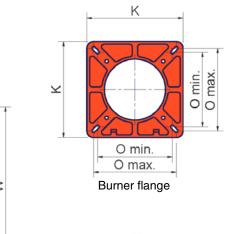
Checking the proper gas train size To check the proper gas train size, it is necessary to the available gas pressure value upstream the burner's gas valve. Then subtract the backpressure. The result is called **p**gas. Draw a vertical line matching the furnace input value (600kW, in the example), quoted on the x-axis, as far as intercepiting the network pressure curve, according to the installed gas train (DN65, in the example). From the interception point, draw an horizontal line as far as matching, on the y-axis, the value of pressure necessary to get the requested furnace input. This value must be lower or equal to the **p**gas value, calculated before.

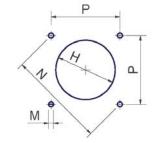
Burner model identification

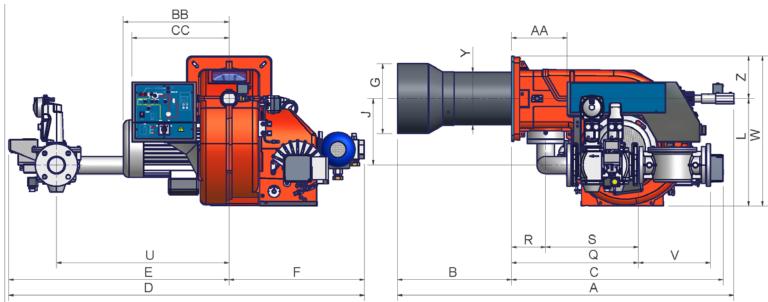
Burners are identified by burner type and model. Burner model identification is described as follows.

Type HP91A Model MG. PR. S. *. A. 1. 80	0)
(1) (2) (3) (4) (5) (6) (7) ((1) BURNER TYPE	8) HP91A
(2) FUEL	M - Natural gas G - Light oilLight oil
(3) OPERATION (Available versions)	PR - Progressive MD - Fully modulating
(4) BLAST TUBE	S - Standard L - Extended
(5) DESTINATION COUNTRY	* - see data plate
(6) BURNER VERSION	A - Standard
(7) EQUIPMENT	1 = 2 valves + gas proving system
	8 = 2 valves + gas proving system
(8)GAS CONNECTION	50 = Rp2 65 = DN65
see Specifications	80 = DN80 100 = DN100

Specifications

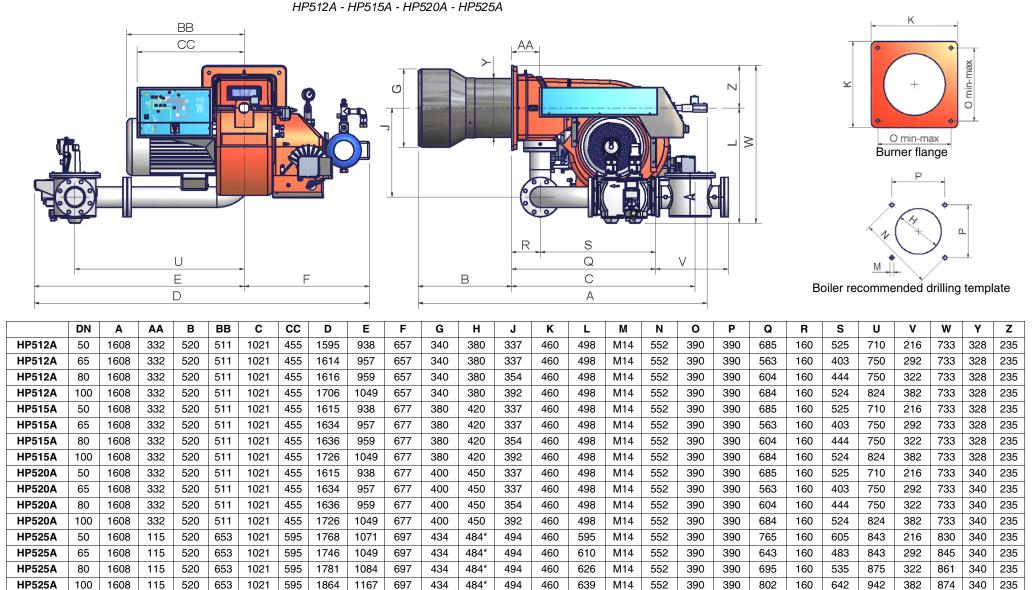

BURNER TYPE		HP91A	HP92A	HP93A	HP512A					
Output	min max. kW	480 - 2670	480 - 3050	550 - 4100	600 - 4500					
Fuel		I	Natural gas	- Light oil						
Category			(see next p	aragraph)						
Gas rate	min max. (Stm ³ /h)	51 - 283	51 - 323	58 - 434	63 - 476					
Gas pressure	mbar	I	(see N	ote 2)						
Light oil rate	minmax. kg/h	40 - 225	40 - 257	46 - 345	50 - 379					
Oil viscosity	cSt @ 40°C	L	2 - 2	7.4						
Oil density	kg/m ³		840	0						
Power supply			230V 3~ / 400	V 3N ~ 50Hz						
Total power consumption	kW	5.6	7.1	9.1	10.8					
Electric motor	kW	4	5.5	7.5	9.2					
Pump motor	kW	1.1	1.1	1.1	1.1					
Protection		-	IP4	10						
Operation			Progressive - Fu	ully modulating						
Gas train 50	Valves size / Gas connection		50 / F	Rp 2						
Gas train 65	Valves size / Gas connection		65 / D							
Gas train 80	Valves size / Gas connection		80 / DN80							
Gas train 100	Valves size / Gas connection	100 / DN100								
Operating temperature	O°		-10 ÷	+50						
Storage Temperature	°C		-20 ÷	+60						
Working service*			Interm	ittent						
BURNER TYPE		HP515A	HP520A	HP525A50	HP525Axx					
Output	min max. kW	770 - 5200	1000 - 6400	2000 - 6700	2000 - 8000					
Fuel				s - Light oil						
Category			-	paragraph)						
Gas rate	min max. (Stm ³ /h)	81 - 550	106 - 677	212 - 709	212 - 847					
Gas pressure	mbar	01 000		Note 2)						
Light oil rate	minmax. kg/h	65 - 438	84 - 539	168 - 564	168 - 674					
Oil viscosity	cSt @ 40°C		2 - 7.4							
Oil density	kg/m ³		84	40						
Power supply			230V 3~ / 40	0V 3N ~ 50Hz						
Total power consumption	kW	13	17	22	22					
		4.4	15	18.5	18.5					
Electric motor	kW	1 11	15							
Electric motor Pump motor	kW kW	11 1.5	1.5	3	3					
Pump motor			1.5		3					
Pump motor Protection			1.5 IP	3	3					
Pump motor Protection Operation			1.5 IP Progressive - F	3	3					
Pump motor Protection	kW	1.5	1.5 IP	3	-					
Pump motor Protection Operation Gas train 50	kW Valves size /Gas connection Gas	1.5	1.5 IP Progressive - F 50 / Rp2 DN65	3	3 - DN65 80 / DN80					
Pump motor Protection Operation Gas train 50 Gas train 65 Gas train 80	kW Valves size /Gas connection Gas Valves size / Gas connection	1.5 65 / 80 /	1.5 IP Progressive - F 50 / Rp2 DN65 DN80	3	- DN65					
Pump motor Protection Operation Gas train 50 Gas train 65 Gas train 80 Gas train 100	kW Valves size /Gas connection Gas Valves size / Gas connection Valves size / Gas connection Valves size / Gas connection	1.5 65 / 80 /	1.5 IP Progressive - F 50 / Rp2 DN65 DN80 DN100	3 40 Fully modulating - - -	- DN65 80 / DN80					
Pump motor Protection Operation Gas train 50 Gas train 65 Gas train 80	kW Valves size /Gas connection Gas Valves size / Gas connection Valves size / Gas connection	1.5 65 / 80 /	1.5 Progressive - F 50 / Rp2 DN65 DN80 DN100 -10 -	3 40 Fully modulating	- DN65 80 / DN80					


Note1:	all gas flow rates are referred to Stm ³ /h (1013 mbar absolute pressure, 15 °C temperature) and are valid for G20 natural gas (nett calorific value H _i = 34.02 MJ/Stm ³).
Note2:	Maximum gas pressure = 500mbar (with Siemens VGD gas valves).
	Minimum gas pressure = see gas curves.


* NOTE ON THE BURNER WORKING SERVICE: for safety reasons, one controlled shutdown must be performed every 24 hours of continuous operation.

Country and usefulness gas categories

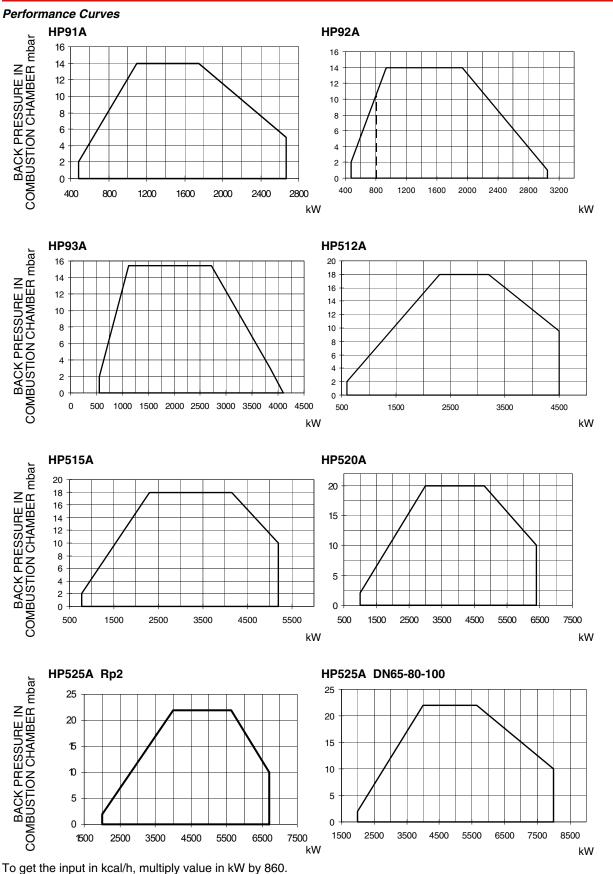
GAS CATEGORY												co	DUNT	RY											
I _{2H}	AT	ES	GR	SE	FI	IE	HU	IS	NO	CZ	DK	GB	IT	PT	CY	EE	LV	SI	MT	SK	BG	LT	RO	TR	СН
I_{2E}	LU	PL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2E(R)B}	BE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2L}	NL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2ELL}	DE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2Er}	FR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-



HP91A - HP92A - HP93A

Boiler recommended drilling template

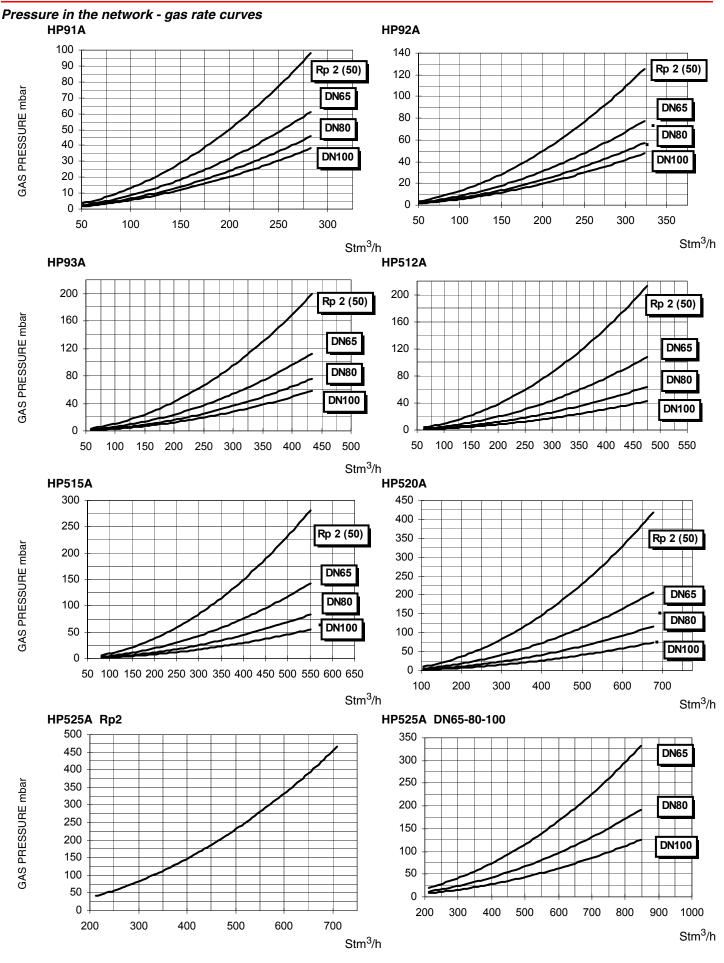
	DN	Α	AA	В	BB	С	СС	D	Е	F	G	Н	J	К	L	М	Ν	Omin	Omax	Р	Q	R	S	U	V	W	Y	Z
HP91A	50	1455	242	490	419	918	422	1439	852	587	265	295	329	360	466	M12	417	280	310	295	522	148	374	624	216	651	228	185
HP91A	65	1455	242	490	419	918	422	1544	957	587	265	295	288	360	466	M12	417	280	310	295	551	148	403	750	292	651	228	185
HP91A	80	1455	242	490	419	918	422	1546	959	587	265	295	307	360	466	M12	417	280	310	295	592	148	444	750	322	651	228	185
HP91A	100	1455	242	490	419	918	422	1636	1049	587	265	295	447	360	592	M12	417	280	310	295	672	148	524	824	382	777	228	185
HP92A	50	1455	242	490	419	918	422	1439	852	587	269	299	329	360	466	M12	417	280	310	295	522	148	374	624	216	651	228	185
HP92A	65	1455	242	490	419	918	422	1544	957	587	269	299	288	360	466	M12	417	280	310	295	551	148	403	750	292	651	228	185
HP92A	80	1455	242	490	419	918	422	1546	959	587	269	299	307	360	466	M12	417	280	310	295	592	148	444	750	322	651	228	185
HP92A	100	1455	242	490	419	918	422	1636	1049	587	269	299	447	360	592	M12	417	280	310	295	672	148	524	824	382	777	228	185
HP93A	50	1460	242	495	460	918	422	1439	852	587	304	344	329	360	466	M12	417	280	310	295	522	148	374	624	216	651	228	185
HP93A	65	1460	242	495	460	918	422	1544	957	587	304	344	288	360	466	M12	417	280	310	295	551	148	403	750	292	651	228	185
HP93A	80	1460	242	495	460	918	422	1546	959	587	304	344	307	360	466	M12	417	280	310	295	592	148	444	750	322	651	228	185
HP93A	100	1460	242	495	460	918	422	1636	1049	587	304	344	447	360	592	M12	417	280	310	295	672	148	524	824	382	777	228	185


*DN = gas valves diameter

9

** Fit a counterflange between burner and boiler. As an alternative, make a smaller hole H, but greather than Y and fit the blast tube from the internal side of boiler.

NOTE: the overall dimensions are referred to burners provided with Siemens VGD valves.


C.I.B. UNIGAS - M039140CE

Dete and reference the standard and difference the second aris and second and the standard and the standard second areas and second and second areas are second and second areas are second and second areas are second areas are second areas are second areas are second areas a

formance curve minimum.

Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C. **NOTE:** The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjsuting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Per-

Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis.

C.I.B. UNIGAS - M039140CE

MOUNTINGS AND CONNECTIONS

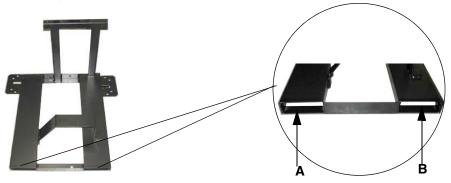
Packing

The burners are despatched wooden cages whose dimensions:

- 9xA series: 1730mm x 1280mm x 1020mm (L x P x H) .
- 5xxA series: 1730mm x 1430mm x 1130mm (L x P x H)

Packing cases of this kind are affected by humidity and are not suitable for stacking. The following are placed in each packing case:

- burner with gas train detached;
- gasket to be inserted between the burner and the boiler;
- flexible oil pipes;
- oil filter;
- envelope containing this manual

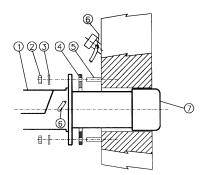

To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials

To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials.

Handling the burner

ATTENTION! The Ihandling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck.

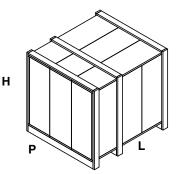
The burner is mounted on a stirrup provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler.

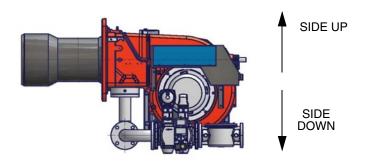


Fitting the burner to the boiler

To install the burner into the boiler, proceed as follows:

- make a hole on the closing door of the combustion chamber as described on paragraph "Overall dimensions") 1
- place the burner to the boiler: lift it up and handle it according to the procedure described on paragraph "Handling the burner"; 2
- 3 place the 4 stud bolts (5) on boiler's door, according to the burner's drilling template described on paragraph "Overall dimensions";
- 4 fasten the 4 stud bolts;
- 5 place the gasket on the burner flange;
- 6 install the burner into the boiler;
- 7 fix the burner to the stud bolts, by means of the fixing nuts, according to the next picture.
- After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate 8 insulating material (ceramic fibre cord or refractory cement).

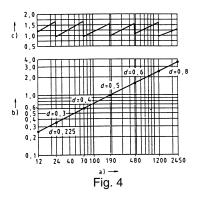

ł



Key	/s
1	Burne

- er 2 Fixing nut
- 3 Washer
- 4 Sealing gasket
- 5 Stud bolt
- 7 Blast tube

The burner is designed to work positioned according to the picture below. For different installations, please contact the Technical Department.



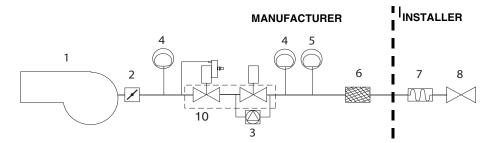
Matching the burner to the boiler

The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube lenght follow the instructions of the boiler manufacturer. In absence of these consider the following:

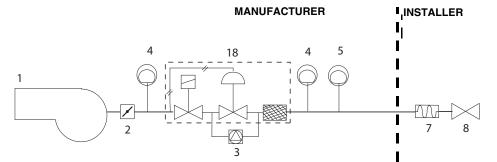
- Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than 100 mm into the combustion chamber.
- Pressurised boilers with flame reversal: in this case the blast tube must penetrate at least 50 100 mm into combustion chamber in respect to the tube bundle plate.

The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer).

- Key
- a) Heat output in kW
- b) Lenght of the flame tube in meters
- c) Flame tube firing intensity in MW/m³
- d) Combustion chamber diameter (m)
- Fig. 4 Firing intensity, diameter and lenght of the test flame tube as a function of the heat input in kW.

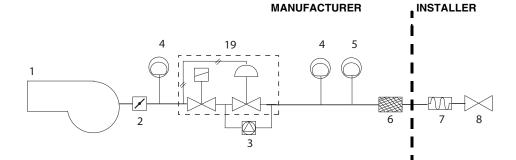

Gas train connections

The diagrams show the components of the gas train included in the delivery and which must be fitted by the installer. The diagrams are in compliance with the current laws.



ATTENTION: BEFORE EXECUTING THE CONNECTIONS TO THE GAS PIPE NETWORK, BE SURE THAT THE MANUAL CUTOFF VALVES ARE CLOSED. READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNING OF THIS MANUAL.

Gas train - 1 Gas train with valves group VGD 20/40.. with built-in gas pressure governor + VPS504 gas proving system



Gas train - 2Gas train with valves group MBC 1200SE (2 valves + gas filter + pressure governor) + VPS504 gas proving system

Gas train - 3(DN65/80/100)

Gas train with valves group MBC 1900/3100/5000SE (2 valves + gas filter + pressure governor) + VPS504 gas proving system

Key

- 1 Burner
- 2 Butterfly valve
- 3 Gas proving system
- 4 Maximum gas pressure switch (option*)
- 5 Minimum gas pressure switch
- 6 Gas filter
- 7 Bellow joint

- 8 Manual cutoff valve
- 10 VGD Valves group
- 14 Pressure stabiliser with filter

I

- 15 Pilot gas valve
- 18 MBC Valves group (2" with filter provided)
- 19 MBC Valves group (DN65/80/100)

*Note: the high gas pressure switch can be mounted either upstream the gas valve or downstream the gas valves but upstream the butterfly gas valve.

Assembling the gas grain

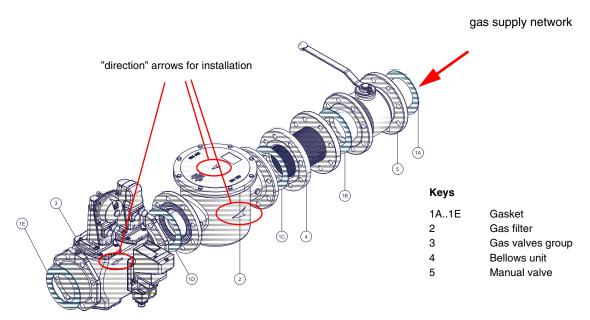


Fig. 5 - Example of gas train

To mount the gas train, proceed as follows:

1-a) in case of threaded joints: use proper seals according to the gas used;

1-b) in case of flanged joints: place a gasket (no. 1A..1E - Fig. 5) between the elements

NOTE: the bellow joint, the manual valve and the gaskets are not part of the standard supply.

ATTENTION: once the gas train is mounted according to the diagram on Fig. 5, the gas proving test mus be performed, according to the procedure set by the laws in force.

The procedures of installation fo the gas valves are showed in the next paragraphs, according to the gas train used:

- threaded gas trains with Multibloc Dungs MBC..SE 1200 or Siemens VGD20..
- flanged gas trains with Multibloc Dungs MBC..SE 1900-3100-5000 or Siemens VGD40..

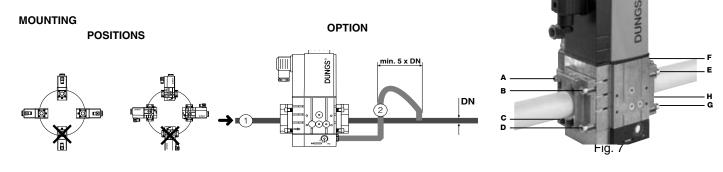
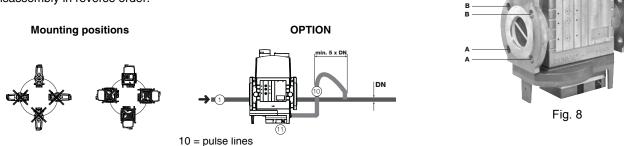

ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves).

Fig. 6

MULTIBLOC DUNGS MBC300-700-1200SE (Threaded valves group)

Mounting

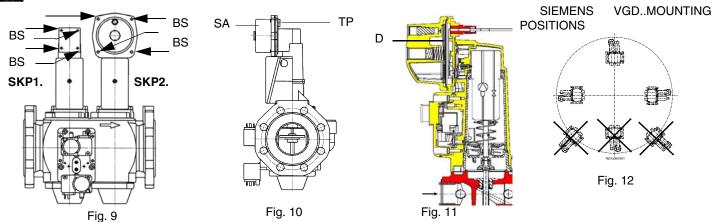

- 1. Mount flange onto tube lines. Use appropriate sealing agent (see Fig. 6)
- 2. Insert MBC...SE. Note position of O rings (see Fig. 7).
- 3. Tighten screws A H
- 4. After installation, perform leakage and functional test.
- 5. Disassembly in reverse order

MULTIBLOCDUNGS MBC1900-3100-5000SE (Flanged valves group)

Mounting

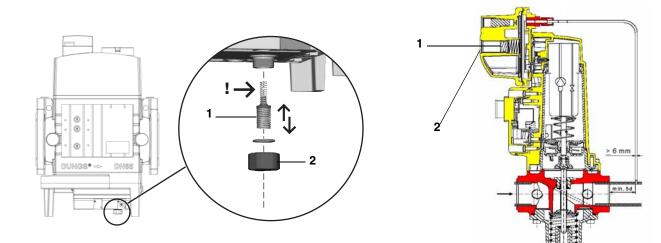
- 1. Insert setscrews A
- 2. Insert seals
- 3. Insert setscrews B
- 4. Tighten setscrews A + B.
- Ensure correct seating of the seal!
- 6. After installation, perform leakage and functional test.
- 7. Disassembly in reverse order.

Siemens VGD20.. and VGD40.. gas valves - with SKP2.. (pressure governor)


Mounting

- When mounting the VGD.. double gas valve, two flanges are required (as for VGD20.. model, the flanges are threaded);
- to prevent cuttings from falling inside the valve, first fit the flanges to the piping and then clean the associated parts;
- install the valve;
- the direction of gas flow must be in accordance with the direction of the arrow on the valve body;
- ensure that the bolts on the flanges are properly tightened;
- ensure that the connections with all components are tight;
- make certain that the O-rings and gaskets between the flanges and the double gas valve are fitted.
- Connect the reference gas pipe (**TP** in figure), to the gas pressure nipples placed on the gas pipe, downstream the gas valves: gas pressure must be measured at a distance that must be at least 5 times the pipe size .

Leave the blowhole free (SA in figure). Should the spring fitted not permit satisfactory regulation, ask one of our service centres for a suitable replacement.


Caution: the SKP2 diaphragm D must be vertical (see Fig. 11).

WARNING: removing the four screws BS causes the device to be unserviceable!

Pressure adjusting range

The pressure adjusting range, downstream the gas valves group, changes according to the spring provided with the valve group.

DUNGS MBC..SE

Keys

1 spring

2 cap

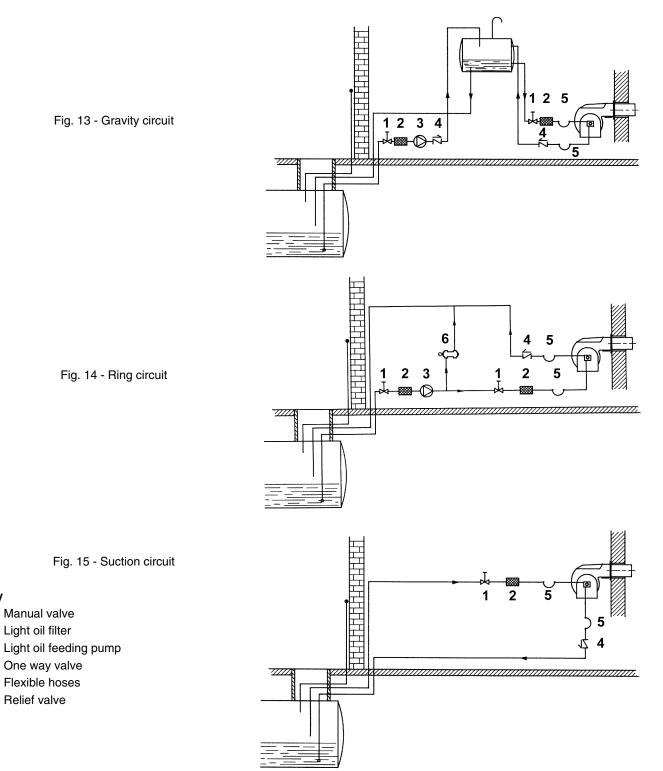
DUNGS MBC valves:

Performance range (mbar)	4 - 20	20 - 40	40 - 80	80 - 150
Spring colour	-	red	black	green

Siemens VGD valves with SKP actuator :

Performance range (mbar)	0 - 22	15 - 120	100 - 250							
Spring colour	neutral	yellow	red							
Once the train is installed, connect elec	strically all its eleme	nee the train is installed, connect electrically all its elements; gas values group, pressure switch								

Once the train is installed, connect electrically all its elements: gas valves group, pressure switches, gas proving system.


 \triangle

ATTENTION: once the gas train is mounted according to the diagram on Fig. 5, the gas proving test mus be performed, according to the procedure set by the laws in force.

Siemens SKP actuator

Hydraulic diagrams for light oil supplying circuits

Key

NOTE: in plants where gravity or ring feed systems are provided, install an automatic interception device (see n. 4 - Fig. 16).

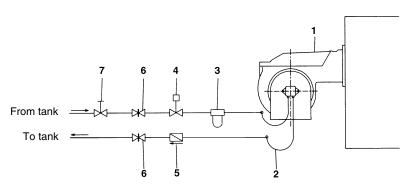


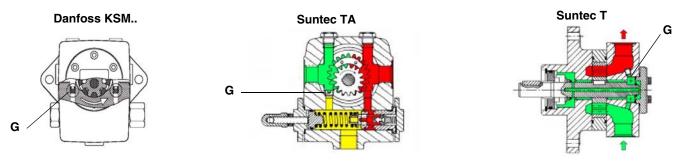
Fig. 16

(*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing.

The direct connection of the device without a timer may cause pump breaks.

Key

- 1 Burner
- 2 Flexible hoses (fitted)
- 3 Light oil filter (fitted)
- 4 Automatic interceptor (*)
- 5 One-way valve (*)
- 6 Gate valve
- 7 Quick-closing gate-valve (not in vicinity of tank or boiler)


The pumps that are used can be installed both into single-pipe and double-pipe systems.

Single-pipe system: a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer.

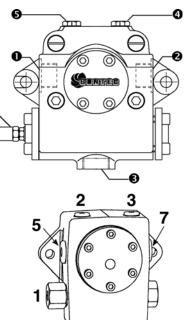
Double-pipe system: as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-bleeding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump.

Burners come out from the factory provided for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug **G** (as for ccw-rota-tion-referring to the pump shaft).

Caution: Changing the direction of rotation, all connections on top and side are reversed. pipeline length in meters.

Bleed

Bleeding in two-pipe operation is automatic : it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system.


About the use of fuel pumps

- Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result.
- Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them.
- After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump.
- On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet.
- Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears.

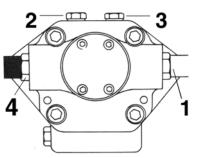
- Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage.
- Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible.
- An external filter should always be installed in the suction line upstream of the fuel unit.

Light oil pumps

Suntec TA		
Oil viscosity	3 ÷ 75 cSt	
Oil temperature	0 ÷ 150°C	
Min. suction pressure	- 0.45 bar to avoid gasing	
Max. suction pressure	5 bar	
Max. return pressure	5 bar	C
Rotation speed	3600 rpm max.	\subset

8

Danfoss KSM	
Oil viscosity	2.5 ÷ 450 cSt
Oil temperature	-10 ÷ 160 °C
Max. suction pressure	4 bar
Min. suction pressure	-0.45 bar to avoid gasing
Max. return pressure	4 bar
Rotation speed	3450 rpm max


Keys

- 1 Pressure regulator
- 2 Pressure/Vacuum gauge port to measure inlet pressure/vacuum
- 3 Pressure gauge port
- 5 Suction
- 7 To the nozzle
- 8 Return

Key

Suntec T pump

Viscosity	3 - 75 cSt					
Oil temperature	0 - 150 °C					
Minimum suction pressure	- 0.45 bar to prevent gasing					
Maximum suction pressure	5 bar					
Rated speed	3600 rpm max.					

- Inlet G3/4
 Pressure gauge port G1/4
- 3 Vacuum gauge port to measure the inlet vacuum G1/4
- 4 To pressure adjusting valve G3/4

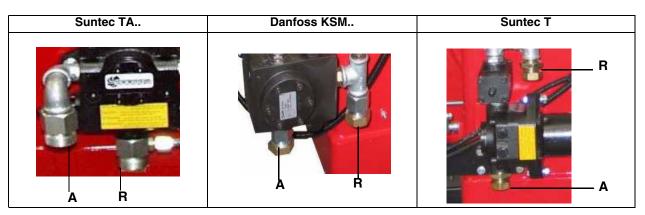
"Note: pump with "C" rotation.

Pressure regulator valve Suntec TV

Pressure regulation

Remove cap-nut 1 and the gasket 2, unscrew the lock nut 4. To increase pressure, turn adjusting screw 3 clockwise.

To decrease the pressure, turn screw anticlockwise. Tight the lock nut 4, refit the gasket 2 and the cap nut 1.


Key

- Cap nut 1
- 2 Gasket
- З Adjusting screw
- 4 Lock nut
- Gasket 5

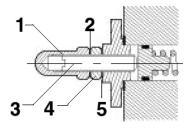
Assembling the light oil flexible hoses

To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided:

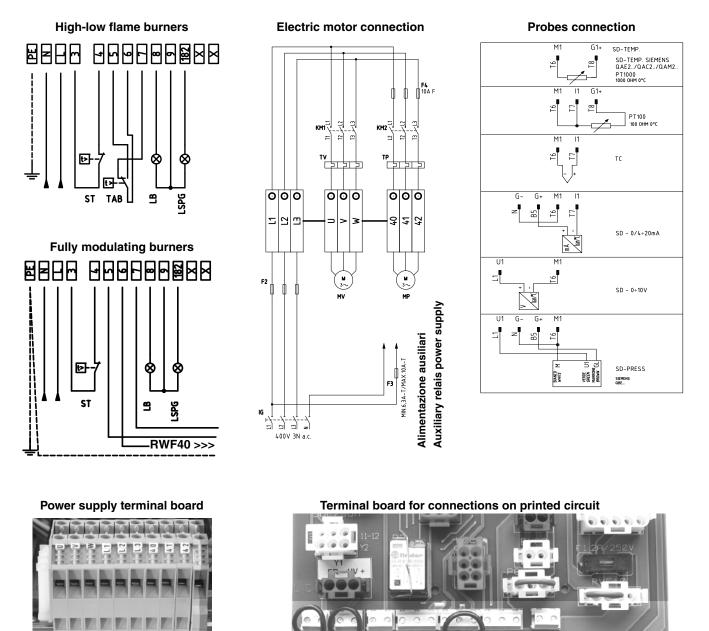
- remove the closing nuts **A** and **R** on the inlet and return connections of the pump; 1
- screw the rotating nut of the two flexible hoses on the pump being careful to avoid exchanging the inlet and return lines: see 2 the arrows marked on the pump that show the inlet and the return (see prevoius paragraph).

Electrical connections

Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains.


ATTENTION: before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section.

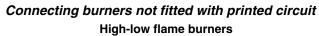
WARNING: The burner is provided with a jumper between terminals 6 and 7; in the event of connecting the high/low flame thermostat remove this jumper before connecting the thermostat.


IMPORTANT: while connecting electric supply wires to burner's teminal block be sure that ground wire should be longer than phase and neutral ones.

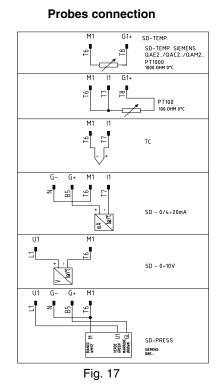
- Remove the cover of the electrical board mounted on the burner.
- Execute the electrical connections to the power supply terminal board as shown here following, check the direction of rotation of the fan motor (see next paragraph) and refit the electrical board cover.

C.I.B. UNIGAS - M039140CE

Electrical Wiring Diagram for Burners Fitted with Printed Circuit


Rotation of fan motor and pump motor

Once the electrical connection of the burner is executed, remember to check the rotation of the motor. The motor should rotate according to the indication on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor.


NOTE (exceptHP525A): burners are supplied for three-phase 400V supply, and in the case of three-phase 230V supply it is necessary to modify the electrical connections into the terminal box of the electric motor and replace the overload tripped relay.

CAUTION: check the motor thermal cut-out adjustment

(**) Probes connection (Fig. 17)

ADJUSTMENTS Combustion head gas pressure curves depending on the flow rate Curves are referred to pressure = 0mbar in the combustion head!

The curves referred to the gas pressure in the combustion head, depending on the gas flow rate, are referred to the burner properly adjusted (percentage of residual O_2 in the flues as shown in the "Recommended combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the actuator are at the maximum opening. Refer to Fig. 18, showing the correct way to measure the gas pressure, considering the values of pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications.

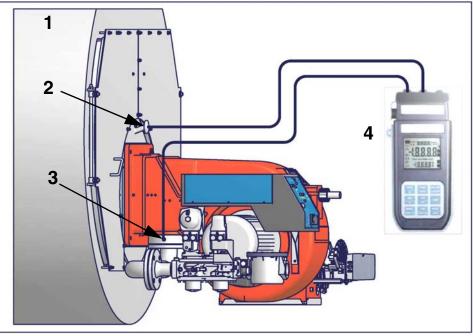
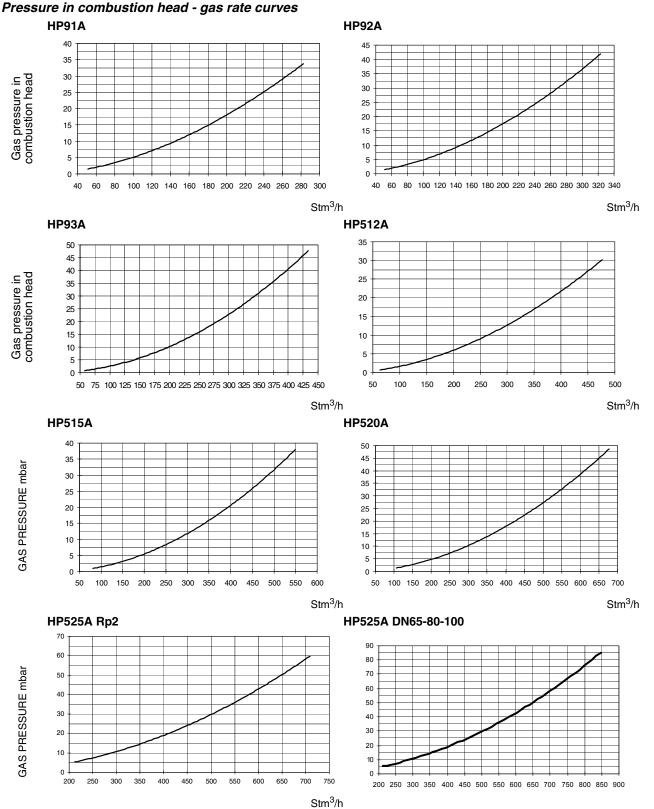


Fig. 18

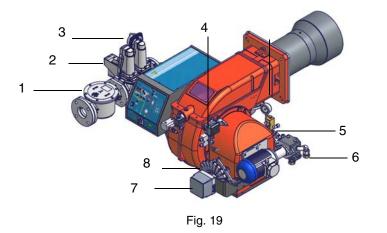

Key

- 1 Generator
- 2 Pressure outlet on the combustion chamber
- 3 Gas pressure outlet on the butterfly valve
- 4 Differential pressure gauge

Measuring the gas pressure in the combustion head

In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet (Fig. 18-2) to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner (Fig. 18-3). On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on the next paragraph), it is easy to find out the burner's output in Stm³/h (quoted on the x axis) from the pressure measured in the combustion head (quoted on the y axis). The data obtained must be considered when adjusting the gas flow rate. **NOTE: THE PRESSURE-RATE CURVES ARE GIVEN AS INFORMATION ONLY; FOR A PROPER SETTING OF THE GAS RATE,**

PLEASE REFER TO THE GAS METER READING.


Stm³/h

ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed.

ATTENTION: During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the gas decrease slowly until the normal combustion values are achieved.

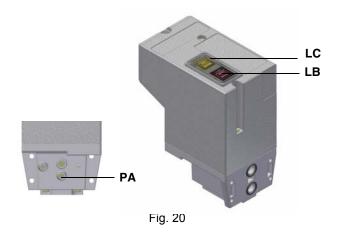
WARNING: NEVER LOOSE THE SEALED SCREWS! OTHERWISE, THE DEVICE WARRANTY WILL BE INVALIDATE!

Keys

- 1 Gas filterl
- 2 Gas proving system
- 3 Gas valves
- 4 Air pressure switch
- 5 Oil Adjusting cam
- 6 Fuel pump
- 7 Actuator
- 8 Gas Adjusting cam

Gas Filter

The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burners, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices.


VPS504 Gas proving system

The VPS504 check the operation of the seal of the gas shut off valves. This check is carried out as soon as the boiler thermostat gives a start signal to the burner, creating, by means of the diaphragm pump inside it, a pressure in the test space of 20 mbar higher than the supply pressure.

When wishing to monitor the test, install a pressure gauge ranged to that of the pressure supply point PA.

If the test cycle is satisfactory, after a few seconds the consent light LC (yellow) comes on. In the opposite case the lockout light LB (red) comes on.

To restart it is necessary to reset the appliance by pressing the illuminated pushbutton LB.

Actuator

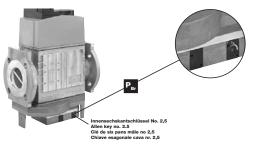
尒

The actuator provided can be either berger STM30../Siemens SQM40.. (see pag. 27) or Siemens SQL33.. (see pag. 28).

IMPORTANT! the combustion air excess must be adjusted according to the in the following chart:

Recommended combustion parameters								
Fuel	Recommended (%) CO ₂	Recommended (%) O ₂						
Natural gas	9 ÷ 10	3 ÷ 4.8						
Light oil	11.5 ÷ 13	2.9 ÷ 4.9						

Adjustments - brief description


Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively.

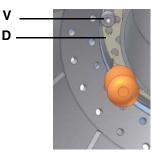
- Check that the combustion parameters are in the suggested limits.
- Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head" on page 24.
- Then, adjust the combustion values corresponding to the points between maximum and minimum: set the shape of the adjusting
 cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the throttle gas valve.
- Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney.

Adjustment procedure

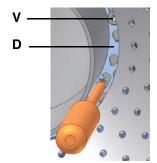
To change the burner setting during the testing in the plant, follow the next procedure.

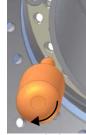
On the DUNGS MBC..SE gas valves group, set the pressure regulator to 1/3 of its stroke, using a 2.5 allen key.

Pressure setting


The burner is factory-set wih the adjusting plate holes fully open, and the combustion head at its MAX position, so it is fit to work at the maximum output.

To adjust the gas flow, partially close the holes, as follows:


CAUTION: perform these adjustments once the burner is turned off and cooled.


- 1 loosen the three V screws that fix the adjusting plate D;
- 2 insert a screwdriver on the adjusting plate notches and let it move CW/CCW as to open/close the holes;
- 3 once the adjustmet is performed, fasten the V screws.
- HP91A HP92A HP93A

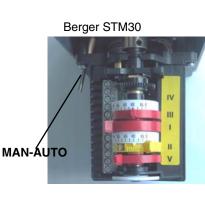
/î\

• HP512A - HP515A - HP520A - HP525A

open holes

open holes

closed holes


closed holes

Now, adjust the burner according to the actuator model provided.

C.I.B. UNIGAS - M039140CE

Air and Gas Flow Rate Settings by means of Berger STM30.. / Siemens SQM40.. actuator

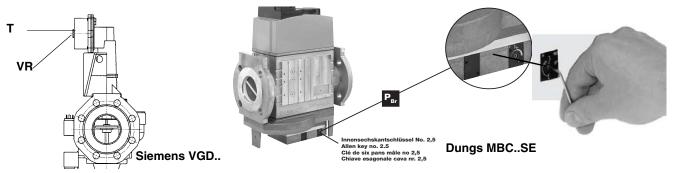
- 1 set GAS fuel by means of the burner CM switch (it is placed on the burner control panel see Fig. 32)
- 2 check the fan motor rotation (see page 22).
- 3 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to safely achieve the high flame stage.
- 4 Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the burner starts up;
- 5 drive the burner to high flame stage, by means fo the thermostat TAB (high/low flame thermostat see Wiring diagrams), as far as fully-modulating burners, see related paragraph.
- 6 Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the gas by means of the valves group governor.

9

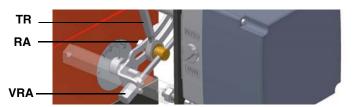
Actuator cams

- High flame
- II Stand-by and Ignition
- III Low flame gas

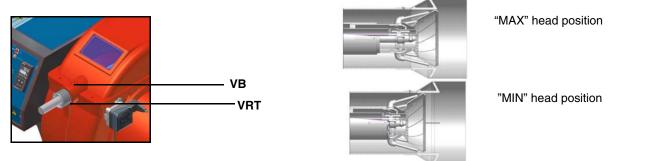
L


- IV Low flame oil (SQM40..)
- V Low flame oil (STM30..)

- 7 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps quoted below;
- 8 acting on the pressure stabiliser of the valves group, adjust the **gas flow rate in the high flame stage** as to meet the values requested by the boiler/utilisation:


- Siemens VGD valves group: remove cap T and act on the VR adjusting screw to increase or decrease the pressure and consequently the gas rate; screwind VR the rate increases, unscrewing it decreases (see next figure).

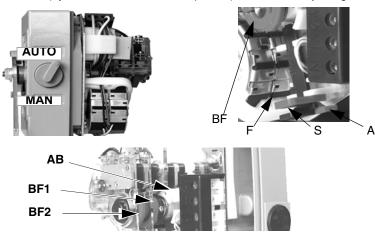
- Dungs MBC..SE valves group: act on its pressure governor to increase or decrease the pressure and consequently the gas rate.



To adjust the **air flow rate in the high flame stage**, loose the **RA** nut and screw **VRA** as to get the desired air flow rate: moving the rod **TR** towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases.

Note: once the procedure is performed, be sure that the blocking nut **RA** is fasten. Do not change the position of the air damper rods.

10 Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the VB screw and move progressively back the combustion head towards the MIN position, by turning clockwise the VRT ring nut. Fasten VB screw when the adjustment is accomplished.



Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above.

- 11 the air and gas rate are now adjusted at the maximum power stage, go on with the point to point adjustement on the SV1 (gas side) adjusting cam as to reach the minimum output point.
- 12 as for the point-to-point regulation, move the gas low flame microswitch (cam III) a little lower than the maximum position (90°);
- 13 set the **TAB** thermostat to the minimum (as far as fully-modulating burners, see related paragraph) in order that the actuator moves progressively towards the low flame position;
- 14 move cam III to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V1** to increase the rate, unscrew to decrease.
- 15 Move again cam III towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point.
- 16 Now adjust the pressure switches (see next par.).

Adjustment by the Siemens SQL33.. actuator

- 1 turn the burner on by setting GAS fuel by means of the burner **CM** switch (it is placed on the burner control panel see page 55)
- 2 check the fan motor rotation (see page 22).
- 3 Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end;Start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end;
- 4 the burner starts up with the actuator on the ignition position, set it to the **MAN** (manual mode), by the **MAN/AUTO** selector (ignition position= read on the air damper index **ID1** see picture on pag.27);
- 5 disconnect the **TAB** thermostat removing the wire from the terminal no. 6 or by setting MAN on the RWF40 modulatore or by setting 0 by means of the **CMF** switch (only for fully-modulating burners);
- 6 manually drive the adjusting cam SV1 to the high flame position and set the actuator to the AUTO mode (by the related switch see picture) to lock the adjusting cam.manually drive the adjusting cam SV1 to the high flame position and set the actuator to the AUTO mode (by the related switch see picture) to lock the adjusting cam.

SQL33.. actuator cams

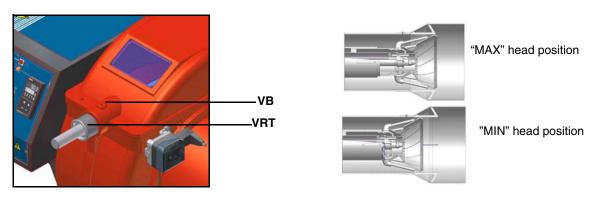
A = (red) cam locking lever for "high flame" S = (green) cam locking lever for "stand-by and ignition"

- F = plastic cam BF1 = Low flame (gas) BF2 = Low flame (oil)
- 7 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps below;
- 8 acting on the pressure stabiliser of the valves group, adjust **the gas flow rate in the high flame stage** as to meet the values requested by the boiler/utilisation:

- Siemens VGD valves group: remove cap T and act on the VR adjusting screw to increase or decrease the pressure and consequently the gas rate; screwind VR the rate increases, unscrewing it decreases (see next figure).

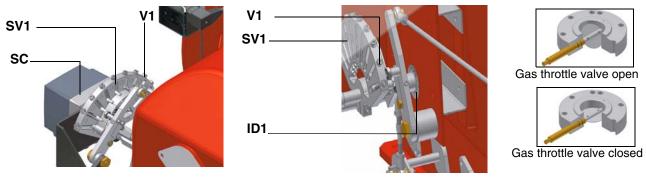
- Dungs MBC..SE valves group: act on its pressure governor to increase or decrease the pressure and consequently the gas rate.

C.I.B. UNIGAS - M039140CE



9 To adjust the air flow rate in the high flame stage, loose the RA nut and screw VRA as to get the desired air flow rate: moving the rod TR towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases.

Note: once the procedure is perfomed, be sure that the blocking nut **RA** is fasten. Do not change the position of the air damper rods.



10 Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the VB screw and move progressively back the combustion head towards the MIN position, by turning clockwise the VRT ring nut. Fasten VB screw when the adjustment is accomplished.

Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above.

- 11 the air and gas rate are now adjusted at the maximum output, go on with the point to point adjustment on the SV1 adjusting cam as to reach the minimum output point: gradually move the adjusting cam in order to adjust each of the V1 screws as to set the cam foil shape as described on the next steps:
- 12 to change the SV1 position set the actuator on the manual mode (MAN), turn the adjusting cam SV1 and set again the actuator to the AUTO mode to lock the adjusting cam;
- 13 act on the V1 screw that mathces the bearings referring to the adjusting cam position;
- 14 to adjust the next screw, set again the actuator mode to MAN, turn the adjusting cam and set the actuator to AUTO mode to lock the adjusting cam on the next screw; adjust it and go on this way to adjust all the screws in order to set the cam foil shape, according to the combustion values read.
- 15 Once the cam foil shape is defined, reconnect the **TAB** thermostat reconnecting the wire to the terminal no.6 or setting the RWF40 burner modulator to AUTO or the CMF switch to 3 (only for fully-modulating burner).

- 16 Turn the burner off, then start it up again.
- 17 Once the pre-purge time comes to end, drive the burner to the high flame stage by the **TAB** thermostat and check the combustion values;
- 18 drive the burner to low flame, if necessary adjust the low flame size (ouput) by inserting a screwdriver on the slot F to move the

19 The low flame position must never match the ignition position that is why cam **BF1** must be set 20°- 30° more than the ignition position (see **ID1** index on previous pictures).

Now adjust the pressure switches (see next paragraph).

Calibration of air and gas pressure switches

The **air pressure switch** locks the control box if the air pressure is not the one requested. If it happens, unlock the burner by means of the control box unlock pushbutton, placed on the burner control panel. The **gas pressure switches** check the pressure to avoid the burner operate when the pressure value **VR** is not in the requested pressure range.

Calibration of air pressure switch

To calibrate the air pressure switch, proceed as follows:

- Remove the transparent plastic cap.
- Once air and fuel setting have been accomplished, startup the burner.
- During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%.
- Repeat the ignition cycle of the burner and check it runs properly.
- Refit the transparent plastic cover on the pressure switch.

Calibration of low gas pressure switch

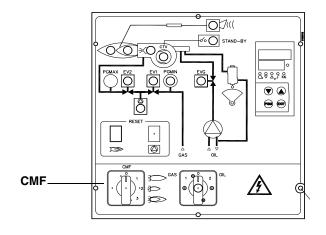
As for the gas pressure switch calibration, proceed as follows:

- Be sure that the filter is clean.
- Remove the transparent plastic cap.
- While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch.
- Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the limits laid down by law, slowly open the cutoff valve as to get values lower than these limits.
- Check that the burner is operating correctly.
- Clockwise turn the pressure switch adjusting ring nut (as to increase the pressure value) until the burner stops.
- Slowly fully open the manual cutoff valve.
- Refit the transparent plastic cover on the pressure switch.

Adjusting the high gas pressure switch (when provided)

To calibrate the high pressure switch, proceed as follows according to its mounting position:

- 1 remove the pressure switch plastic cover;
- 2 if the maximum pressure switch is mounted upstreaam the gas valves: measure the gas pressure in the network, when flame is off; by means of the adjusting ring nut **VR**, set the value read, increased by the 30%.
- 3 if the maximum pressure switch is mounted downstream the "gas governor-gas valves" group and upstream the butterfly valve: light the burner, adjust it according to the procedure in the previous paragrph. Then, measure the gas pressure at the operating flow rate, downstream the "gas governor-gas valves" group and upstream the butterfly valve; by means of the adjusting ring nut VR, set the value read on step 2, increased by the 30%;
- 4 replace the plastic cover.

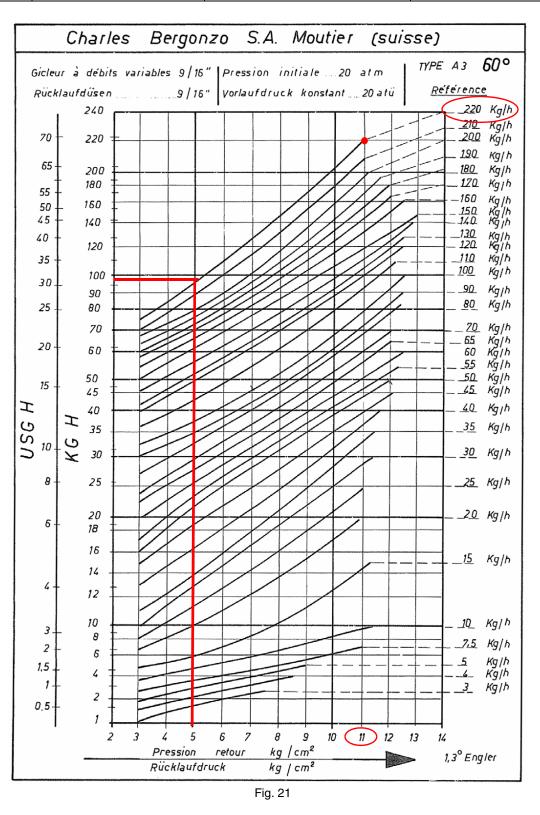

Fully modulating burners

To adjust the fully-modulating burners, use the **CMF** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**.

C.I.B. UNIGAS - M039140CE

The **CMF** position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set CMF=2.

To move the adjusting cam set CMF=1 or 2 and then CMF=0.

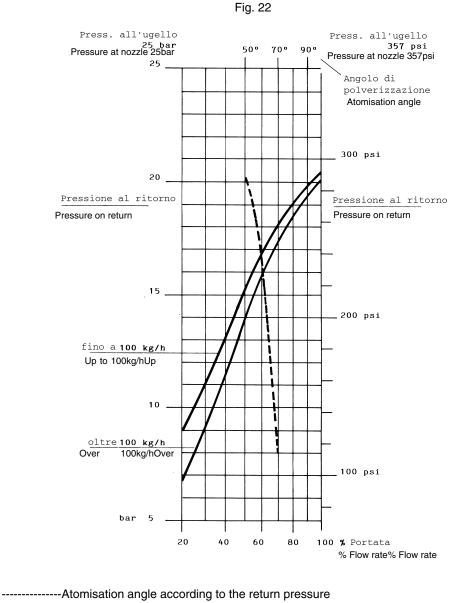


- CMF = 0 stop at the current position
- CMF = 1 high flame operation
- CMF = 2 low flame operation
- CMF = 3 automatic operation

Adjusting light oil flow rate

The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the chart below and the diagram on Fig. 21-Fig. 22 (as far as reading the pressure values, see next paragraphs).

NOZZLE	DELIVERY PRESSURE bar	RETURN PRESSURE MAX. bar	RETURN PRESSURE MIN. bar
BERGONZO A3	20	11 - 13	6 (recommended)
FLUIDICS WR2	25	19 - 20	7 (recommended)

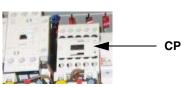


N.B. Specific gravity of the light oil: 0.840kg/dm³

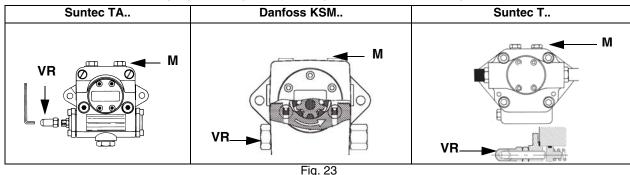
Example (Bergonzo): if a 220kg/h flow rate BERGONZO nozzle is provided, set the return pressure at 11bar, supply at 20bar on the delivery to get a 220kg/h flow rate. If the return pressure needed is 5bar, instead, act on the **V** adjusting screw on the pressure governor (see chapter on page 32). The flow rate will then be about 95kg/h (see the example showed on the Bergonzo diagram-Fig. 21).

Tab. 1

	FLOW RATE kg/h	
DIMENSIONS	Min	Мах
40	13	40
50	16	50
60	20	60
70	23	70
80	26	80
90	30	90
100	33	100
115	38	115
130	43	130
145	48	145
160	53	160
180	59	180
200	66	200
225	74	225
250	82	250
275	91	275
300	99	300
330	109	330
360	119	360
400	132	400
450	148	450
500	165	500
550	181	550
600	198	600
650	214	650
700	231	700
750	250	750
800	267	800



_____% Flow rate


Example (Fluidics): as for over 100kg/h nozzles, the 80% of the nozzle flow rate can be obtained with a return pressure at about 18bar (see Fig. 22).

Oil Flow Rate Settings by means of Berger STM30.. / Siemens SQM40.. actuator

- 1 Once the air and gas flow rates are adjusted, turn the burner off, switch it on again by turning the **CM** switch to the oil operation (OIL, on the burner control panel (see page 39).
- 2 with the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged;

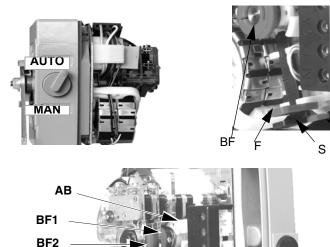
3 bleed the air from the **M** pressure gauge port (Fig. 23) by loosing the cap without removing it, then release the contactor.

- 4 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to achieve safely the high flame stage.
- 5 record the high flame value set during the gas operation adjustments (see previous paragraphs);
- 6 start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the bruner starts up;
- 7 drive the burner to high flame stage, by means fo the thermostat **TAB** (high/low flame thermostat see Wiring diagrams), as far as fully-modulating burners, see related paragraph.
- 8 Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the oil pressure (see next step). Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the oil pressure (see next step).

9 the nozzle supply pressure already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph);insert a pressure gauge into the port shown on Fig. 24 and act on on the pump adjusting screw VR (see Fig. 23and page 21) as to get the nozzle pressure at 20 bar or 25bar (according to the nozzle model provided: Bergonzo or FluiC.I.B. UNIGAS - M039140CE

- 10 in order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge) without changing the air flow rate set during the gas operation adjustments (see previous paragraph): checking always the combustion parameters, the adjustment is to be performed by means of the **SV2** adjusting cam screw (see picture) when the cam has reached the high flame position.
- 11 as for the point-to-point regulation in order to set the cam foil shape, move the oil low flame microswitch (cam V) a little lower than the maximum position (90°);
- 12 set the **TAB** thermostat to the minimum (as far as fully-modulating burners, see related paragraph) in order that the actuator moves progressively towards the low flame position;
- 13 move "low flame" cam IV(SQM40..) / V (STM30..) towards the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to a lower position: screw V2 to increase the rate, unscrew to decrease, in order to get the pressure as showed on chart/diagram on "Adjusting light oil flow rate" on page 32, according to the requested rate.
- 14 Move again cam IV / V towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point.
- 15 The low flame position must never match the ignition position that is why cam IV / V must be set 20°- 30° more than the ignition position.

Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps.

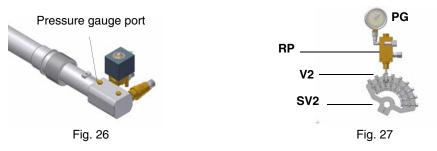

Adjustment by the Siemens SQL33.. actuator

- 1 Once the air and gas flow rates are adjusted, turn the burner off, switch the **CM** switch to the heavy oil operation (OIL, on the burner control panel (see page 39).
- 2 with the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged;

- 3 bleed the air from the **M** pressure gauge port (Fig. 23) by loosing the cap without removing it, then release the contactor.
- 4 record the high flame value set during the gas operation adjustments (see prevoius paragraphs);
- 5 Start the burner up by means of the thermostat series and wait unitl the pre-purge phase comes to end and that burner starts up;
- 6 the burner starts up with the actuator on the ignition position, set it to the **MAN** (manual mode), by the **MAN/AUTO** selector (ignition position= read on the air damper index **ID1** see picture on pag.34);
- 7 disconnect the **TAB** thermostat removing the wire from the terminal no. 6 or by setting MAN on the RWF40 modulatore or by setting 0 by means of the **CMF** switch (only for fully-modulating burners);
- 8 manually drive the adjusting cam SV2 to the high flame position and set the actuator to the AUTO mode (by the related switch see picture) to lock the adjusting cam.

Α

SQL33.. actuator cams


A = (red) cam locking lever for "high flame"

 $\mathsf{S}\,$ = (green) cam locking lever for "stand-by and ignition"

F = plastic cam BF1 = Low flame (gas) BF2 = Low flame (oil)

C.I.B. UNIGAS - M039140CE

The nozzle supply pressure already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 25 and act on on the pump adjusting screw **VR** (see Fig. 23 and page 21) as to get the nozzle pressure at 20 bar or 25bar (according to the nozzle model provided: Bergonzo or Fluidics nozzles - see page 32-33).

- 9 in order to get the maximum oil flow rate, adjust the pressure (reading its value on the PG pressure gauge) without changing the air flow rate set during the gas operation adjustments (see prevoius paragraph): checking always the combustion parameters, the adjustment is to be performed by means of the SV2 adjusting cam screw (see picture) when the cam has reached the high flame position.
- 10 once the air and oil flow rate have been adjusted at the maximum output, go on with the point to point adjustment on the SV2 adjusting cam as to reach the minimum output point: gradually move the adjusting cam in order to adjust each of the V2 screws as to describe the cam foil shape.
- 11 to change the SV2 position set the actuator on the manual mode (MAN), turn the adjusting cam SV2 and set again the actuator to the AUTO mode to lock the adjusting cam;
- 12 act on the V2 screw that mathces the bearings referring to the adjusting cam position;
- 13 to adjust the next screw, set again the actuator mode to MAN, turn the adjusting cam and set the actuator to AUTO mode to lock the adjusting cam on the next screw; adjust it and go on this way to adjust all the screws in order to set the cam foil shape, according to the combustion values read.
- 14 Once the cam foil shape is defined, reconnect the **TAB** thermostat reconnecting the wire to the terminal no.6 or setting the RWF40 burner modulator to AUTO or the CMF switch to 3 (only for fully-modulating burner).
- 15 Turn the burner off then start it up again.
- 16 Once the pre-purge time comes to end, drive the burner to the high flame stage by the **TAB** thermostat: check the combustion values;
- 17 drive the burner to low flame, if necessary adjust the low flame size (output) by inserting a screwdriver on the slot **F** to move the **BF2** cam.

- 18 The low flame position must never match the ignition position that is why cam **BF2** must be set 20°- 30° more than the ignition position.
- 19 Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. Replace the burner cover

Oil circuit

The fuel is pushed into the pump 1 to the nozzle 3 at the delivery pressure set by the pressure governor. The solenoid valve 2 stops the fuel immission into the combustion chamber. The fuel flow rate that is not burnt goes back to the tank through the return circuit. The spill-back nozzle is feeded at constant pressure, while the return line pressure is adjusted by means of the pressure governor controlled by an actuator coupled to an adjusting cam. The fuel amount to be burnt is adjusted by means of the burner actuator according to the adjustments set (see prevoius paragraph).

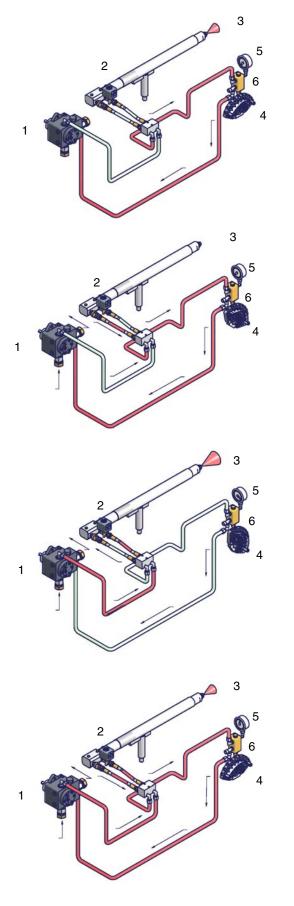


Fig. 28 - Stand-by

Fig. 29 - Prepurge

Fig. 30 - Low flame

Fig. 31 - High flame

Key

- 1 Light oil pump
- 2 Light oil solenoid valve
- 3 Nozzle
- 4 Adjusting cam
- 5 Pressure gauge
- 6 Pressure governor

PART II: OPERATION

LIMITATIONS OF USE

THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CON-NECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSI-DERED IMPROPER AND THEREFORE DANGEROUS.

THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORI-SED BY THE COMPANY MANUFACTURING THE BURNER.

A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER.

THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER).

NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE.

OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON.

IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER.

WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT.

OPERATION

 \triangle

ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Read carefully the "WARNINGS" chapter in this manual.

- Choose the typer of fuel by turning the A switch, on the burner control panel.
 CAUTION: if the fuel chosen is light oil, be sure the cutoff valves on the feed and return pipes are open.
- Check the control box is not locked (signalling light **O**, on); if so, reset it by means of the pushbutton **C**.
- Check the series of thermostats and pressure switches turn the burner to on.

Gas operation

• Check the gas feeding pressure is sufficient (signalling lamp **G** on).

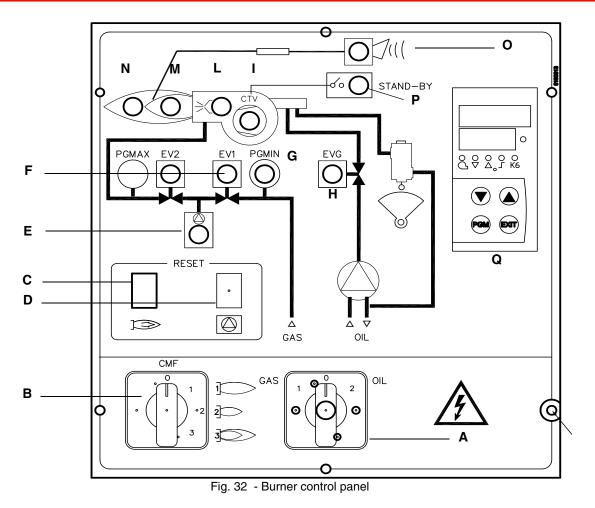
Burners provided with gas proving system: the gas proving system test begins; when the test is performed the proving system LED turns on. At the end of the test, the burner staring cycle begins: in case of leakage in a valve, the gas proving system stops the burner and the lamp E turns on. Reset it, by means of the reset pushbutton on the device, in burners with VPS504 (pushbutton LB in picture), or by the D pushbutton on the burner panel if this one is fitted with LDU11 proving system.

VPS504

NOTE: if the burner is fitted with Dungs VPS504, the pre-purgue phase starts once the gas proving system is successfully performed. Since the pre-purgue phase must be carried out with the maximum air rate, the control box drives the actuator opening and when the maximum opening position is achieved, the pre-purge time counting starts.

- At the end of the pre-purge time, the actuator drives the complete closing (ignition with gas position) and, as this is achieved the ignition transformer is energised (LED L is on).
- Few seconds after the gas valves opening, the transformer is de-energised and lamp L turns off.
- The burner is now operating, meanwhile the actuator goes to the high flame position and, after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements.

Operation in high or low flame is signalled by lamp N on the frontal panel.


Light oil operation

- The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts.
- At the end of the pre-purge time, the actuator is in the light oil ignition position: the ignition transformer is energised (lamp L on).
 Few seconds after the light oil valves opening, the transformer is de-energised and lamp L turns off.
- The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements.

Operation in high or low flame is signalled by LED ${\bf N}$ on the burner control panel.

Modulating burners: they are provided with the Siemens RWF40 output controller (**Q**-see next picture). As for the controller operation see the related manual.

C.I.B. UNIGAS - M039140CE

Keys

- A Main switch and fuel selector CM (0=Off, 1=GAS, 2=OIL)
- B CMF switch (0=stop, 1=low flame, 2=high flame, 3=automatic) fully modulating burners only
- C Control box reset pushbutton
- D Gas proving system reset pushbutton (only for burners with Siemens LDU11 provided)
- E Gas proving system lockout signalling lamp
- F Gas valves EV1/EV2 operation signalling lamp
- G Gas pressure switch signal lamp
- H Oil valve EVG operation signalling lamp
- I Thermal cutout intervention signalling light CTV
- L Ignition transformer operation signalling lamp
- M Low flame operation signalling lamp
- N High flame operation signalling lamp
- O Burner lockout signalling lamp
- P Stand-by signalling lamp
- Q Siemens RWF40 output controller (fully modulating burners only)

C.I.B. UNIGAS - M039140CE

PART III: MAINTENANCE

At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months.

WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED!

ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL..

ROUTINE MAINTENANCE

- Check and clean the gas filter cartridge, if necessary replace it (see next paragraghs);
- Check and clean the fuel filter cartdrige, replace if necessary.
- Check and clean the filter inside the light oil pump: filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit.
- Check the fuel hoses for possible leaks.
- Remove, check and clean the combustion head (see page 42);
- Check ignition electrodes, clean, adjust and, if necessary, replace them (see page 43);
- Check and carefully clean the UV detector, replace it if necessary; if in doubt, check the detection current, once the burner starts up (see page 43).
- Remove and clean the fuel nozzle A (Important: cleaning must be performed using solvent, not metal tools!). At the end of maintenance operations after the burner reassembly, light the flame and check its shape, replacing the nozzle whenever a questionable flame shape appears. Whenever the burner is used intensely, we recommend preventively replacing the nozzle at the start of each heating season.
- Clean and grease sliding and rotating parts.

ATTENTION: when servicing, if it was necessary to disassemble the gas train parts, remember to execute the gas proving test, once the gas train is reassembled, according to the procedure imposed by the law in force.

Light oil filter maintenance

For correct and proper servicing, proceed as follows:

- 1 cutoff the required pipe section;
- 2 unscrew the filter cup;
- 3 remove the filtering cartridge, wash it with gasoline; if necessary, replace it; check the tightening O-rings and replace them if necessary;
- 4 replace the cup and restore the pipe line.

Ø

Gas filter maintenance

ATTENTION: Before opening the filter, close the manual cutoff valve downstream the filter and bleed the gas; check that inside the filter there is no pressurised gas.

To clean or remove the filter, proceed as follows:

- 1 remove the cap unscrewing the fixing screws (A);
- 2 remove the filtering cartridge (B), clean it using water and soap, blow it with compressed air(or replace it, if necessary)
- 3 replace the cartridge in its proper position taking care to place it inbetween the guides as not to hamper the cap replacement;
- 4 be sure to replace the "O" ring into its place (C) and replace the cover fastening by the proper screws (A).

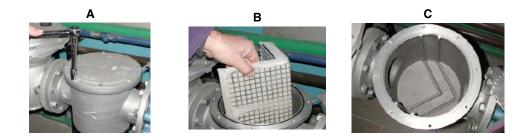
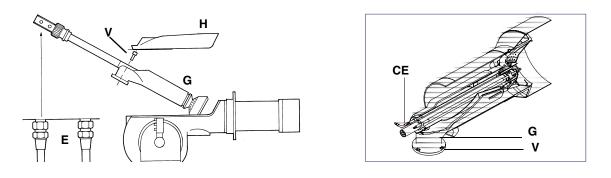



Fig.33

Inspection and replacement of the MULTIBLOC DUNGS MBC..SE filter (Threaded valves group)

Inspect the filter at least once a year.

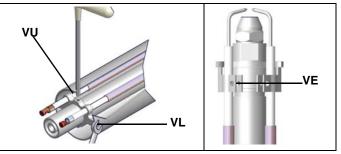
- Change the filter, if pressure value between pressure connections 1 and 2 is greather than 10 mbar.
- Change the filter, if pressure value between pressure connections 1 and 2 is twice as high compared to the last inspection.
- 1. Interrupt gas supply: close ball valve
- 2. Remove screws 1-2
- 3. Replace the filter insert 3
- 4. Screw in screws 1-2 without use force to fasten.
- 5. Perform leakage and funcion test.
- 6. Pay attention that dirt does not fall inside the valve.


Space requirements for fitting filter, A: from 150 to 230 mm.

Removing the combustion head

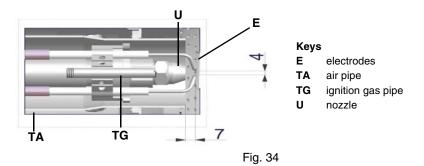
- 1 Remove the top H.
- 2 Remove the UV detector out of its housing: disconnect electrode cables and the light oil flexible hoses.
- 3 Loosen the screws V holding the gas manifold G, loosen the two connectors E and remove the assembly as shown.
- 4 Clean the combustion head by means of a vacuum cleaner; scrape off the scale by means of a metallic brush.

Note: to replace the combustion head, reverse the operations described above.


Removing the oil gun, replacing the nozzle and the electrodes

ATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head.

To remove the oil gun, proceed as follows:


- 1 remove the combustion head as described on the prevoius paragraph;
- 2 loosen the VL screw and remove the oil gun and the electrodes: check the oil gun, replace it if necessary;
- 3 after removing the oil gun, unscrew the nozzle and replace it if necessary;
- 4 in order to replace the electrodes, unscrew the **VE** fixing screws and remove them: place the new electrodes being careful to observe the measures showed on pag.: reassemble following the reversed procedure.

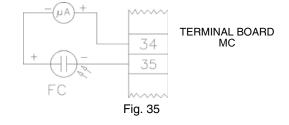
Caution: adjust the nozzle position according to the air pipe, by means of the VU screw, ance the VL screw is fastened.

Adjusting the electrodes position

Adjust the electrodes position, according to the quotes shown on the next picture.

Cleaning and replacing the detection probe

The photocell working life is about 10000 working hours (about 1 year), at max 50°C after which it must be replaced.


To clean/replace the detection photocell, proceed as follows:

- 1 Disconnect the system from the electrical power supply.
- 2 Shut off the fuel supply;
- 3 remove the photocell from its slot (see next picture);
- 4 clean the bulbe if dirty, taking care not to touch it with bare hands;
- 5 if necessary, replace the bulb;
- 6 replace the photocell into its slot.

Checking the detection current

To check the detection current follow the diagram on Fig. 35. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector.

Control box	Minimum detection signal
Siemens LFL1.3	70µA (with UV detector)

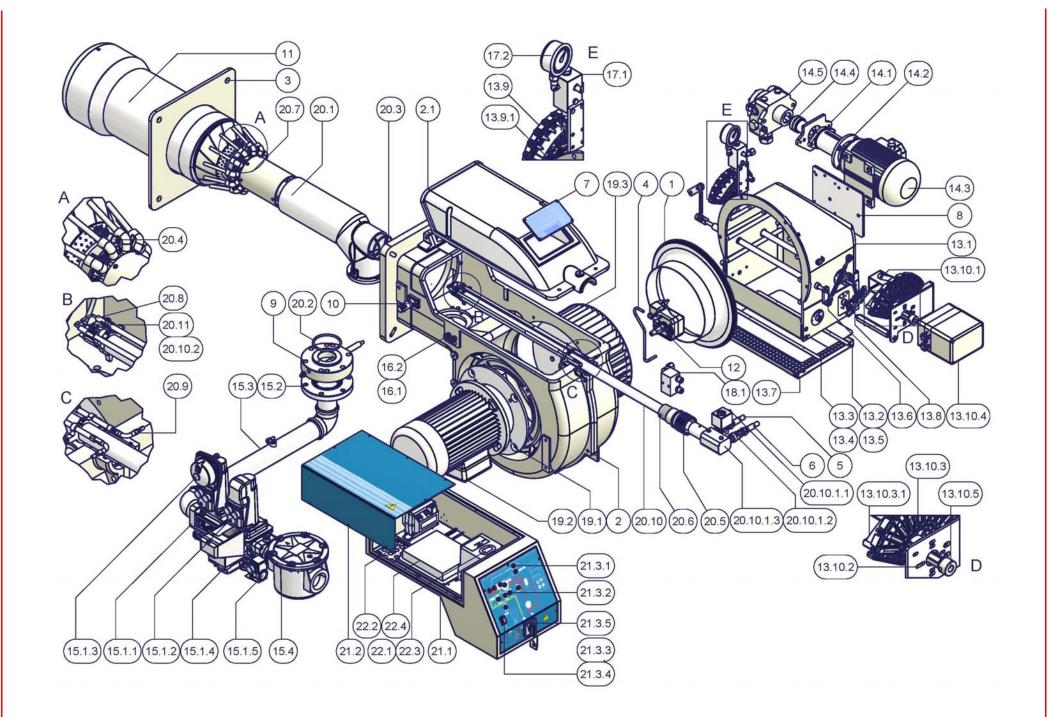
Seasonal stop

To stop the burner in the seasonal stop, proceed as follows:

- 1 turn the burner main switch to 0 (Off position)
- 2 disconnect the power mains
- 3 close the fuel valve of the supply line

Burner disposal

In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials".


BURNER EXPLODED VIEW

44

ITEM	DESCRIPTION
1	AIR INLET CONE
2	BURNER HOUSING
2.1	COVER
3	GENERATOR GASKET
4	AIR PRESSURE SWITCH PIPE
5	FLEXIBLE HOSE
6	FLEXIBLE HOSE
7	INSPECTION GLASS
8	PLATE
9	BUTTERFLY GAS VALVE
10	PHOTOCELL
11	STANDARD BLAST TUBE
12	AIR PRESSURE SWITCH
13.1	AIR INTAKE
13.2	LOUVER SHAFT
13.3	LOUVER SHAFT
13.4	AIR INTAKE DAMPER
13.5	AIR INTAKE DAMPER
13.6	PIN
13.7	NET
13.8	ADJUSTING CAM SHAFT
13.9	ADJUSTING CAM
13.9.1	ADJUSTING CAM FOIL
13.10.1	LEVERAGE
13.10.2	BRACKET
13.10.3	ADJUSTING CAM
13.10.3.1	ADJUSTING CAM FOIL
13.10.4	ACTUATOR

ITEM	DESCRIPTION
13.10.5	ACTUATOR SHAFT
14.1	BRACKET
14.2	BRACKET
14.3	MOTOR
14.4	COUPLING
14.5	PUMP
15.1.1	GAS VALVE HOUSING
15.1.2	"SKP" ACTUATOR
15.1.3	"SKP" ACTUATOR
15.1.4	GAS PROVING SYSTEM
15.1.5	GAS PRESSURE
15.2	FLANGED PIPE
15.3	THREADED PIPE
15.4	GAS FILTER
16.1	FAIRLEAD
16.2	FAIRLEAD
17.1	PRESSURE GOVERNOR
17.2	PRESSURE GAUGE
18.1	OIL MANIFOLD
19.1	MOTOR MOUNTING FLANGE
19.2	MOTOR
19.3	FAN WHEEL
20.1	GAS MANIFOLD
20.2	O RING
20.3	O RING
20.4	PIN
20.5	RING NUT
20.6	ADJUSTING BUSH

ITEM	DESCRIPTION
20.7	STANDARD COMBUSTION HEAD
20.8	IGNITION ELECTRODE
20.9	IGNITION CABLE
20.10	STANDARD COMPLETE OIL GUN
20.10.1.1	OIL SOLENOID VALVE
20.10.1.2	ONE-WAY VALVE
20.10.1.3	OIL MANIFOLD
20.10.2	NOZZLE HOLDER
20.11	NOZZLE
21.1	BOARD
21.2	COVER
21.3.1	LIGHT
21.3.2	LIGHT
21.3.3	LOCK-OUT RESET BUTTON
21.3.4	PROTECTION
21.3.5	SWITCH
22.1	CONTROL BOX SOCKET
22.2	IGNITION TRANSFORMER
22.3	CONTROL BOX
22.4	PRINTED CIRCUIT BOARD
20.7	STANDARD COMBUSTION HEAD
20.8	IGNITION ELECTRODE
20.9	IGNITION CABLE
20.10	STANDARD COMPLETE OIL GUN
20.10.1.1	OIL SOLENOID VALVE
20.10.1.2	ONE-WAY VALVE
20.10.1.3	OIL MANIFOLD
20.10.2	NOZZLE HOLDER

SPARE PARTS

Desription		Code	
•	HP91A	HP92A	HP93A
CONTROL BOX	2020448	2020448	2020448
IGNITION ELECTRODE	2080292	2080292	2080292
OIL FILTER	2090018	2090018	2090018
GAS FILTER - Rp 2	2090119	2090119	2090119
GAS FILTER - DN65	2090117	2090117	2090117
GAS FILTER - DN80	2090112	2090112	2090112
GAS FILTER - DN100	2090113	2090113	2090113
GASKET	2110048	2110048	2110048
FAN WHEEL	2150009	2150028	2150010
AIR PRESSURE SWITCH	2160065	2160065	2160065
GAS PRESSURE SWITCH- GW500 A6	2160087	2160087	2160087
GAS PRESSURE SWITCH- GW150 A5	2160077	2160077	2160077
GAS PRESSURE SWITCH- GW500 A5	2160089	2160089	2160089
GAS PRESSURE SWITCH- GW50 A5	2160076	2160076	2160076
IGNITION TRANSFORMER	2170302	2170302	2170302
PUMP MOTOR	2180202	2180202	2180202
FAN MOTOR	2180276	2180277	2180206
GAS VALVE GROUP - Rp2 - Siemens VGD20	2190171	2190171	2190171
GAS VALVE GROUP - DN65 - Siemens VGD40	2190172	2190172	2190172
GAS VALVE GROUP - DN80 - Siemens VGD40	2190169	2190169	2190169
GAS VALVE GROUP - DN100 - Siemens VGD40	2190174	2190174	2190174
GAS VALVE ACTUATOR SKP15	2190181	2190181	2190181
GAS VALVE ACTUATOR SKP25	2190183	2190183	2190183
GAS VALVE GROUP - Rp2 - Dungs MBC1200SE	21903M5	21903M5	21903M5
GAS VALVE GROUP - DN65 - Dungs MBC1900SE	21903M6	21903M6	21903M6
GAS VALVE GROUP - DN80 - Dungs MBC3100SE	21903M7	21903M7	21903M7
GAS VALVE GROUP - DN100 - Dungs MBC5000SE	21903M8	21903M8	21903M8
GAS PROVING SYSTEM	2190403	2190403	2190403
GAS PROVING SYSTEM	2191604	2191604	2191604
FLEXIBLE HOSE L=1500	2340004	2340004	2340004
FLEXIBLE HOSE L=335	2340087	2340087	2340087
FLEXIBLE HOSE L=385	2340088	2340088	2340088
SMALL ADJUSTING CAM FOIL	2440013	2440013	2440013
BIG ADJUSTING CAM FOIL	2440014	2440014	2440014
ACTUATOR SIEMENS SQL33.03	2480040	2480040	2480040
ACTUATOR BERGER STM30/24	2480090	2480090	2480090
ACTUATOR SIEMENS SQM40	24800A5	24800A5	24800A5
UV PROBE	2510001	2510001	2510001
MOTOR-PUMP COUPLING	2540019	2540019	2540019
LIGHT OIL GOVERNOR	2570054	2570054	2570077
BURNER MODULATOR (only for fully-modulating burners)	2570112	2570034	2570077
PUMP SUNTEC	2590112	2590112	2590120
PUMP DANFOSS	2590311	2590119	2590120
NOZZLE	2610202	2610202	2610203
OIL GUN	2700231	2700231	2700236
COMBUSTION HEAD	30600R3	30600R3	2700238 30600R3
BLAST TUBE	30900M3		
IGNITION CABLE	6050108	30900M4	30910M6
PRINTED CIRCUIT BOARD		6050108	6050108
	6100533	6100533	6100533

NOTE: it is recommended to mention the burner ID number on the spare parts request form.

Desription		Co	de	
	HP512A	HP515A	HP520A	HP525A
CONTROL BOX	2020448	2020448	2020448	2020448
IGNITION ELECTRODE	2080292	2080292	2080292	2080292
OIL FILTER	2090018	2090018	2090018	2090018
GAS FILTER - Rp 2	2090119	2090119	2090119	2090119
GAS FILTER - DN65	2090117	2090117	2090117	2090117
GAS FILTER - DN80	2090112	2090112	2090112	2090112
GAS FILTER - DN100	2090113	2090113	2090113	2090113
GASKET	2110047	2110047	2110047	2110047
FAN WHEEL	2150010	2150030	2150029	2150029
AIR PRESSURE SWITCH	2160065	2160065	2160065	2160065
GAS PRESSURE SWITCH- GW500 A6	2160087	2160087	2160087	2160087
GAS PRESSURE SWITCH- GW150 A5	2160077	2160077	2160077	2160077
GAS PRESSURE SWITCH- GW500 A5	2160089	2160089	2160089	2160089
GAS PRESSURE SWITCH- GW50 A5	2160076	2160076	2160076	2160076
IGNITION TRANSFORMER	2170302	2170302	2170302	2170302
PUMP MOTOR	2180202	2180223	2180223	2180219
FAN MOTOR	2180298	2180209	2180278	2180289
GAS VALVE GROUP - Rp2 - Siemens VGD20	2190171	2190171	2190171	2190171
GAS VALVE GROUP - DN65 - Siemens VGD40	2190172	2190172	2190172	2190172
GAS VALVE GROUP - DN80 - Siemens VGD40	2190169	2190169	2190169	2190169
GAS VALVE GROUP - DN100 - Siemens VGD40	2190174	2190174	2190174	2190174
GAS VALVE ACTUATOR SKP15	2190181	2190181	2190181	2190181
GAS VALVE ACTUATOR SKP25	2190183	2190183	2190183	2190183
GAS VALVE GROUP - Rp2 - Dungs MBC1200SE	21903M5	21903M5	21903M5	21903M5
GAS VALVE GROUP - DN65 - Dungs MBC1900SE	21903M6	21903M6	21903M6	21903M6
GAS VALVE GROUP - DN80 - Dungs MBC3100SE	21903M7	21903M7	21903M7	21903M7
GAS VALVE GROUP - DN100 - Dungs MBC5000SE	21903M8	21903M8	21903M8	21903M8
OIL SOLENOID VALVE	2190403	2190403	2190403	2190750
GAS PROVING SYSTEM	2191604	2191604	2191604	2191604
FLEXIBLE HOSE L=1500 1"M x 1"F	2340004	2340004	2340004	2340004
FLEXIBLE HOSE L=335 3/8"	2340087	2340087	2340087	2340087
FLEXIBLE HOSE L=385 3/8"	2340088	2340088	2340088	2340088
SMALL ADJUSTING CAM FOIL	2440013	2440013	2440013	2440013
BIG ADJUSTING CAM FOIL	2440014	2440014	2440014	2440014
ACTUATOR SIEMENS SQL33.03	2480040	2480040	2480040	2480040
ACTUATOR BERGER STM30/24	2480090	2480090	2480090	2480090
ACTUATOR SIEMENS SQM40/24	24800A5	24800A5	24800A5	24800A5
UV PROBE	2510001	2510001	2510001	2510001
MOTOR-PUMP COUPLING	2540019	2540126	2540126	2540133
LIGHT OIL GOVERNOR	2570077	25700B2	25700B2	25700A7
SUNTEC TV LIGHT OIL GOVERNOR	-	-	-	2570036
BURNER MODULATOR (only for fully-modulating burners)	2570112	2570112	2570112	2570112
PUMP SUNTEC	2590120	2590121	2590121	2590124
PUMP DANFOSS	2590120	2590121	2590121	-
NOZZLE	2610203	2610203	2610203	2610203
OIL GUN	2700232	2700232	2700232	2700232
COMBUSTION HEAD		2700232 30600R5	2700232 30600R6	
BLAST TUBE	30600R4 3091075	30600R5 3091076		30600R6 30910L9
IGNITION CABLE			30910H4	
	6050108	6050108	6050108	6050108
PRINTED CIRCUIT BOARD	6100533	6100533	6100533	-

NOTE: it is recommended to mention the burner ID number on the spare parts request form.

TROUBLE TURNS OF AND REPEATS CYCLE DURING OPERATION START URNS OF AND REPEATS CYCLE DURING OPERATION URNS OF AND REPEATS CYCLE DURING OPERATION STARTS AND LOCK-OUTB S STARTS AND REPEATS THE CYCLE THE FLAME MONITOR DEVICE DOESN'T GIVECONSENT TO STAF DOESEN'T SWITCH TO HIGH FLAME ≧ CONTINUE WITH PRE-PURGE DOESN'T START AND REPEATS THE CYCLE DOESN'T START AND LOCK-OUT HE SERVO CONTROL LOCK AND VIBRATE DOESEN'T RETURN LOW FLAME LOCK-OUT DURING OPERATION THE BURNER DOESN'TSTART CAUSE • MAIN SWITCH OPEN • • LACK OF GAS MAXIMUM GAS PRESSURE SWITCH DEFECTIVE (IF • • PROVIDED) THERMOSTATS/PRESSURE SWITCHES DEFECTIVE • • • • FAN MOTOR THERMAL CUTOUT INTERVENTION • • OVERLOAD TRIPPED INTERVENTION • AUXILIARY FUSES INTERRUPTED • • • • • CONTROL BOX FAULTY • • • • DEFECTIVE ACTUATOR AIR PRESSURE SWITCH FAULT OR BAD SETTING • • • • MINIMUM GAS PRESSURE SWITCH DEFECTIVE OR GAS • • • • • FILTER DIRTY • IGNITION TRANSFORMER FAULT • IGNITION ELECTRODES BAD POSITION • ٠ BUTTERFLY VALVE BAD SETTING • • • DEFECTIVE GAS GOVERNOR • • GAS VALVE DEFECTIVE BAD CONNECTION OR DEFECTIVE HIGH/LOW FLAME • • • THERMOSTAT OR PRESSURE SWITCH ٠ ٠ • WRONG SETTING ACTUATOR CAM • ۲ • UV PROBE DIRTY OR DEFECTIVE • **OIL FILTER DIRTY**

48

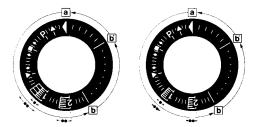
SIEMENS LFL 1.3.. CONTROL BOX

Automatic programme in the event of interruption and indication of position when interrupted

By default, in the event of any kind of interruption, the flow of fuel is immediately interrupted. At the same time the programmer stops and this indicates the position at the time of the interruption.

A symbol on the indicator disc shows each time the type of stoppage:

- No start-up (for example fault in the CLOSED signal for the limit contact "Z" at terminal 8 or some other contact between the terminals 12 and 4 or 4 and 5 is not closed).
- Start-up suspended because of a fault in the OPEN signal for the limit contact "A" at terminal 8.
- P Block due to absence of air pressure signal. From this moment onwards any absence of air pressure will cause a block.


Block due to malfunction of the flame detector circuit.

- Start-up interrupted because there is a fault in the MINMUM signal for the auxiliary contact of the damper servo motor at terminal 8.
- 1 Block due to absence of flame signal at the end of the 1st safety period.

From this moment onwards any absence of a flame signal will cause a block.

- 2 Blockdue to absence of flame signal at the end of the 2nd safety period (flame signal of main burner).
- Blockdue to absence of flame signal or air pressure during operation.

Where a block stoppage occurs at any moment between switch on and pre-ignition without registering any symbol, the cause is normally an unscheduled flame signal.

a-b Start-up programme

b-b' For time variants:move the programmer on to the automatic stop after the burner starts up (b' = position of the programmer during normal burner operation).

b(b')-aPost-ventilation programme after a regulation stop.At the start-up position "a" the programmer stops automatically.

- . Safety time duration for mono-tube burners
- . Safety time duration for twin-tube burners

The apparatus can be reset immediately after a block. After resetting (and after the elimination of any problem causing the stoppage or after a power failure) the programmer returns to its start-up position. In this event only the terminals 7, 9, 10 and 11 are live in accordance with the monitoring programme. Only after this the device programs a new startup.

Operation

The wiring system and also the control system of the programmer "P" have already been given in this manual. The response signals required for the active parts and the flame monitor circuit are shown by a hatching. In the absence of these response signals the mechanism interrupts the start-up programme; the exact time of the interruption can be identified from the visual indicator and will cause a block if the safety code requires it.

- A consent to start-up by means of the thermostat or pressostat "R"
- A-B start-up program
- B-C normal burner operation C regulation stop caused by "
- c regulation stop caused by "R"
- C-D programmer returns to start-up position A.

During the regulation stop only terminals 11 and 12 are live and the damper, through the limit contact "Z" of its servo-motor is in the CLOSED position. The flame detector circuit F is activated (terminals 22 and 23 or 23/4) for the detector test and the paracitic light test.

Where the burners do not have dampers (or have an independent 00 damper control mechanism) there must be a bridge between terminals 6 and 8, otherwise the mechanism will not start up the burner.

For a burner to start up the following conditions must be met:

- Mechanism not blocked/reset.
- Damper closed.Limit contact switchZ must be in the CLOSED position and allow current to flow between terminals 11 and 8.
- Any contacts checking that the fuel valve (bv...) is closed, or other contacts with similar functions, must be closed between terminal 12 and the air pressostat LP.
- The contact for the air pressostat LP must be in the off position (LP test) so as to feed terminal 4.
- The gas pressostat contacts GP and the safety thermostat and pressostat contacts W must also be closed.

Start-up program

A Start-up

(R closes the start-up control ring between terminals 4 and 5)

The programmer starts up.At the same time the ventilator motor is fed through terminal 6 (only for pre-ventilation) and, after t7, the ventilator motor or the combustion gas exhaust fan is fed through terminal 7 (pre-ventilation and post-ventilation).

At the end of t16, the command opening the damper passes through terminal 9; during the damper opening time the programmer does not move since terminal 8, through which the programmer is fed, is dead.

Only once the damper is fully open and the limit contact switch A has switched on, feeding terminal 8, does the programme proceed.

t1 Pre-ventilation time with damper fully open (nominal air flow).

Shortly after the beginning of the pre-ventilation time, the air pressostat should switch off the current between terminals 4 and 13;otherwisethe apparatus would block (air pressure monitor).

At the same time the terminal 14 should be live since current feeding the ignition transformer and the fuel valves passes through this circuit.

During pre-ventilation time the flame detector circuit is checked and in the event of an operational defect the monitor brings about a block.

At the end of the pre-ventilation time the monitor automatically moves the damper servo-motor, through terminal 10, to the flame ignition position which is governed by the auxiliary contact "M".

During this period the programmer stops until terminal 8, is again activatedthrough contact "M".

After a few seconds the little programmer motor is directly fed by the active part of the apparatus.

After this point terminal 8 plays no further part in the burner ignition process.

Mono-tube burner

t3 Pre-ignition time waiting the response from the fuel valve at terminal 18.

t2 Safety time (start up flame strenght); at the end of the safety time a flame signal should appear at terminal 22 of the amplifier and it should stay on until a regulation stop; if this does not happen the mechanism will block.

t4 Interval; at the end of t4, terminal 19 is live.

t5 Interval At the end of t5 terminal 20 is live.At the same time the monitor outlets from 9 and 11 and terminal 8 into the active part of the apparatus are kept galvanically separatedso as to protect the monitor itself from recovery voltage through the capacity regulator circuit.

Twin-tube burners (**)

t3 Preignition time until the all clear to the pilot burner valve at terminal 17.

t2 First safety time (pilot flame strenght); at the end of the safety time a flame signal should appear at terminal 22 of the amplifier and it should stay on, until a regulation stop; if it does not, the apparatus will block.

t4 Interval until the consent to the fuel valve at terminal 19, for the first flame of the main burner.

t9 2nd safety time; at the end of the second safety time the main burner should be lit by means of the pilot. At the end of this period, terminal 17 is dead and therefore the pilot burner will be out.

Interval: at the end of t5 terminal 20 is live. At the same time the t5 monitor outlets from 9 to 11 and the terminal 8at the input of the active part of the apparatus are galvanically separated so as to protect the apparatus itself from recovery voltage through the strenght regulator circuit.

When the strenght regulator LR at terminal 20 gives the consent, the start-up programme for the apparatus comes to an end. Depending on time variants, the programmer stops either immediately or at the end of a set time, without effecting the position of the contacts.

в Operational position of the burner

B-C Burner operation (production of heat)

While the burner is working the strnght regulator controls the damper, according to the demand for heat, by means of the positioning at nominal load of the auxiliary contact "V" of the damper servocontrol.

С Regulation stop for operation of "R"

When there is a regulation stop the fuel valves immediately close. At the same time the programmer starts to programme:

Post-ventilation time (post-ventilation with the ventilator "G" at tert6 minal 7). Shortly after beginning of the post-ventilation time terminal 10 becomes live and moves the damper to the "MIN" position. The full closure of the damper only happens towards the end of the post-ventilation time and is prompted by an automatic signal from terminal 11

Admissible post-ignition time t13

During this time the flame monitor circuit may still receive a flame signal without the apparatus blocking.

D-A End of automatic programme

At the end of t6, at the point where the programmer and the automatic contacts have reverted to the starter position, the detection probe test restarts

During an operational stop even an unscheduled flame signal lasting a few seconds can cause a block because during this period an NTC in the circuit acts as retarder. This means that brief unscheduled influences cannot cause a block.

(**) Times t3, t2 and t4 only apply only to safety devices in the series 01.

Specifications

Mains voltage Frequency Absorbed capacity Built-in fuse External fuse Interference Flow permitted at terminal 1 Flow permitted at control termin	220V -15%240V +10% 50Hz -6%60Hz +6% 3.5 VA T6.3/250E slow action DIN41571 No. 451915070 max. 16A N-VDE0875 5A (DIN 0660 AC3) mals
	4A (DIN 0660 AC3)
Flow at monitor contacts: input at terminals 4 & 5 input at terminals 4 & 11 input at terminals 4 & 14	1A, 250V 1A, 250V function of the load at terminals 16 and 19, min.1A, 250V
Emplacement	Any
Protection	IP40
Permitted ambient temp	-20+60° C
Min.temperature (trans/storage) Weight:)-50° C
apparatus	approx. 1,000g.
base	approx. 165g.
Ionisation monitor	
voltage in detector electrode	
normal working	330V ±10%
test	380V ±10%
short circuit current	max. 0,5 mA
Ionisation current, min.request	
max. permitted length for conne	•
normal cable (laid separately**)	
armoured cable(high frequency	
UV monitor	
Voltage in UV detector normal working test Detector current, min. request* Max. detector current	330V ±10% 380V ±10% 70μA
normal working	630 μΑ

test 1300 µA Max.length of connecting cable

normal cable (laid separately**) 100m

armoured cable (high frequency) protected at terminal 22 200m

=
60 g
450 g

*Connect up in parallel to the measuring device a condenser 100µF, 10...25V

** The wire connecting up the detector electrode should not be in the same sleeve as the other conductor wires.

Ignition spark monitor with QRE1 series 02 detector

Minimum detector current 30uA

Operating times

t7 initial delay for ventilator G2 2

t16 initial delay of air damper OPEN consent 4

t11 opening time for damper any

t10 initial delay for air pressure monitor8

t1 pre-ventilation time with damper open36

t12 travel time for air damper to MIN positionany

t3 t3' pre-ignition time	t3	4
	t3	' <u>-</u>
t2 t2' safety time (1st safety	/ time for bu	rners with intermittent pilot
lighter	t2	2
	t2	' <u>-</u>
A A A AL Sector and the stress state of		and a second second second data second second

t4 t4' interval between s	tart of t2 and respo	nse to valve at t	erminal 19
	t4	10	
	†4	1	

t9 2nd safety time for burners with intermittent pilot lighter 2 t5 interval between end of t4 and response at terminal 20 10

t20 interval before programmer cuts out after start-up-

duration of start-up	60
t6 post-ventilation time (G2 only)	12

t13 permitted post-ignition time 12

t16 initial delay from opening consent of the air damper

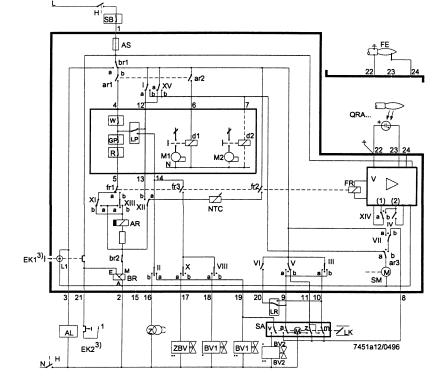
t20 interval until the automatic shut-off of the programming mechanism after the burner start

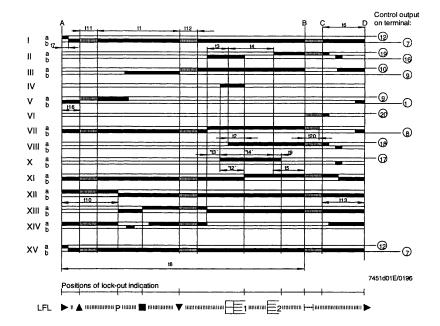
Key

- А limit contact switch for damper OPEN position
- AI block remote signal
- AR main relay (working network) with contacts "ar"
- AS Monitor fuse
- BR block relay with "br" contacts
- BV fuel valve
- ΕK reset button
- FE detector electrode of ionisation circuit
- FR flame relay with "fr" contacts
- G ventilator motor or burner motor
- GP gas pressure switch
- н main interruptor switch
- L block stoppage LED
- IK air damper
- I P air pressostat
- LR safety regulator
- auxiliary contact switch for damper "MIN" position М

OBA UV detector

- QRE ignition spark detector
- R thermostat or pressostat
- S fuse
- SA damper servo-motor
- SM synchronous programmer motor
- v flame signal amplifier
- v in case of servo-motor: auxiliary contact for response to fuel valve with regard of damper position
- W safety pressostat or thermostat
- Ζ ignition transformer
- Ζ in case of servomotor: end of limit contact switch for damper **CLOSED** position
- ZBV pilot burner fuel valve
- for mono-tube burners
- for twin-tube burners


- (1) input for raising QRA detector voltage to test level
- (2) input for excitation of flame relay during flame detector test circuit (contact XIV) and during safety time (contact IV)
- (3) Do not press EK for more than 10 seconds


Programmer diagram

- t1 pre-ventilation time
- t2 safety time
- *t2 '1st safety time
- t3 pre-ignition time
- *t3 'pre-ignition time
- t4 interval for creating current between terminals 18 and 19
- *t4 'interval for creating current between terminals 17 and 19

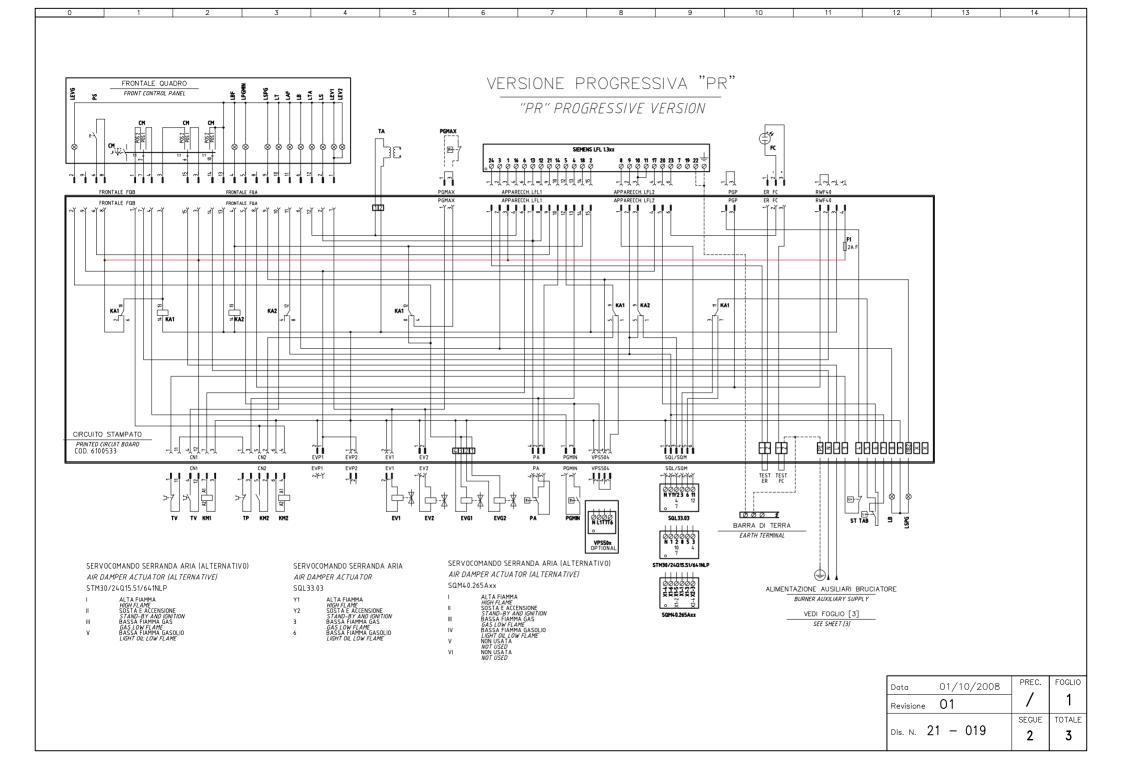
- t5 interval for creating current between terminals 19 and 20
 - t6 post-ventilation time
 - t7 interval between startup consent and current created at terminal 7
 - t8 duration of start-up
 - *t9 2nd safety time
- t10 interval before air pressure monitoring begins
- t11 damper opening travel time
- t12 damper closure travel time
- t13 permissible post-combustion time
- t16 initial delay of damper OPEN response
- t20 interval before programmer automatically stops

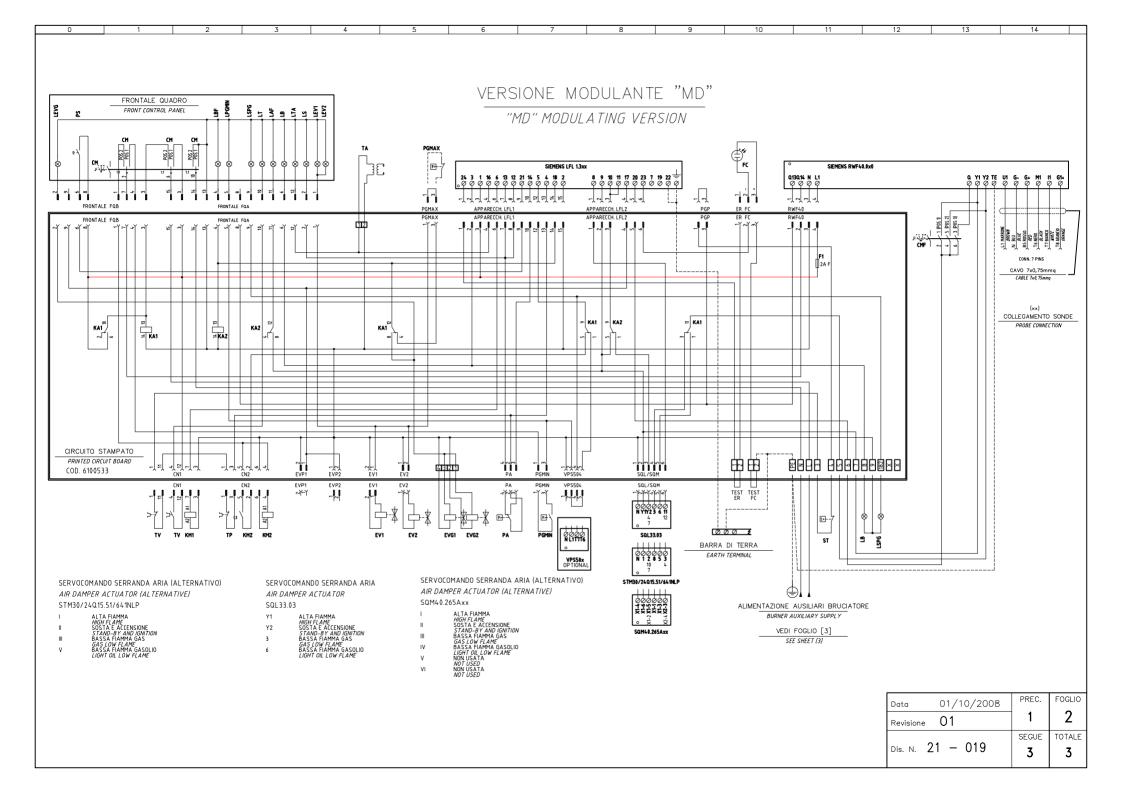
* These times are valid with the use of a series 01 safety device for monitoring burners with intermittent pilot lighter.

C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

Note: specifications and data subject to change. Errors and omissions exceptd.

WIRING DIAGRAMS

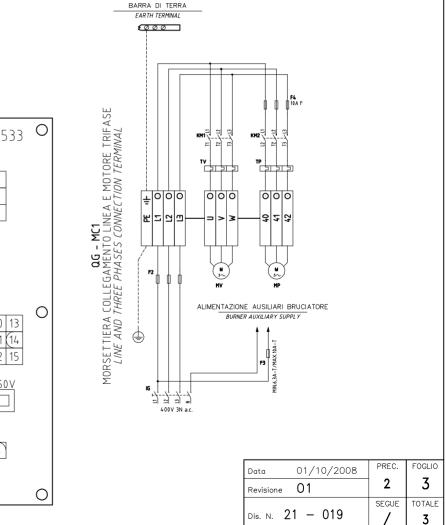

WIRING DIAGRAMS

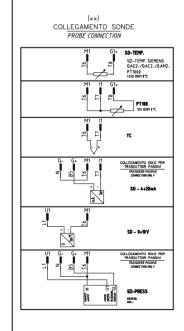

ATTENTION:

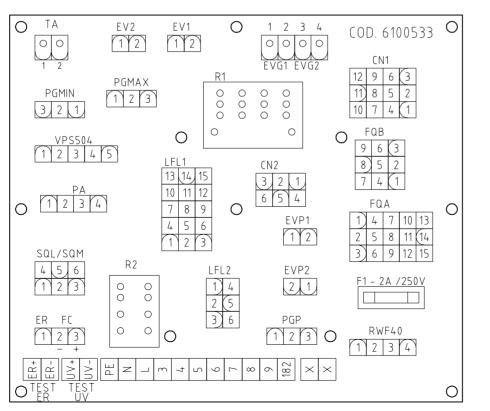
1- Power supply 400V 50 Hz, 3N a.c.

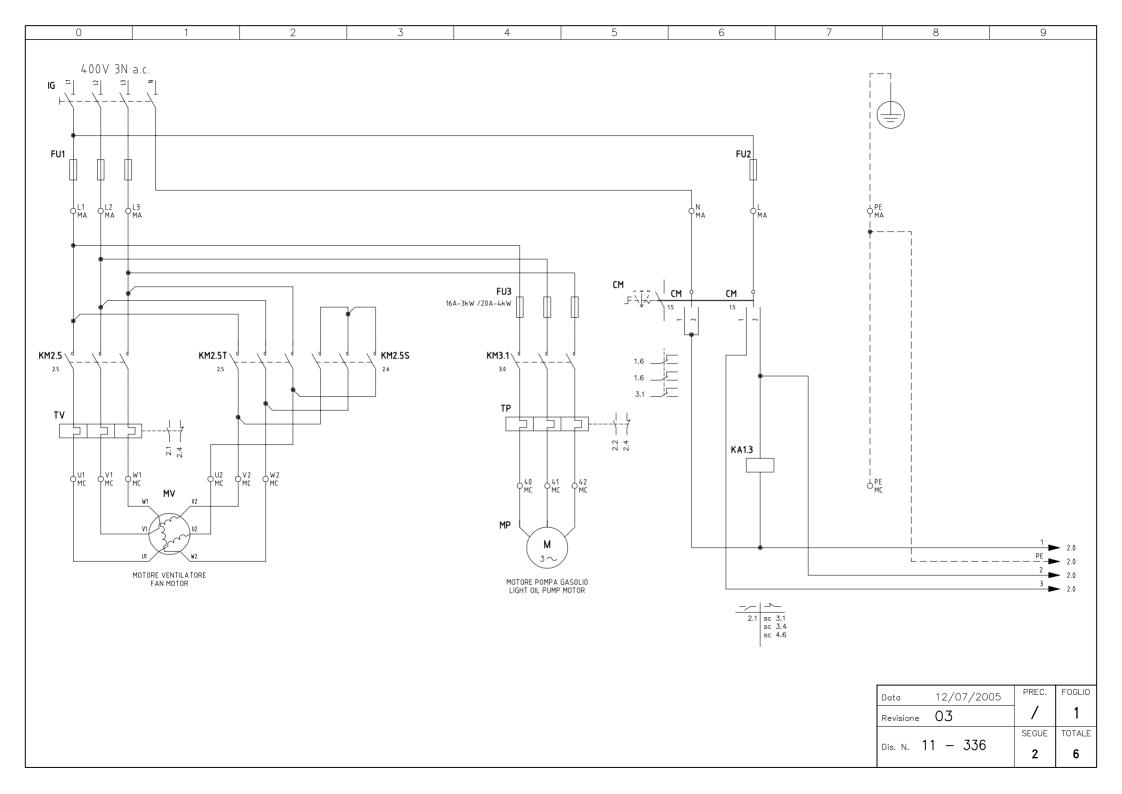
- 2- Don't reverse phase with neutral 3- Ensure burner is properly hearted

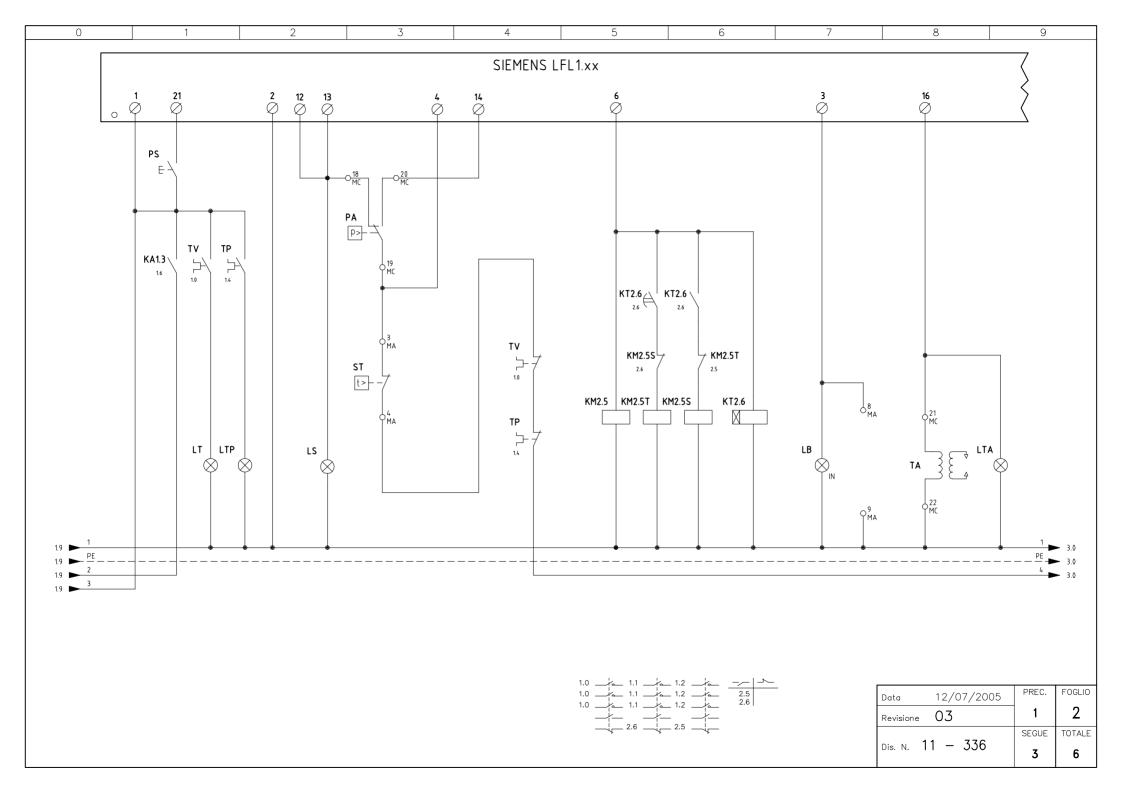
WIRING DIAGRAM .Cod. 21-019 WIRING DIAGRAMHP525 MG.PR..Cod. 11-336/1 - Progressive burners WIRING DIAGRAM HP525 MG.MD.. Cod. 11-339/1 - Fully modulating burners

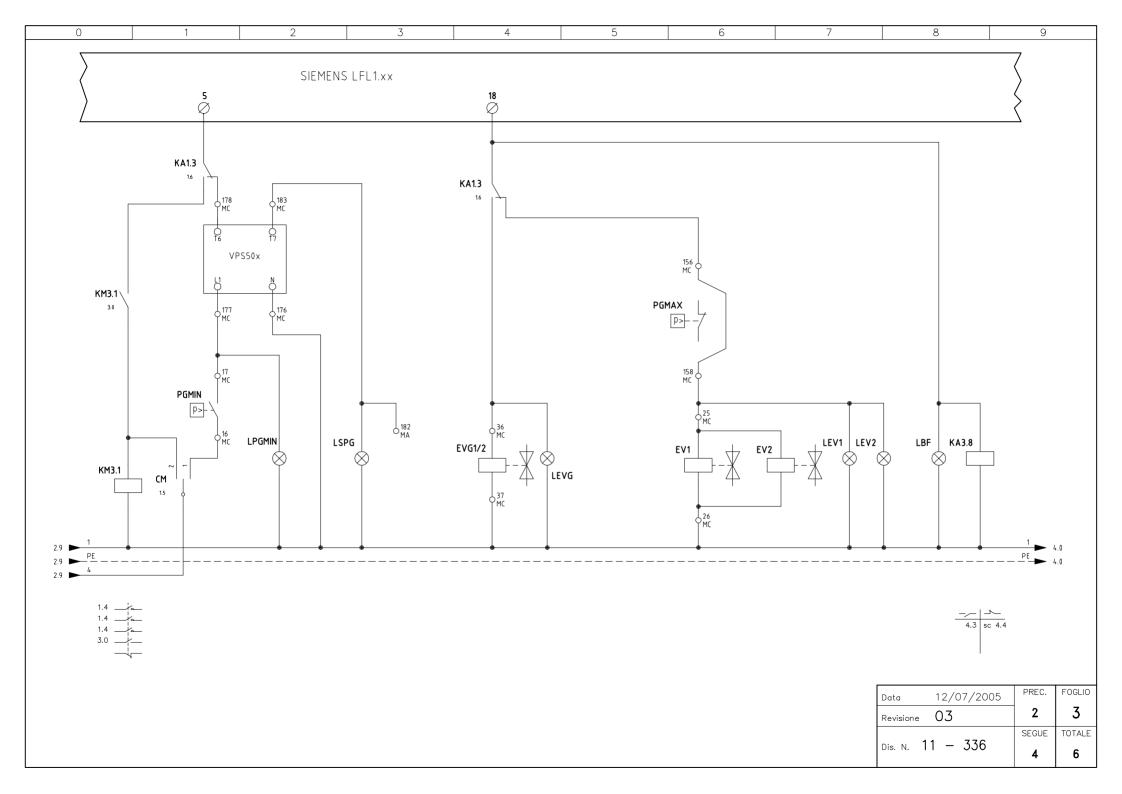


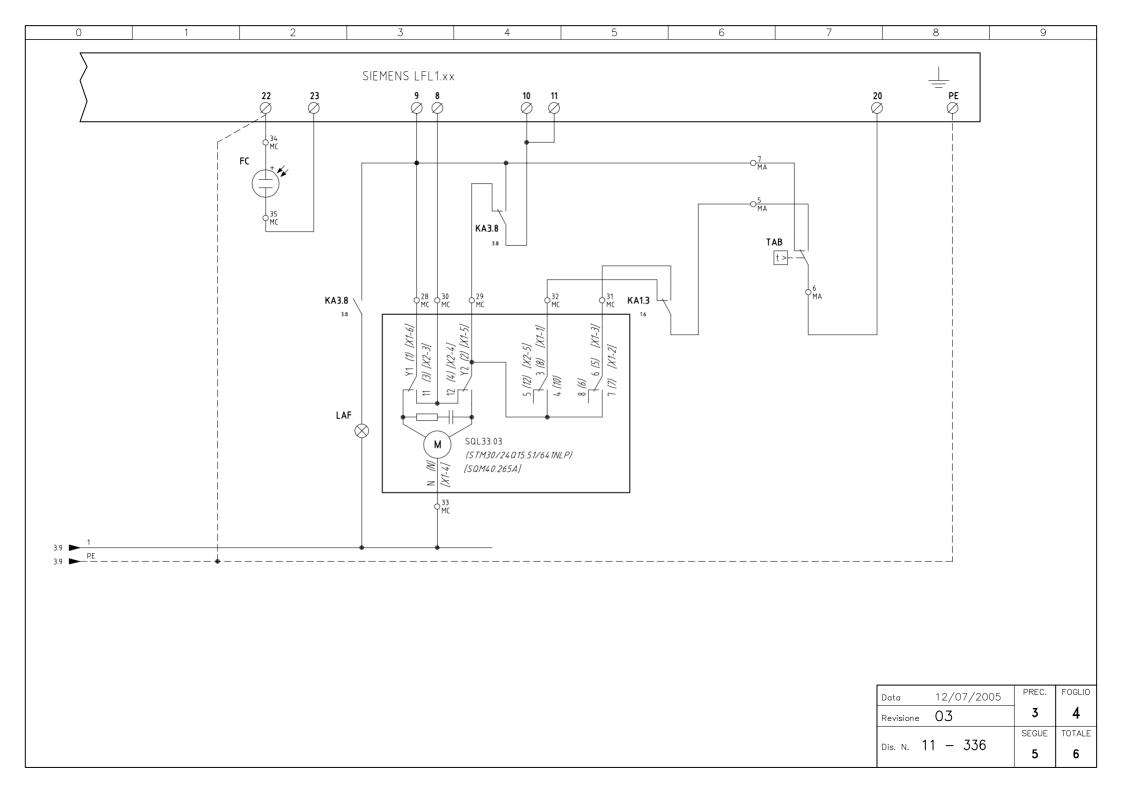


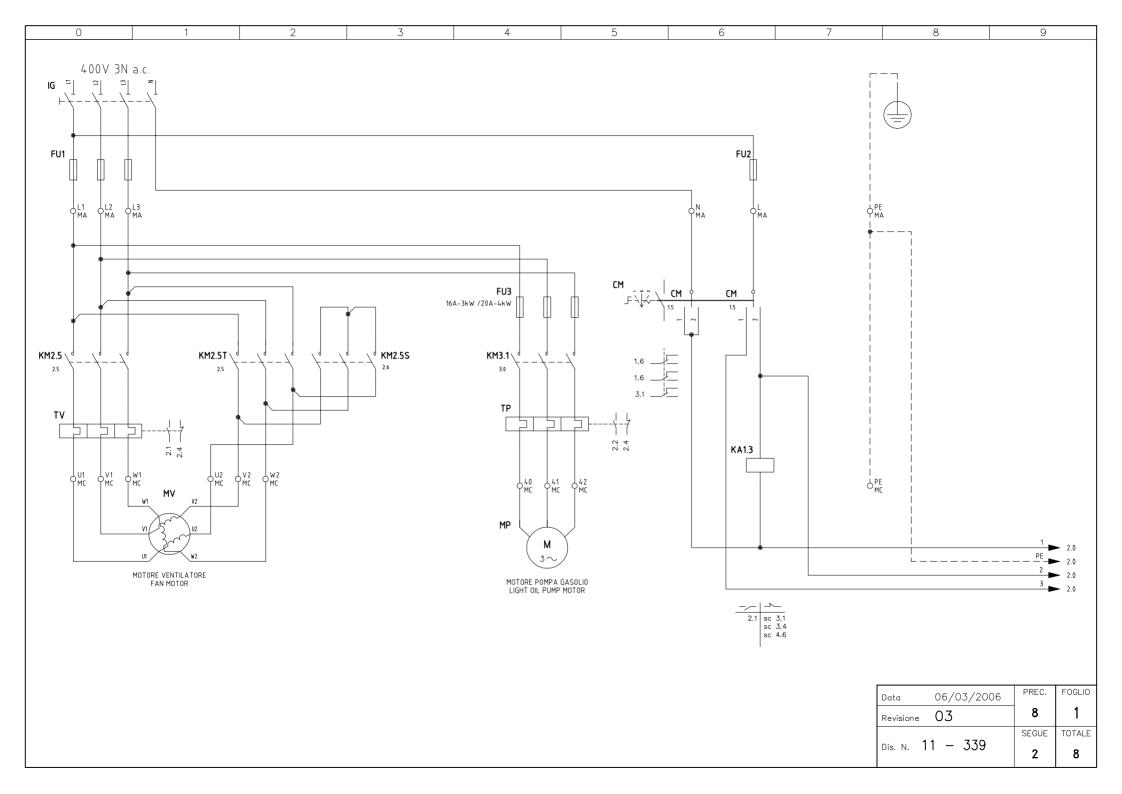

SIGLA/ITEM	FUNZIONE	FUNCTION
CM	SELETTORE MANUALE COMBUSTIBILE 1) GAS 0) OFF 2) GASOLIO	COMBUSTIBLE SELECTOR 1)GAS 0)OFF 2)LIGHT OIL
CMF	COMMUT. MANUALE FUNZ. 0)FERMO 1)ALTA FIAMMA 2)BASSA FIAMMA 3)AUTOMATICO	MANUAL SWITCH 0) OFF 1) HIGH FLAME 2) LDW FLAME 3) AUTOMATIO
EV1	ELETTROVALVOLA GAS LATO RETE (D GRUPPO VALVOLE)	GAS ELECTRO-VALVE UPSTREAM (OR VALVES GROUP)
EV2	ELETTROVALVOLA GAS LATO BRUCIATORE (O GRUPPO VALVOLE)	GAS ELECTRO-VALVE DOWNSTREAM (OR VALVES GROUP)
EVG1	ELETTROVALVOLA GASOLIO	LIGHT OIL ELECTRO-VALVE
EVG2	ELETTROVALVOLA GASOLIO	LIGHT OIL ELECTRO-VALVE
F1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
F2	FUSIBILI LINEA MOTORE VENTILATORE	FAN MOTOR LINE FUSES
F3	FUSIBILE DI LINEA	LINE FUSE
F4	FUSIBILI LINEA POMPA	PUMP LINE FUSES
FC	SONDA UV RILEVAZIONE FIAMMA	UV FLAME DETECTOR
16	INTERRUTTORE GENERALE	MAIN DISCONNECTOR
KA1	RELE' AUSILIARIO	AUXILIARY RELAY
KA2	RELE' AUSILIARIO	AUXILIARY RELAY
KM1	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
KM2	CONTATTORE MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR CONTACTOR
LAF	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
SIEMENS LFL 1.3xx	APPARECCHIATURA CONTROLLO FIAMMA	FLAME MONITOR DEVICE
SIEMENS RWF40.0x0	REGOLATORE MODULANTE	BURNER MODULATOR
LB	LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE	INDICATOR LIGHT FOR BURNER LOCK-OUT
LBF	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
LEV1	LAMPADA SEGNALAZIONE APERTURA (EV1)	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1]
LEV2	LAMPADA SEGNALAZIONE APERTURA (EV2)	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2]
LEVG	LAMPADA SEGNALAZIONE APERTURA (EVG1/2)	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE (EVG1/2)
LPGMIN	LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE	INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK
LS	LAMPADA SEGNALAZIONE SOSTA BRUCIATORE	INDICATOR LIGHT FOR BURNER STAND-BY
LSPG	LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE	INDICATOR LIGHT FOR LEAKAGE OF VALVES
LT	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN OVERLOAD TRIPPED
LTA	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
MP	MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR
MV	MOTORE VENTILATORE	FAN MOTOR
PA	PRESSOSTATO ARIA	AIR PRESSURE SWITCH

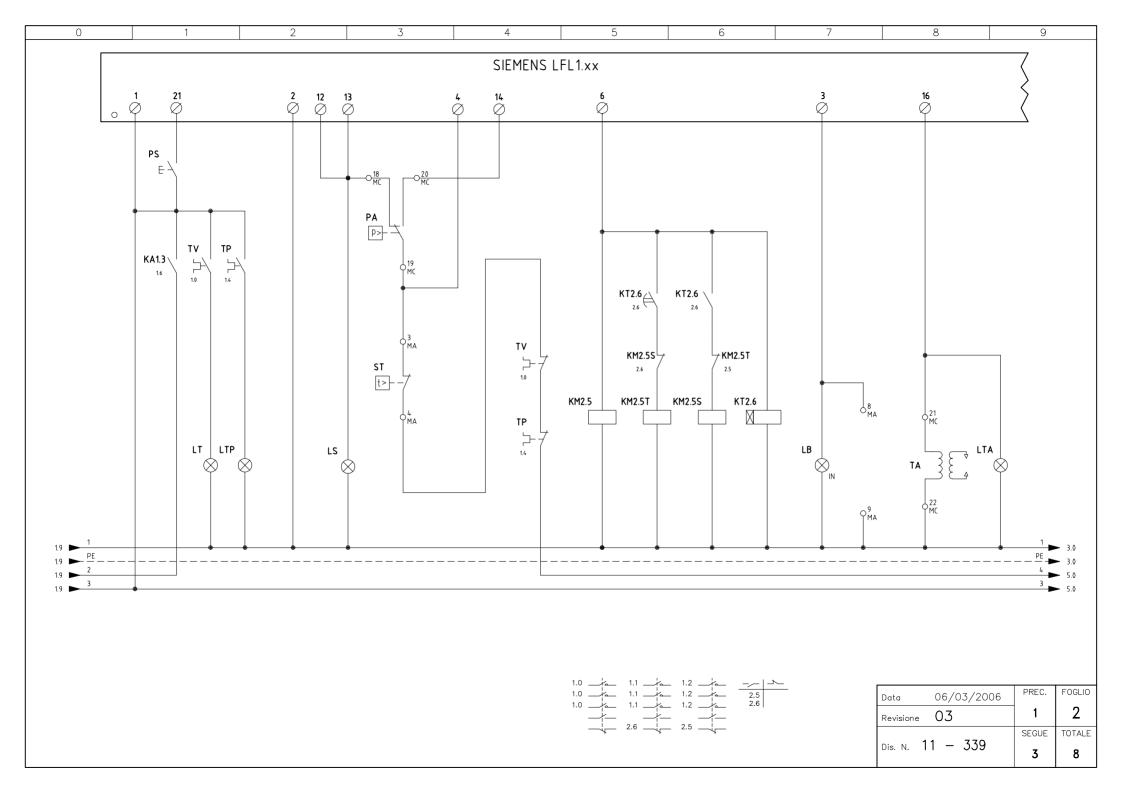

.3


SIGLA/ITEM	FUNZIONE	FUNCTION	
PGMAX	PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL)	MAXIMUM PRESSURE GAS SWITCH (OPTIONAL)	
PGMIN	PRESSOSTATO GAS DI MINIMA PRESSIONE	MINIMUM GAS PRESSURE SWITCH	
PS	PULSANTE SBLOECO FIAMMA	LOCK-OUT RESET BUTTON	
PT100	SONDA DI TEMPERATURA	TEMPERATURE PROBE	
SD-0+10V	SEGNALE IN TENSIONE	TENSION SIGNAL	
SD-4+20mA	SEGNALE IN CORRENTE	CURRENT SIGNAL	
SD-PRESS	SONDA DI PRESSIONE	PRESSURE PROBE	
SD-TEMP.	SONDA DI TEMPERATURA	TEMPERATURE PROBE	
SQL33.03	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER SERVO CONTROL	
SQM40.265Axx	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER SERVO CONTROL	
ST	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES	
STM30/24015.51/641NLP	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER SERVO CONTROL (ALTERNATIVE)	
TA	TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER	
TAB	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES	
TC	TERMOLOPPIA	THERMOCOUPLE	
TP	TERMICO MOTORE POMPA GASOLIO	LIGHT DIL PUMP MOTOR THERMAL	
TV	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL	
VPS50x	CONTROLLO DI TENUTA VALVOLE GAS (OPTIONAL)	GAS LEAKAGE MONITOR DEVICE (OPTIONAL)	

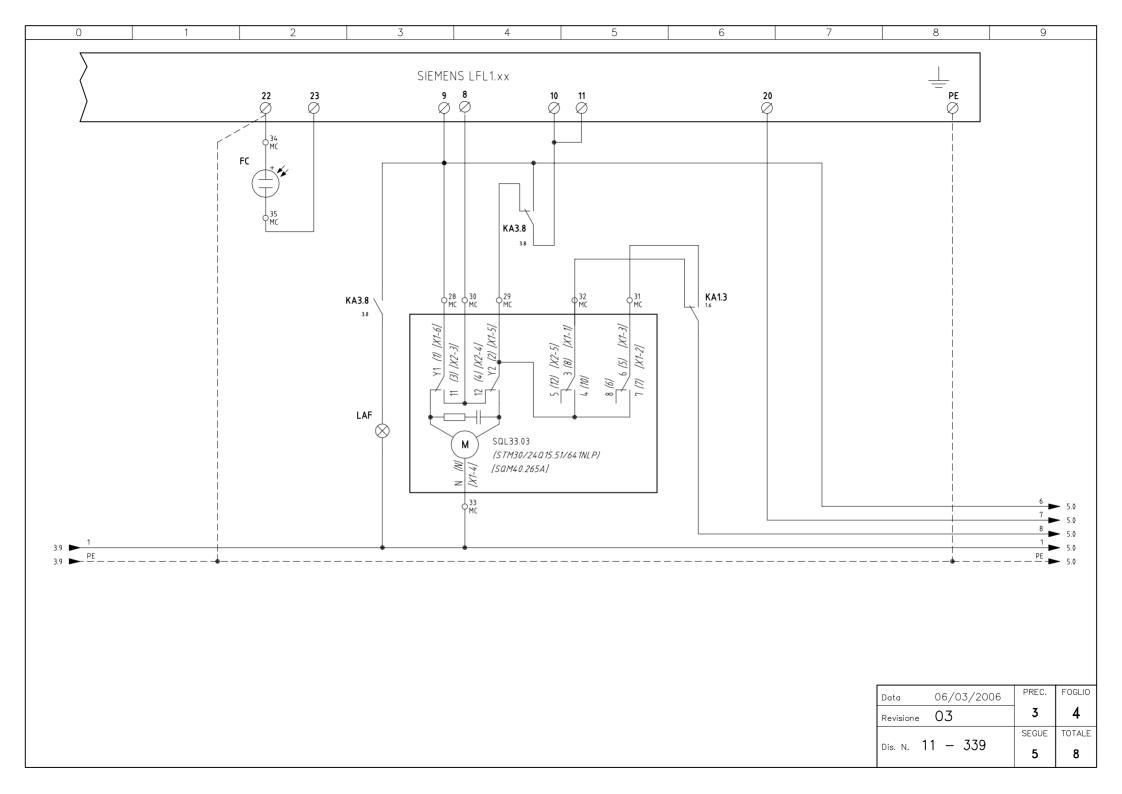


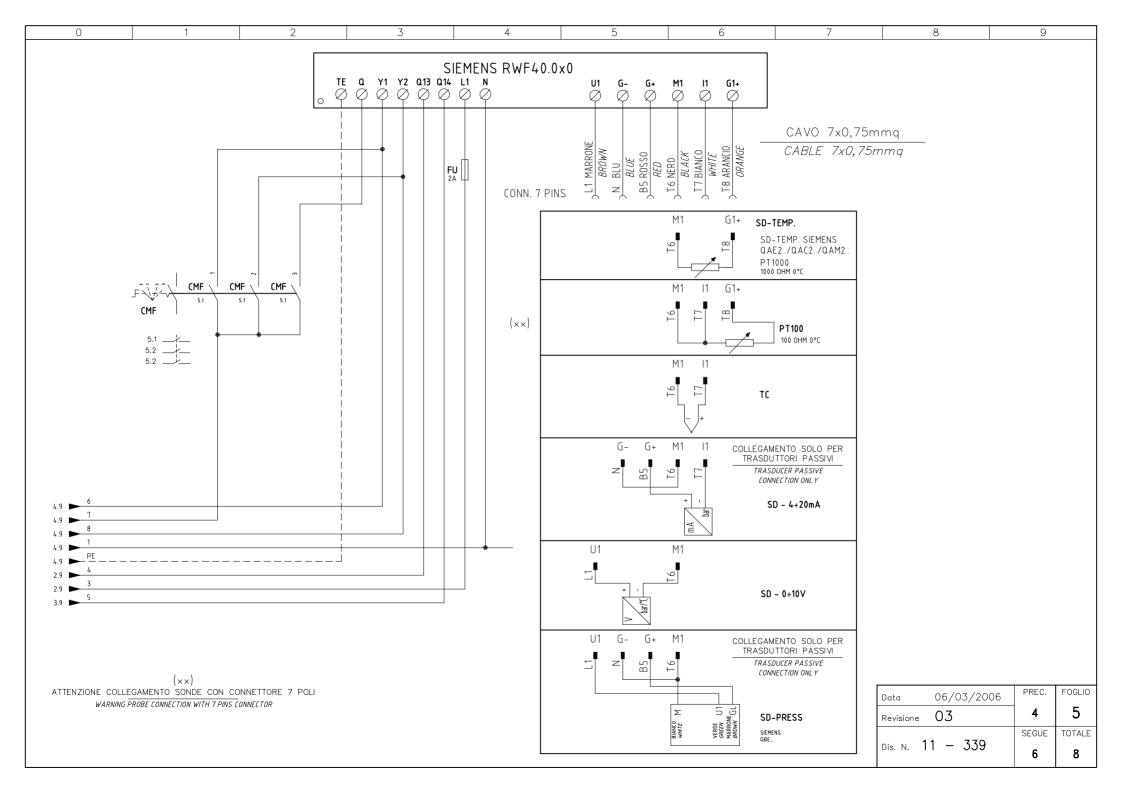


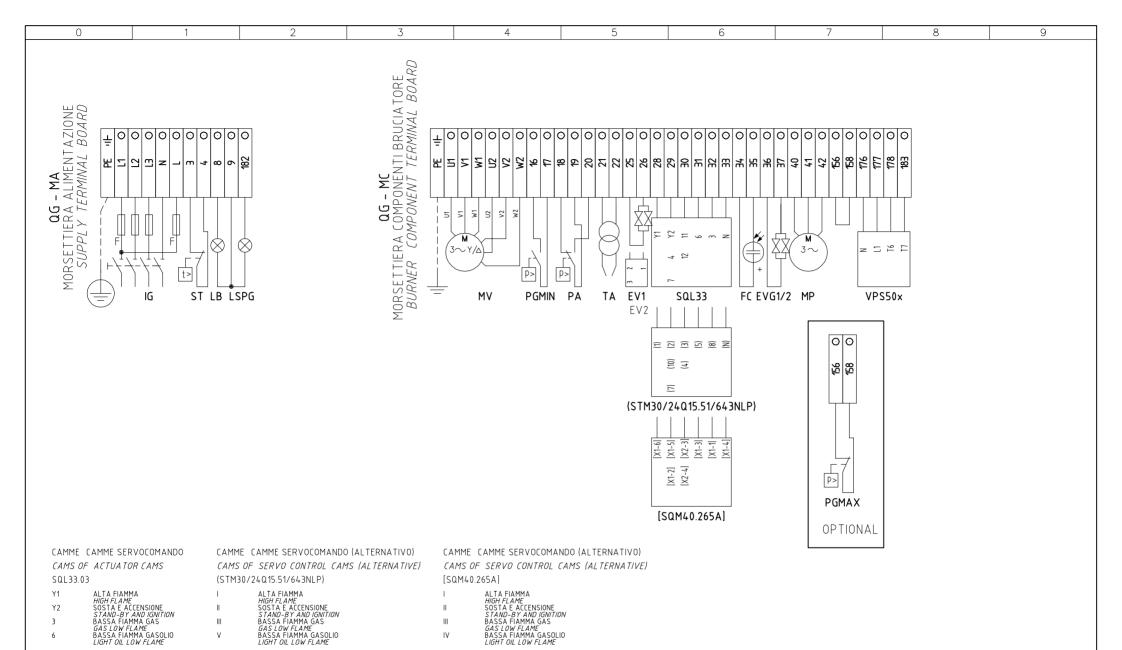




0	1	2	3	4	5	6	7		8	9	
		8 6 8 1	QG - MC MORSETTIERA COMPONENTI BRUCIATORE <i>BURNER COMPONENT TERMINAL BOARD</i>	3 38 41 44 10 10 10 10 10 10 10 10 10 10 10 10 10	2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		3~ M M M M M M M M M M M M M				
CAMS OF AC SQL33.03 Y1 ALT Y2 SOC 3 BAS G4	YE SERVOCOMANDO TUATOR CAMS A FIAMMA H FLAME IND-BY AND IGNITON ISA FIAMA GAS SI A FIAMA GAS SI A FIAMA GASOLIO IT OIL LOW FLAME				(STM30)	IN (8) (5) (5) (7) (1) (2) (1) (2) (2) (1) (2) <	P P P P GMAX OPTIONA	۰L			
CAMS OF SE (STM30/24Q1 I ALT II SOS S7 III BAS	ME SERVOCOMANDO (ALTE <i>RVO CONTROL CAMS (ALTE</i> 15.51/643NLP) TA FIAMMA <i>H FLAME</i> STA E ACCENSIONE MD-BY AND IGMITION SSA FIAMMA GAS SSA FIAMMA GASOLIO 4T OIL LOW FLAME					∑ ∑ 50M40.265A]					
CAMS OF SE [SQM40.265A ALT SQS SQS	YE SERVOCOMANDO (ALTE R <i>VO CONTROL CAMS (ALTI</i>] A FIAMMA <i>HTLAME</i> ITA E ACCENSIONE IND-BY AND IGNITION ISA FIAMMA GAS I <i>LOW FLAMM</i> E										
IV BAS LIGI	SLOW FLAME SSA FIAMMA GASOLIO HT OIL LOW FLAME							Data	12/07/2005	PREC.	FOGLIO
								Revisione	03	4	5
								Dis. N.	11 - 336	SEGUE	TOTALE


SIGLA/ITEM FOGLIO/SHEET		FUNZIONE	FUNCTION					
STM30/24Q15.51/641NLP)	4	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER ACTUATOR (ALTERNATIVE)					
5QM40.265A]	4	SERVOCOMANDO SERRANDA ARIA (ALTERNATIVO)	AIR DAMPER ACTUATOR (ALTERNATIVE)					
M	1	COMMUTATORE FUNZIONAMENTO 1)GAS 0)SPENTO 2)GASOLIO	MANUAL OPERATION SWITCH 1)GAS 0)OFF 2)LIGHT OIL					
V1	3	ELETTROVALVOLA GAS LATO RETE (O GRUPPO VALVOLE)	UPSTREAM GAS SOLENOID VALVE (OR VALVES GROUP)					
V2	3	ELETTROVALVOLA GAS LATO BRUCIATORE (O GRUPPO VALVOLE)	DOWNSTREAM GAS SOLENOID VALVE (OR VALVES GROUP)					
VG1/2	3	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVE					
C	4	SONDA UV RILEVAZIONE FIAMMA	UV FLAME DETECTOR					
U1	1	FUSIBILI DI LINEA	LINE FUSES					
U2	1	FUSIBILE DI LINEA	LINE FUSE					
U3	1	FUSIBILI LINEA POMPA	PUMP LINE FUSES					
	1	INTERRUTTORE GENERALE	MAINS SWITCH					
A1.3	1	RELE' AUSILIARIO	AUXILIARY RELAY					
(A3.8	3	RELE' AUSILIARIO	AUXILIARY RELAY					
	2	CONTATTORE MOTORE VENTILATORE (LINEA)	FAN MOTOR CONTACTOR (LINE)					
(M2.5S	2	CONTATTORE MOTORE VENTILATORE (STELLA)	FAN MOTOR CONTACTOR (STAR)					
(M2.5T	2	CONTATTORE MOTORE VENTILATORE (TRIANGOLO)	FAN MOTOR CONTACTOR (DELTA)					
(M3.1	3	CONTATTORE MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR CONTACTOR					
	2	TEMPORIZZATORE STELLA/TRIANGOLO	STAR/DELTA DELAYED RELAY					
AF	4	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT					
.B	2	LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE	INDICATOR LIGHT FOR BURNER LOCK-OUT					
	3	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT					
.EV1	3	LAMPADA SEGNALAZIONE APERTURA [EV1]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1]					
	3	LAMPADA SEGNALAZIONE APERTURA [EV2]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2]					
.EVG	3	LAMPADA SEGNALAZIONE APERTURA [EVG]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG]					
	3	LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE	INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK					
S	2	LAMPADA SEGNALAZIONE SOSTA BRUCIATORE	INDICATOR LIGHT FOR BURNER STAND-BY					
	3	LAMPADA SEGNALAZIONE BLOCCO CONTROLLO TENUTA VALVOLE	INDICATOR LIGHT FOR LEAKAGE OF VALVES					
.Τ	2	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN OVERLOAD TRIPPED					
	2	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT					
TP	2	LAMPADA SEGNALAZIONE BLOCCO TERMICO POMPA	INDICATOR LIGHT FOR PUMP OVERLOAD TRIPPED					
1P	1	MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR					
1V	1	MOTORE VENTILATORE	FAN MOTOR					
°A	2	PRESSOSTATO ARIA	AIR PRESSURE SWITCH					
	3	PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL)	MAXIMUM PRESSURE GAS SWITCH (OPTIONAL)					
°GMIN	3	PRESSOSTATO GAS DI MINIMA PRESSIONE	MINIMUM GAS PRESSURE SWITCH					
	2	PULSANTE SBLOCCO FIAMMA	LOCK-OUT RESET BUTTON					
SIEMENS LFL1.xx	2	APPARECCHIATURA CONTROLLO FIAMMA	CONTROL BOX					
GQL33.03	4	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER ACTUATOR					
	2	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES					
	2	TRASFORMATORE DI ACCENSIONE						
- AB	4	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES					
Р Р	1	TERMICO MOTORE POMPA	PUMP MOTOR THERMAL					
-V	1	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL					
	3	CONTROLLO DI TENUTA VALVOLE GAS	GAS PROVING SYSTEM					


Data	12/07/2005	PREC.	FOGLIO
Revisione	03	5	6
		SEGUE	TOTALE
Dis. N.	1 – 336	/	6



Data	06/03/2006	PREC.	FOGLIO
Revisione	03	5	6
	4 770	SEGUE	TOTALE
Dis. N.	1 – 339	7	8

0	1	2	3	4	5	6	7	8	9
SIGLA/ITEM	FOGLIO/SHEET	FUNZIONE				FUNCTION			
(STM30/24Q15.51/64	1NLP) 4	SERVOCOMANDO SEF	RANDA ARIA (ALTER	NATIVO)		AIR DAMPER ACTUATOR	R (ALTERNATIVE)		
[SQM40.265A]	4	SERVOCOMANDO SEF	RANDA ARIA (ALTER	NATIVO)		AIR DAMPER ACTUATOR	R (ALTERNATIVE)		
CM	1	COMMUTATORE FUNZ	(IONAMENTO 1)GAS 0)	SPENTO 2)GASOLIO		MANUAL OPERATION SV	WITCH 1)GAS 0)OFF 2)LIGHT OIL	
CMF	5	COMMUT. MANUALE F	UNZ. 0)FERMO 1)ALTA	FIAMMA 2)BASSA FIA	MMA 3)AUTOMATICO	MANUAL SWITCH 0)OFF	1)HIGH FLAME 2)LOV	V FLAME 3)AUTOMATIC	
EV1	3	ELETTROVALVOLA	GAS LATO RETE (O GR	UPPO VALVOLE)		UPSTREAM GAS SOLEN	OID VALVE (OR VAL	VES GROUP)	
EV2	3	ELETTROVALVOLA	IAS LATO BRUCIATOR	E (O GRUPPO VALVOL	E>	DOWNSTREAM GAS SOL	ENOID VALVE (OR V	ALVES GROUP)	
EVG1/2	3	ELETTROVALVOLE G	ASOLIO			LIGHT OIL ELECTRO VAI	_VE		
FC	4	SONDA UV RILEVAZI	one fiamma			UV FLAME DETECTOR			
FU	5	FUSIBILE				FUSE			
FU1	1	FUSIBILI DI LINEA				LINE FUSES			
FU2	1	FUSIBILE DI LINEA				LINE FUSE			
FU3	1	FUSIBILI LINEA POMP	A			PUMP LINE FUSES			
IG	1	INTERRUTTORE GENE	RALE			MAINS SWITCH			
KA1.3	1	RELE' AUSILIARIO				AUXILIARY RELAY			
KA3.8	3	RELE' AUSILIARIO				AUXILIARY RELAY			
KM2.5	2		RE VENTILATORE (LINE			FAN MOTOR CONTACTO			
KM2.5S	2	CONTATTORE MOTOR	RE VENTILATORE (STE	LLA)		FAN MOTOR CONTACTO	R (STAR)		
KM2.5T	2	CONTATTORE MOTOR	RE VENTILATORE (TRI.	ANGOLO)		FAN MOTOR CONTACTO	R (DELTA)		
KM3.1	3	CONTATTORE MOTOR	RE POMPA GASOLIO			LIGHT OIL PUMP MOTOR	CONTACTOR		
KT2.6	2	TEMPORIZZATORE S	TELLA/TRIANGOLO			STAR/DELTA DELAYED	RELAY		
LAF	4	LAMPADA SEGNALA	ZIONE ALTA FIAMMA I	BRUCIATORE		BURNER IN HIGH FLAME	INDICATOR LIGHT		
LB	2		ZIONE BLOCCO BRUCIA			INDICATOR LIGHT FOR B			
LBF	3		ZIONE BASSA FIAMMA			BURNER IN LOW FLAME			
LEV1	3		ZIONE APERTURA [EV			INDICATOR LIGHT FOR C			
LEV2	3		ZIONE APERTURA [EV			INDICATOR LIGHT FOR C		. ,	
LEVG	3		ZIONE APERTURA [EV			INDICATOR LIGHT FOR C			
LPGMIN	3		ZIONE PRESENZA GAS			INDICATOR LIGHT FOR P		THE NETWORK	
LS	2		ZIONE SOSTA BRUCIA		-	INDICATOR LIGHT FOR E		-	
LSPG	3			OLLO TENUTA VALVO		INDICATOR LIGHT FOR L			
LT	2			O MOTORE VENTILATO	DRE	INDICATOR LIGHT FOR F		PED	
LTA	2		ZIONE TRASFORMATO			IGNITION TRANSFORMER			
LTP	2	LAMPADA SEGNALA	ZIONE BLOCCO TERMIC	0 POMPA		INDICATOR LIGHT FOR P	PUMP OVERLOAD TRI	PPED	

Data	06/03/2006	PREC.	FOGLIO
Revisione	03	6	7
	4 770	SEGUE	TOTALE
Dis. N.	1 – 339	8	8

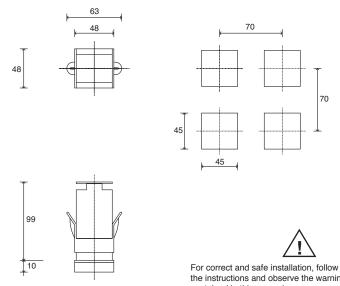
0	1	2	3	4	5	6	7	8	9		
SIGLA/ITEM	FOGLIO/SHEET	FUNZIONE				FUNCTION					
MP	1	MOTORE POMPA GAS	SOLIO			LIGHT OIL PUMP MOTOR					
MV	1	MOTORE VENTILATO	RE			FAN MOTOR					
PA	2	PRESSOSTATO ARIA	1			AIR PRESSURE SWITCH					
PGMAX	3	PRESSOSTATO GAS	DI MASSIMA PRESSIO	NE (OPTIONAL)		MAXIMUM PRESSURE GA	S SWITCH (OPTIONAL	}			
PGMIN	3	PRESSOSTATO GAS	DI MINIMA PRESSIONE			MINIMUM GAS PRESSURI	E SWITCH				
PS	2	PULSANTE SBLOCCO	FIAMMA			LOCK-OUT RESET BUTT	ON				
PT100	5	5 SONDA DI TEMPERATURA					TEMPERATURE PROBE				
SD-PRESS	5	5 SONDA DI PRESSIONE					PRESSURE PROBE				
SD-TEMP.	5	SONDA DI TEMPERA	TURA			TEMPERATURE PROBE					
SD - 0÷10V	5	TRASDUTTORE USCI	TA IN CORRENTE			TRANSDUCER CURRENT OUTPUT					
SD - 4÷20mA	5	TRASDUTTORE USCI	TA IN CORRENTE			TRANSDUCER CURRENT OUTPUT					
SIEMENS LFL1.xx	2	APPARECCHIATURA	CONTROLLO FIAMMA			CONTROL BOX					
SIEMENS RWF40.0×) 5	REGOLATORE MODUL	ANTE			BURNER MODULATOR					
SQL33.03	4	SERVOCOMANDO SE	RRANDA ARIA			AIR DAMPER ACTUATOR	2				
ST	2	SERIE TERMOSTATI/	PRESSOSTATI			SERIES OF THERMOSTA	TS OR PRESSURE SWI	TCHES			
ΤA	2	TRASFORMATORE D	I ACCENSIONE			IGNITION TRANSFORMER					
TC	5	5 TERMOCOPPIA				THERMOCOUPLE					
TP	1	1 TERMICO MOTORE POMPA					PUMP MOTOR THERMAL				
ΤV	1	1 TERMICO MOTORE VENTILATORE					FAN MOTOR THERMAL				
VPS50x	3	CONTROLLO DI TENU	TA VALVOLE GAS			GAS PROVING SYSTEM					

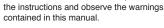
Data	06/03/2006	PREC.	FOGLIO
Revisione	Revisione 03		8
		SEGUE	TOTALE
Dis. N. 1	1 – 339	/	8

C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

CIB UNIGAS 600V

CONTROLLER


USER'S MANUAL


COD. M12925CA Rel 1.2 08/2014

SOFTWARE VERSION 1.0x T73 code 80379 / Edition 01 - 06/2012

1 · INSTALLATION

· Dimensions and cut-out; panel mounting

70

Panel mounting:

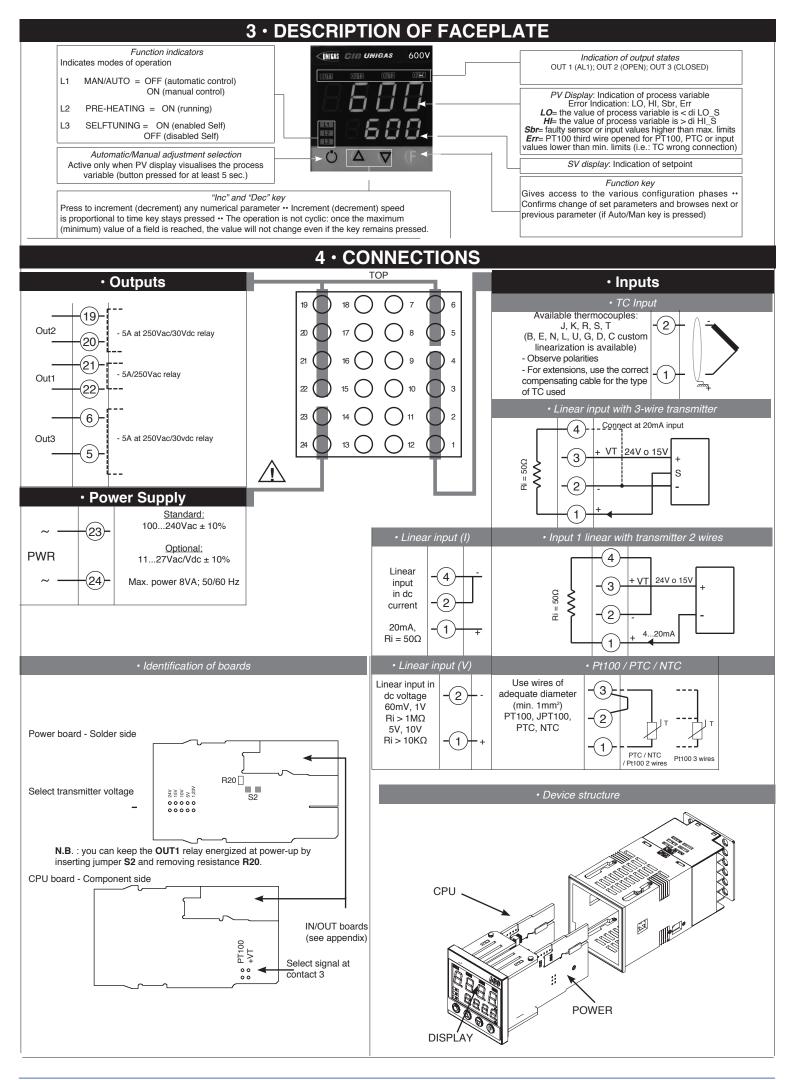
To fix the unit, insert the brackets provided into the seats on either side of the case. To mount two or more units side by side, respect the cut-out dimensions shown in the drawing.

CE MARKING: The instrument conforms to the European Directives 2004/108/CE and 2006/95/CE with reference to the generic standards: EN 61000-6-2 (immunity in industrial environment) EN 61000-6-3 (emission in residential environment) EN 61010-1 (safety).

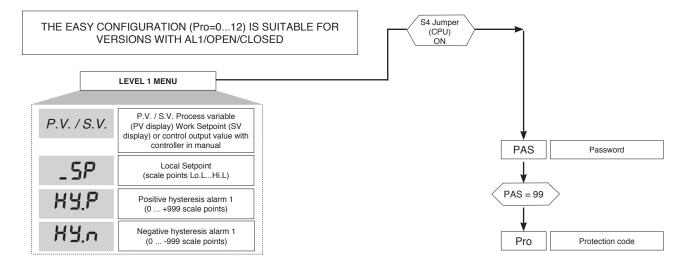
MAINTENANCE: Repairs must be done only by trained and specialized personnel.

Cut power to the device before accessing internal parts.

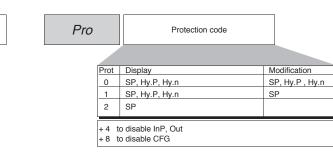
Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene, etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.


SERVICE: GEFRAN has a service department. The warranty excludes defects caused by any use not conforming to these instructions.

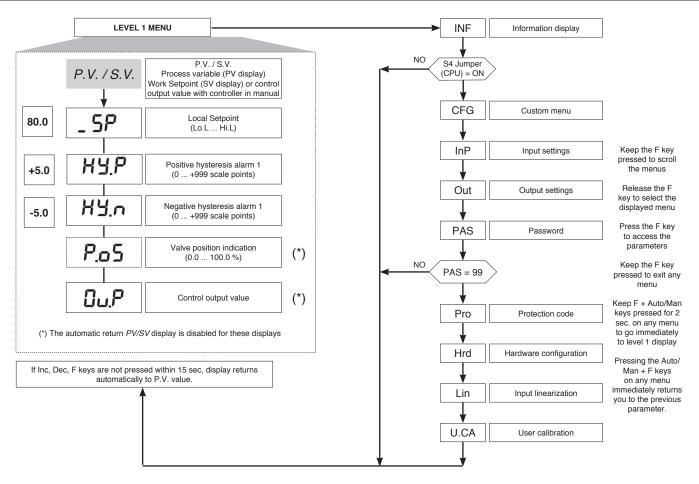
EMC conformity has been tested with the following connections


CABLE TYPE	LENGTH
1 mm ²	1 m
1 mm ²	3,5 m
0,8 mm ² compensated	5 m
1 mm ²	3 m
	1 mm ² 1 mm ² 0,8 mm ² compensated

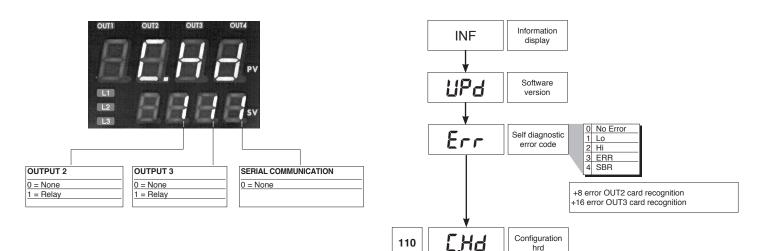
2 · TECHNICAL SPECIFICATIONS


Display	2x4 digit green, high display 10 and 7mm
Keys	4 of mechanical type (Man/Aut, INC, DEC, F)
Accuracy	0.2% f.s. ±1 digit ambient temperature 25°C
Main input (settable digital filter)	TC, RTD, PTC, NTC 60mV,1V Ri≥1MΩ; 5V,10V Ri≥10KΩ; 20mA Ri=50Ω Tempo di campionamento 120 msec.
Type TC Thermocouples (ITS90)	Type TC Thermocouples : J,K,R,S,T (IEC 584-1, CEI EN 60584-1, 60584-2) ; custom linearization is available / types B,E,N,L GOST,U,G,D,C are available by using the custom linearization.
Cold junction error	0,1° / °C
RTD type (scale configurable within indicated range, with or without decimal point) (ITS90)	DIN 43760 (Pt100), JPT100 20Ω
Max line resistance for RTD PTC type / NTC Type	990Ω, 25°C / 1KΩ, 25°C
Safety	detection of short-circuit or opening of probes, LBA alarm
°C / °F selection	configurable from faceplate
Linear scale ranges	-1999 to 9999 with configurable decimal point position
Controls	PID, Self-tuning, on-off
pb - dt - it	0,0999,9 % - 0,0099,99 min - 0,0099,99 min
Action	Heat / Cool
Control outputs	on / off
Maximum power limit heat / cool	0,0100,0 %
Cycle time	0200 sec
Main output type	relay, logic, continuous (010V Rload \ge 250K Ω , 0/420mA Rload \le 500 Ω)
Softstart	0,0500,0 min
Fault power setting	-100,0100,0 %
Automatic blanking	Displays PV value, optional exclusion
Configurable alarms	Up to 3 alarm functions assignable to an output, configurable as: maximum, minimum, symmetrical, absolute/deviation, LBA
Alarm masking	 exclusion during warm up latching reset from faceplate or external contact
Type of relay contact	NO (NC), 5A, 250V/30Vdc cosφ=1
Logic output for static relays	24V ±10% (10V min at 20mA)
Transmitter power supply	15/24Vdc, max 30mA short-circuit protection
Power supply (switching type)	(std) 100 240Vac ±10% (opt.) 1127Vac/dc ±10%; 50/60Hz, 8VA max
Faceplate protection	IP65
Working / Storage temperature range	050°C / -2070°C
Relative humidity	20 85% non-condensing
Environmental conditions of use	for internal use only, altitude up to 2000m
Installation	Panel, plug-in from front
Weight	160g for the complete version

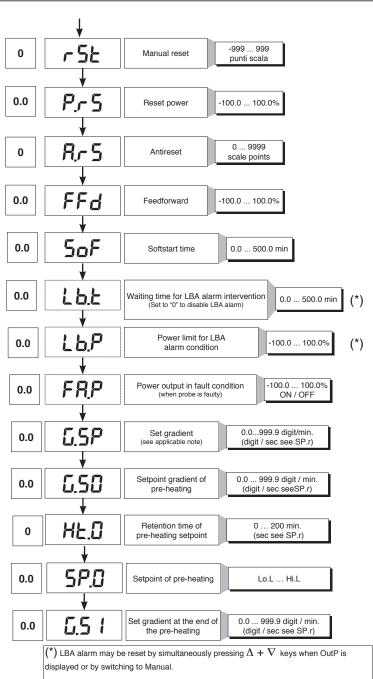
5 • "EASY" PROGRAMMING and CONFIGURATION

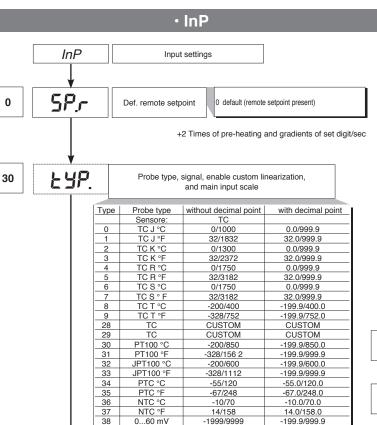


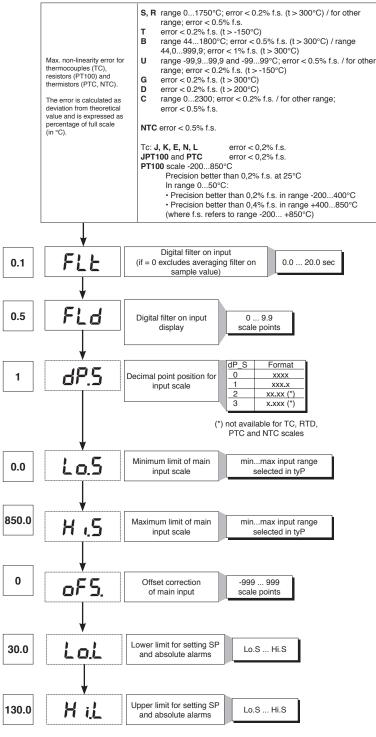
• Prot


12

6 • PROGRAMMING and CONFIGURATION


N.B.: Once a particular configuration is entered, all unnecessary parameters are no longer displayed


InFo Display



• CFG

	CFG	Control parameters				
						0.0.1
		Enabling	S.tun	Continuous autotuning	Sel-ftuning	Softstart
0	5.50	self-tuning,	0	NO	NO	NO
		autotuning,	1	YES	NO	NO
		softstart	2	NO	YES	NO
			3	YES	YES	NO
			4	NO	NO	YES
			5	YES	NO	YES
			6	-	-	-
			7			-
			S.tun	Autotuning	Selftuning	Softstart
				one shot		
			8*	WAIT	NO	NO
			9	GO	NO	NO
			10*	WAIT	YES	NO
			11	GO	YES	NO
			12*	WAIT	NO	YES
			13	GO	NO	YES
		*) +16 with passa +32 with passa +64 with passa +128 with passa	age auto age auto	omatic rifle in 0 omatic rifle in 0	GO if PV-SP	> 0,5% > 1% > 2% > 4%
1.2	h.₽b ↓	Proportional I heating or hys regulation O	teresis i		9.9% f.s.	
5.83	<u> </u>	Integral time fo	or heatin	g 0.00 s	99.99 min	
1.33	h.db	Derivative ti heatin		0.00 9	99.99 min	
				_		
100.0	hPH	Maximum pow heatin		or 0.0	100.0%	
0.0	hPL	Minimum pov for heati (not available for o cool actio	i ng double he	0.0	100.0%	
	¥			Y		

For custom linearization:

0...60 mV

12...60 mV

12...60 mV

0...20 mA 0...20 mA

4...20 mA

4...20 mA

0...10 V

0...10 V

2...10 V

2...10 V 0...5 V

0...5 V 1...5 V 1...5 V

0...1 V

0...1 V

200mv..1V

200mv..1V Cust10 V-20mA

Cust10 V-20mA

Cust 60mV

Cust 60mV

PT100-JPT

PTC

NTC

39

40

41

42

43

44

45

46

47

48

49

50

51 52

53

54

55

56

57

58

59

60

61

62 63

64

- LO signal is generated with variable below Lo.S or at minimum calibration value

Custom scale

-1999/9999

Custom scale

CUSTOM

CUSTOM

CUSTOM

Custom scale

-199.9/999.9

Custom scale

-199.9/999.9 Custom scale

-199.9/999.9

Custom scale

-199.9/999.9

Custom scale

-199.9/999.9

Custom scale

-199.9/999.9

Custom scale -199.9/999.9

Custom scale

-199.9/999.9

Custom scale

-199.9/999.9

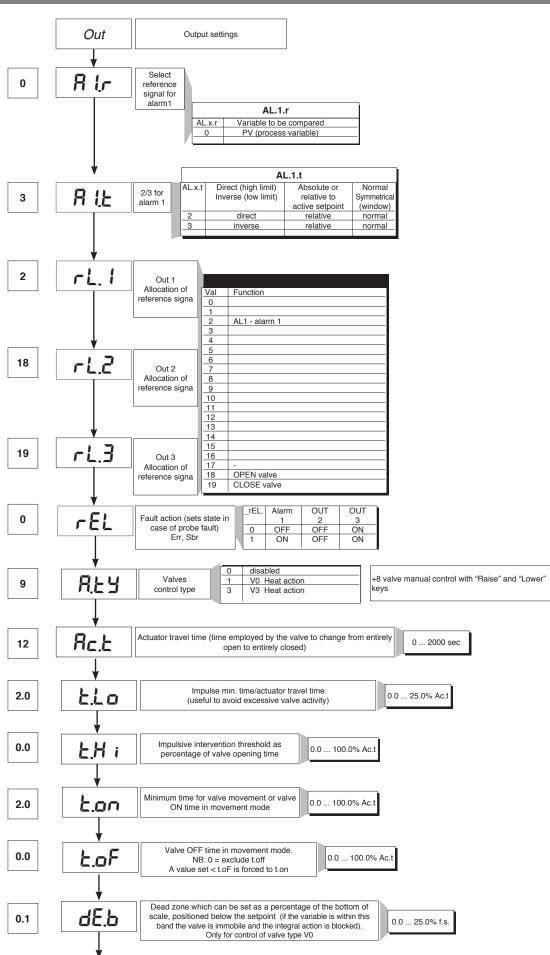
Custom scale

-199.9/999.9

Custom scale

-199.9/999.9

Custom scale


CUSTOM

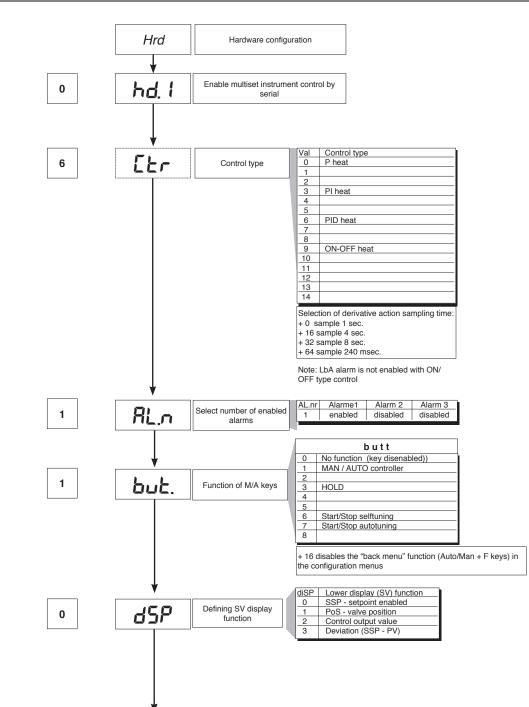
CUSTOM

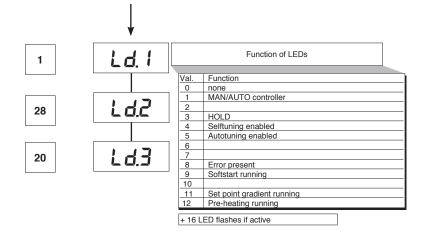
CUSTOM

- HI signal is generated with variable above Lo.S or at maximum calibration value

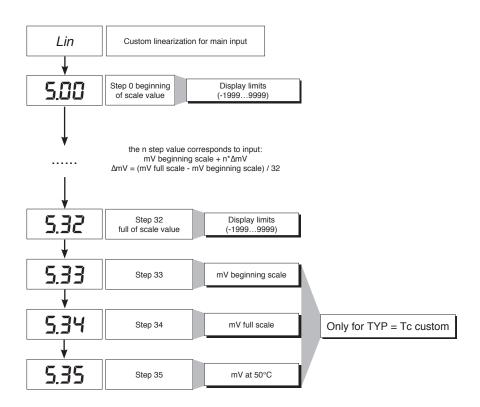
• Out

• Prot

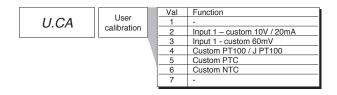

12

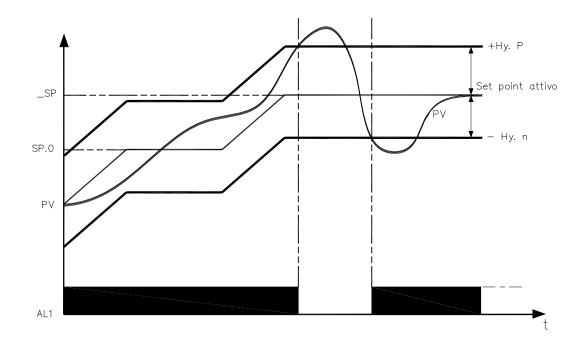

Pro Protection code Prot Display Modification SP, Hy.P, Hy.n, AL.2, AL.3, PoS, OuP, INF SP, Hy.P , Hy.n, AL.2, AL.3, PoS 0 1 SP, Hy.P, Hy.n, AL.2, AL.3, PoS, OuP, INF SP 2 SP, OuP, INF + 4 to disable InP, Out + 8 to disable CFG + 8 to disable CrG + 16 to disable SW "power-up - power down" + 32 disable manual power latching + 64 to disable manual power modification

+128 enables full configuration


Note: OuP and INF only display configuration extended

• Hrd




• Lin

• U.CAL

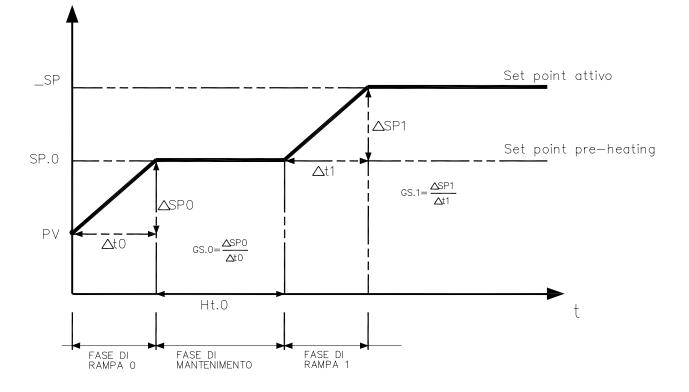
7 · CONSENT FOR BURNER AL1

Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n

8 • PRE-HEATING FUNCTION

Enable the pre-heating function by setting parameters GS.0, Ht.0, GS.1 other than zero.

It consists of three phases that are activated sequentially at firing:

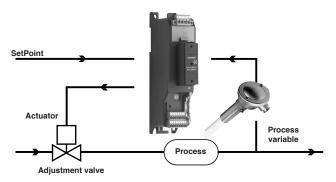

- Ramp 0 phase

Enabled by setting GS.0 > 0. Starting from setpoint = PV (initial state), it reaches pre-heating set SP.0 with gradient GS.0 - Maintenance phase

- Enabled by setting Ht.0 > 0. Maintains pre-heating setpoint SP.0 for time Ht.0
- Ramp 1 phase

Enabled by setting GS.1 > 0. Starting from pre-heating setpoint SP.0, it reaches active _SP set with gradient GS.1

In case of selftuning, the pre-heating function is not activated


9 · ADJUSTMENT WITH MOTORIZED VALVE

In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller.

For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it.

The adjustment valves vary the delivery in a modulated manner, producing finite variations in the fluid passage inner area corresponding to finite variations of the actuator input signal, coming from the controller. The servomechanism, for example, comprises an electric motor, a reducer and a mechanical transmission system which actions the valve.

Various auxiliary components can be present such as the mechanical and electrical safety end travels, manual actioning systems.

CONTROL EXAMPLE FOR V0 VALVE

The controller determines, on the basis of the dynamics of the process, the control output for the valve corresponding to the opening of the same in such a way so as to maintain the desired value of the process variable.

Characteristic parameters for valves control

- Actuator time (Ac.t) is the time employed by the valve to pass from entirely open to entirely closed (or vice-versa), and can be set with a resolution of one second. It is a mechanical feature of the valve+actuator unit.

NOTE: if the actuator's travel is mechanically limited it is necessary to proportionally reduce the Ac.t value.

- Minimum impulse (t.Lo) expressed as a % of the actuator time (resolution 0.1%).

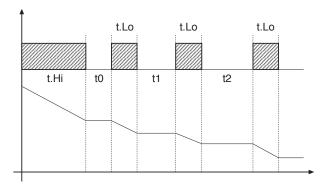
Represents the minimum change in position corresponding to a minimum change in power supplied by the instrument below which the actuator will not physically respond to the command.

This represents the minimum variation in position due to which the actuator does not physically respond to the command.

The minimum duration of the movement can be set in t.Lo, expressed as a % of actuator time.

- Impulsive intervention threshold (t.Hi) expressed as a % of the actuator time (resolution 0.1%) represents the position displacement (requested position – real position) due to which the manoeuvre request becomes impulsive.

You can choose between 2 types of control:


1) ON time of movement = t.on and OFF time proportional to shift and greater than or equal to t.Lo (we recommend setting t.on = t.Lo) (set t.oF = 0).

2) ON time of movement = t.on and OFF time = t.oF. A value set for t.oF < t.on is forced to t.on. To activate this type, set t.oF <> 0.

The type of movement approach allows fine control of the reverse drive valve (from potentiometer or not), especially useful in cases of high mechanical inertia. Set t.Hi = 0 to exclude modulation in positioning.

This type of modulated approach allows precise control of the feedback actioned valve, by a potentiometer or not, and is especially useful in cases of high mechanical inertia. Setting t.Hi = 0 excludes modulation in positioning.

- Dead zone(dE.b) is a displacement band between the adjustment setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF). It is expressed as a percentage of the bottom scale and is positioned below the setpoint. The dead zone is useful in an operative process to avoid straining the actuator with repeated commands and an insignificant effect on the adjustment. Setting dE.b = 0 the dead zone is excluded.

Graph of behavior inside the band with integral time $\neq 0$.

With integral time = 0, movement ON time is always equal to OFF time.

t0 = t.Lo

Valve control modes

With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats.

V0 - for floating valve without potentiometer

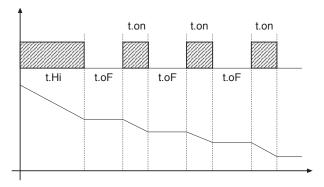
Model V0 have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays; every action updates the presumed position of the virtual potentiometer calculated on the basis of the actuator travel declared time. In this way there is always a presumed position of the valve which is compared with the position request of the controller.

Having reached a presumed extreme position (entirely open or entirely closed determined by the "virtual potentiometer") the controller provides a command in the same direction, in this way ensuring the real extreme position is reached (minimum command time = t.on).

The actuators are usually protected against the OPEN command in the entirely open position or CLOSE command in the entirely closed position.

V3 - for floating valve, PI control

When the difference between the position calculated by the controller and the only proportional component exceeds the value corresponding to the minimum impulse t.Lo the controller provides an OPEN or CLOSE command of the duration of the minimum impulse itself t.Lo. At each delivery the integral component of the command is set to zero (discharge of the integral).


The frequency and duration of the impulses is correlated to the integral time (h.it or c.it).

Non-movement behavior

t.Hi = 0: with power = 100% or 0.0%, the corresponding open or close outputs always remain enabled (safety status).

Movement behavior

t.Hi <> 0: with position attained corresponding to 100% or 0.0%, the corresponding open or close outputs are switched off.

If t.oF = 0, current function is maintained.

If t.oF \neq 0 movement mode will be as shown on the graph

10 · CONTROL ACTIONS

Proportional Action:

action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint). *Derivative Action*:

action in which contribution to output is proportional to rate of variation input deviation. Integral Action:

Integral Action.

action in which contribution to output is proportional to integral of time of input deviation.

Influence of Proportional, Derivative and Integral actions on response of process under control

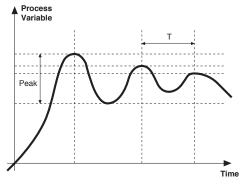
* An increase in P.B. reduces oscillations but increases deviation.

* A reduction in P.B. reduces the deviation but provokes oscillations of the controlled variable (the system tends to be unstable if P.B. value is too low).

* An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation and prevents oscillation up to a critical value of Derivative Time, beyond which deviation increases and prolonged oscillations occur.

* An increase in Integral Action corresponds to a reduction in Integral Time, and tends to eliminate deviation between the controlled variable and the setpoint when the system is running at rated speed.

If the Integral Time value is too long (Weak integral action), deviation between the controlled variable and the setpoint may persist.


Contact GEFRAN for more information on control actions.

11 • MANUAL TUNING

A) Enter the setpoint at its working value.

B) Set the proportional band at 0.1% (with on-off type setting).

C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure:

D) The PID parameters are calculated s follows: Proportional band

Peak P.B.= ----- x 100 (V max - V min)

(V max - V min) is the scale range.

Integral time: It = 1.5 x T

Derivative time: dt = It/4

E) Switch the unit to manual, set the calculated parameters. Return to PID action by setting the appropriate relay output cycle time, and switch back to Automatic. F) If possible, to optimize parameters, change the setpoint and check temporary response. If an oscillation persists, increase the proportional band. If the response is too slow, reduce

it.

12 · SET GRADIENT

SET GRADIENT: if set to ≠0, the setpoint is assumed equal to PV at power-on and auto/man switchover. With gradient set, it reaches the local setpoint. Every variation in setpoint is subject to a gradient.

The set gradient is inhibited at power-on when self-tuning is engaged.

If the set gradient is set to $\neq 0$, it is active even with variations of the local setpoint.

The control setpoint reaches the set value at the speed defined by the gradient.

13 · SOFTWARE ON / OFF SWITCHING FUNCTION

How to switch the unit OFF: hold down the "F" and "Raise" keys simultaneously for 5 seconds to deactivate the unit, which will go to the OFF state while keeping the line supply connected and keeping the process value displayed. The SV display is OFF.

All outputs (alarms and controls) are OFF (logic level 0, relays de-energized) and all unit functions are disabled except the switch-on function and digital communication.

How to switch the unit ON: hold down the "F" key for 5 seconds and the unit will switch OFF to ON. If there is a power failure during the OFF state, the unit will remain in OFF state at the next power-up (ON/OFF state is memorized).

The function is normally enabled, but can be disabled by setting the parameter Prot = Prot +16.

14 · SELF-TUNING

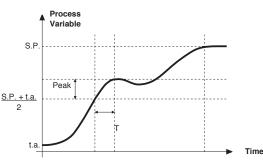
The function works for single output systems (heating or cooling). The self-tuning action calculates optimum control parameter values during process startup. The variable (for example, temperature) must be that assumed at zero power (room temperature).

The controller supplies maximum power until an intermediate value between starting value and setpoint is reached, after which it zeros power.

PID parameters are calculated by measuring overshoot and the time needed to reach peak. When calculations are finished, the system disables automatically and the control proceeds until the setpoint is reached.

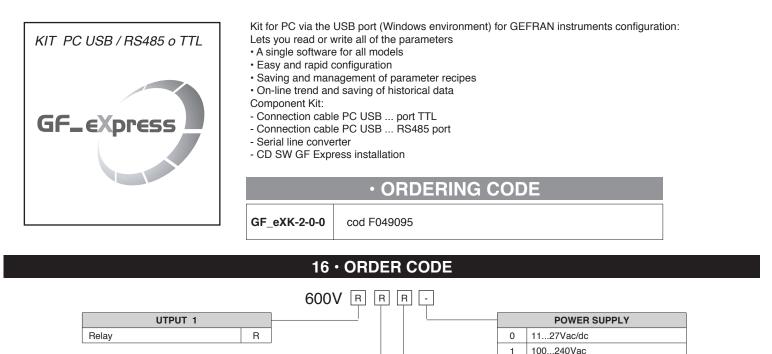
How to activate self-tuning:

- A. Activation at power-on
- 1. Set the setpoint to the required value
- 2. Enable selftuning by setting the Stun parameter to 2 (CFG menu)
- 3. Turn off the instrument
- 4. Make sure the temperature is near room temperature
- 5. Turn on the instrument again
- B. Activation from keyboard
- 1. Make sure that key M/A is enabled for Start/Stop selftuning (code but = 6 Hrd menu)
- 2. Bring the temperature near room temperature
- 3. Set the setpoint to the required value
- 4. Press key M/A to activate selftuning (Attention: selftuning interrupts if the key is pressed again)


The procedure runs automatically until finished, when the new PID parameters are stored: proportional band, integral and derivative times calculated for the active action (heating or cooling). In case of double action (heating or cooling), parameters for the opposite action are calculated by maintaining the initial ratio between parameters (ex.: CPb = HPb * K; where K = CPb / HPb when self-tuning starts). When finished, the Stun code is automatically cancelled.

Notes :

-The procedure does not start if the temperature is higher than the setpoint (heating control mode) or if the temperature is lower than the setpoint (cooling control mode). In this case, the Stu code is not cancelled.


-It is advisable to eneable one of the configurable LEDs to signal selftuning status.By setting one of parameters

LED1, LED2, LED3=4 or 20 on the Hrd menu, the respective LED will be on or flashing when selftuning is active.

15 · ACCESSORIES

Interface for instrument configuration

• WARNINGS

WARNING: this symbol indicates danger. It is placed near the power supply circuit and near high-voltage relay contacts.

Read the following warnings before installing, connecting or using the device:

UTPUT 2

UTPUT 3

· follow instructions precisely when connecting the device.

Relay

Relav

· always use cables that are suitable for the voltage and current levels indicated in the technical specifications.

R

R

• the device has no ON/OFF switch: it switches on immediately when power is turned on. For safety reasons, devices permanently connected to the power supply require a twophase disconnecting switch with proper marking. Such switch must be located near the device and must be easily reachable by the user. A single switch can control several units.

• if the device is connected to electrically NON-ISOLATED equipment (e.g. thermocouples), a grounding wire must be applied to assure that this connection is not made directly through the machine structure.

• if the device is used in applications where there is risk of injury to persons and/or damage to machines or materials, it MUST be used with auxiliary alarm units. You should be able to check the correct operation of such units during normal operation of the device.

• before using the device, the user must check that all device parameters are correctly set in order to avoid injury to persons and/or damage to property.

• the device must NOT be used in infiammable or explosive environments. It may be connected to units operating in such environments only by means of suitable interfaces in conformity to local safety regulations.

• the device contains components that are sensitive to static electrical discharges. Therefore, take appropriate precautions when handling electronic circuit boards in order to prevent permanent damage to these components.

Installation: installation category II, pollution level 2, double isolation

The equipment is intended for permanent indoor installations within their own enclosure or panel mounted enclosing the rear housing and exposed terminals on the back.

• only for low power supply: supply from Class 2 or low voltage limited energy source

• power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label.

• install the instrumentation separately from the relays and power switching devices

• do not install high-power remote switches, contactors, relays, thyristor power units (particularly if "phase angle" type), motors, etc... in the same cabinet.

· avoid dust, humidity, corrosive gases and heat sources.

· do not close the ventilation holes; working temperature must be in the range of 0...50°C.

surrounding air: 50°C

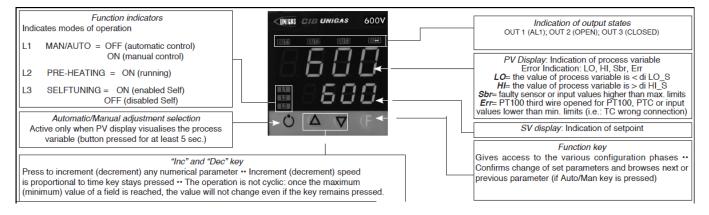
• use 60/75°C copper (Cu) conductor only, wire size range 2x No 22 - 14AWG, Solid/Stranded

• use terminal tightening torque 0.5N m

If the device has faston terminals, they must be protected and isolated; if the device has screw terminals, wires should be attached at least in pairs.

• Power: supplied from a disconnecting switch with fuse for the device section; path of wires from switch to devices should be as straight as possible; the same supply should not be used to power relays, contactors, solenoid valves, etc.; if the voltage waveform is strongly distorted by thyristor switching units or by electric motors, it is recommended that an isolation transformer be used only for the devices, connecting the screen to ground; it is important for the electrical system to have a good ground connection; voltage between neutral and ground must not exceed 1V and resistance must be less than 60hm; if the supply voltage is highly variable, use a voltage stabilizer for the device; use line filters in the vicinity of high frequency generators or arc welders; power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label.

• Input and output connections: external connected circuits must have double insulation; to connect analog inputs (TC, RTD) you have to: physically separate input wiring from power supply wiring, from output wiring, and from power connections; use twisted and screened cables, with screen connected to ground at only one point; to connect adjustment and alarm outputs (contactors, solenoid valves, motors, fans, etc.), install RC groups (resistor and capacitor in series) in parallel with inductive loads that work in AC (*Note: all capacitors must conform to VDE standards (class x2) and support at least 220 VAC. Resistors must be at least 2W*); fit a 1N4007 diode in parallel with the coil of inductive loads that operate in DC.


GEFRAN spa will not be held liable for any injury to persons and/or damage to property deriving from tampering, from any incorrect or erroneous use, or from any use not conforming to the device specifications.

Set-up for 600V RRR0-1-T73 regulator

Set up for temperature probe Pt100 (ex Siemens QAE2120 130°C max.)

The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x

Verify wiring of the sensor

Regulation of the set-point = 80It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters:

Hy.P	5 (hysteresis positive for output 1, terminals 21-22 (ex Q13-Q14)
Hy.n	-5 hysteresis negative for output ,1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG		
S.tun hPb hlt hdt	0	
hPb	1,2	
hlt	5,83	
hdt	1,33	

InP		
tyP	30 (Pt100)	
dP_S	1 (decimals num.)	
Lo.S	0 (min. sensor scale)	
Hi.S	850,0 (max sensor scale)	
oFS	0 (offset of input correction)	
Lo.L	30,0 (lower set-point range limit)	
Hi.L	130,0 (upper set-point range limit)	

Out	
A1.r	0
A1.t	3 (operating mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
CtrL	6 (PID warm)
AL.nr	1
but	1
diSP	0
Ld.1	1
Ld.2	28
Ld.3	20

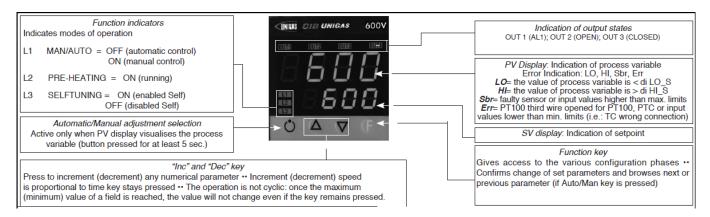
Keep pushed F until you visualize **PASS**, release F and through the arrows set **99**, push F and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep F pushed until you come back to set-point value.

Manual operation :

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on).

Through the arrows, "Open" and "Close" outputs are activated.


To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off :

By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec.

Set up for temperature probe Pt100 for high temperature (350°C max.)

Verify wiring of the sensor

Regulation of the set-point = 80

It can be modified by using arrows "up" and "down".

By pushing F you go to parameters	
Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG S.tun hPb hIt	
S.tun	0
hPb	1,2
hlt	5,83
hdt	1,33

InP		
tyP	30 (Pt100)	
dP_S	1 (decimals num.)	
Lo.S	0 (min. sensor scale)	
Hi.S	850,0 (max sensor scale)	
oFS	0 (offset of input correction)	
Lo.L	0,0 (lower set-point range limit)	
Hi.L	350,0 (upper set-point range limit)	

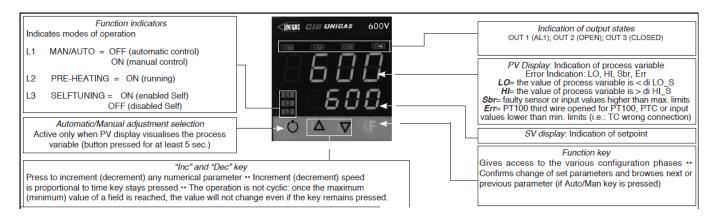
Out	
A1.r	0
A1.t	3 (mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
CtrL	6 (PID warm)
AL.nr	1
but	1
diSP	0
Ld.1	1
Ld.2	28
Ld.3	20

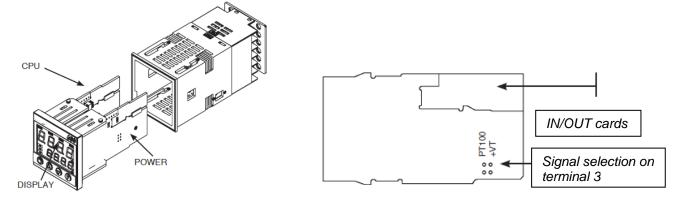
Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec.


The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated.

To come back to normal working keep the lower left key pushed for at least 5 sec.


Software switch off :

By keeping pushed keys Arrow up + F for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec.

Set up for pressure transmitter 2 wires signal 4+20mA

With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt

Verify wiring of the sensor

Impostazione set-point

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Set-point	1bar	1,5bar	6bar	6bar	6bar	6bar

To modify it directly use "up" and "down" arrows.

By pushing F you go to parameter.						
Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Hy.P	0,2bar	0,5bar	0,5bar	0,8bar	1,25bar	2bar
Hy.n	0bar	0bar	0bar	0bar	0bar	0bar

Keep pushing **F** until you see **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) default is **12**, through the arrows set **128** and push **F**, keep it pushed until all parameters **InF**, **CFG**, **InP**, **Out**, **PASS** are visualized.

CFG S.tun	
S.tun	0
hPb	5
hPb hIt hdt	1,33
hdt	0,33

InP		
tyP	44 (4÷20mA)	
dP_S	2 (decimals num.)	

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar	
Lo.S	0,00	0,00	0,00	0,00	0,00	0,00	min. sensor scale
Hi.S	1,60	3,00	10,00	16,00	25,00	40,00	max sensor scale
oFS	0	0	0	0	0	0	offset of input correction
Lo.L	0,00	0,00	0,00	0,00	0,00	0,00	lower set-point setting
Hi.L	1,60	3,00	10,00	16,00	25,00	40,00	upper set-point setting

Out	
A1.r	0
A1.t	3 (mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

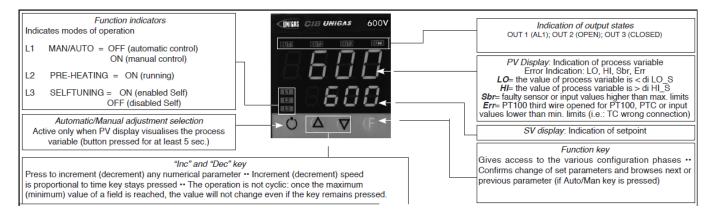
PAS	99 then push and keep pushed F until visualization of Hrd		
Hrd			
CtrL	6 (PID warm)		
AL.nr	1		
but	1		
diSP	0		
Ld.1	1		
Ld.2	28		
Ld.3	20		

Keep pushed F until you visualize **PASS**, release F and through the arrows set **99**, push F and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep F pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on).


Through the arrows, "Open" and "Close" outputs are activated.

To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off :

By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec.

Verify wiring of the sensor

Regulation of the set-point = 80

It can be modified by using arrows "up" and "down".

By pushing F you go to parameters:	
Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	
S.tun hPb	0
hPb	1,2
hlt	5,83
hdt	1,33

InP	
tyP	2 (thermocouple K 0÷1300°C) / 0 (thermocouple J 0÷1000°C)
dP_S Lo.S	0 (no decimal) / 1 (1 decimal)
Lo.S	0 (min. sensor scale)
Hi.S	1300 (max sensor scale for tc K) / 1000 (max sensor scale for tc J)
oFS	0 (offset of input correction)
Lo.L	0 (lower set-point range limit)
Hi.L	1300 (upper set-point range limit) per tc K / 1000 for tc J

Out	
A1.r	0
A1.t	3 (mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
CtrL	6 (PID warm)
AL.nr	1
but	1
diSP	0
Ld.1	1
Ld.2	28
Ld.3	20

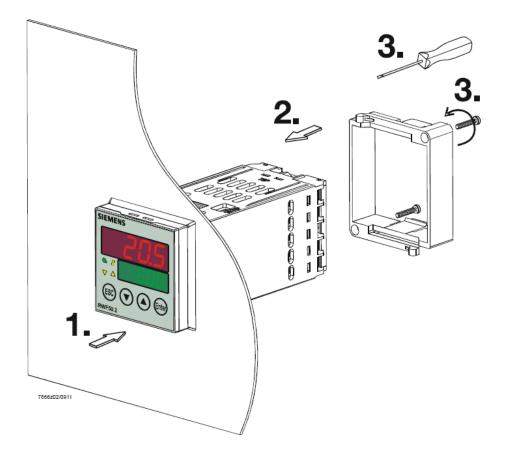
Keep pushed F until you visualize **PASS**, release F and through the arrows set **99**, push F and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep F pushed until you come back to set-point value.

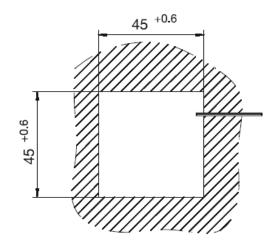
Manual operation:

Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec.

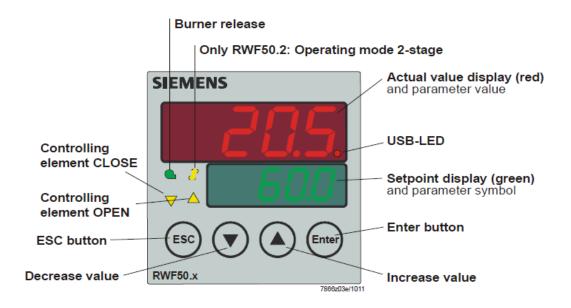
Software switch off :

By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec.

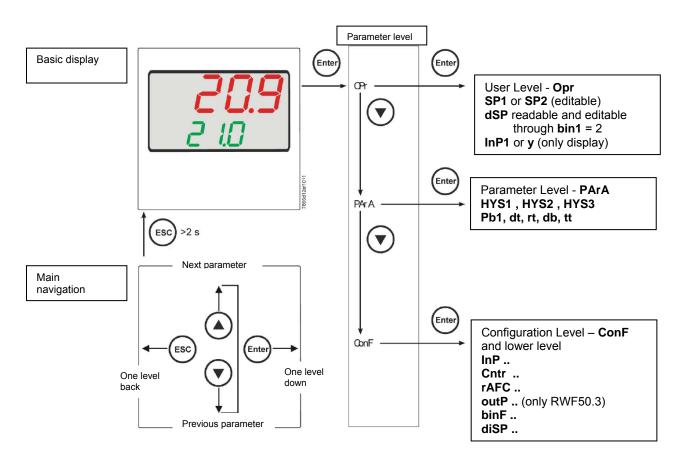

RWF50.2x & RWF50.3x



User manual


M12922CB Rel.1.0 07/2012

DEVICE INSTALLATION Install the device using the relevant tools as shown in the figure. To wire the device and sensors, follow the instructions on the burner wiring diagram.



FRONT PANEL

NAVIGATION MENU

RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow:

Set-point: set or modification:

When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the **Enter** button: on the lower display (green) **Opr** appears; push **Enter** again and in the same display **SP1** appears. Push **Enter** again and the lower display (green **SP1**) flashes. Using the **up and down arrows** change the set-point on the upper display (red).Push **Enter** to confirm and push **ESC** more times to get the home position.

PID parameters set and modifications (see table below):

- Push Enter button, on the green display **Opr** appears; using the **down arrow**, scroll until group **PArA** is reached and push Enter.
- on the green display Pb1 e appears and on the red one the set parameter.
- Push is sequence the down or up arrow the menu is scrolled.
- Push Enter to select and the arrows to choose the desired value. Enter to confirm.

Parameter	Display	Range	Factory setting	Remarks
Proportional band	PB.1	1 9999 digit	10	Typical value for temperature
Derivative action	dt	0 9999 sec.	80	Typical value for temperature
Integral action	rt	0 9999 sec.	350	Typical value for temperature
Dead band (*)	db	0 999,9 digit	1	Typical value
Servocontrol running time	tt	10 3000 sec.	15	Set servocontrol running time
Switch-on differential (*)	HYS1	0,01999 digit	-5	Value under setpoint below which the burner switches back on (1N-1P closes)
Switch-off differential 2° stage (*)	HYS2	0,0 HYS3	3	(enable only with parameter bin1 = 4)
Upper switch-off differential (*)	HYS3	0,0… 9999 digit	5	Value over setpoint above which the burner switches off (1N-1P opens)
Switch-on differential on cooling controller (*)	HYS4	0,0 9999 digit	5	Do not used (enable only with parameter CACt = 0)
Switch-off differential 2° stage on cooling controller (*)	HYS5	HYS60,0 digit	5	Do not used (enable only with parameters CACt = 0 and bin1 = 4)
Upper switch-off differential on cooling controller (*)	HYS6	0,01999 digit	5	Do not used (enable only with parameter CACt = 0)
Delay modulation	q	0,0 999,9 digit	0	Do not alter

(*)Parameters affected by setting of decimal place (**ConF > dISP** parameter **dECP**)

Setting the kind of sensor to be connected to the device:

- push the Enter button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **ConF.** Push Enter to confirm.
- Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm.
- You are inside InP1; the green display shows Sen1 (sensor type), while the red display shows the chosen sensor code
- Push Enter to enter the Sen1 parameter, then choose the desired sensor using the arrows. Push Enter to confirm and ESC to escape.
- Once selected the sensor, you can modify all the other parameters using **up and down arrows** according to the tables here below.

Parameter	Value	Description
SEn1	1	Pt100 3 fili
type of sensor for	2	Pt100 2 fili
analog input 1	3	Pt1000 3 fili
	4	Pt1000 2 fili
	5	Ni1000 3 fili
	6	Ni1000 2 fili
	7	0 ÷ 135 ohm
	15	0 ÷ 20mA
	16	4 ÷ 20mA
	17	0 ÷ 10V
	18	0 ÷ 5V
	19	1 ÷ 5V
OFF1		Using the measured value correction (offset), a measured
sensor offset	-1999 0 +9999	value can be corrected to a certain degree, either up or down
SCL1		In the case of a measuring transducer with standard signal, the
scale low level		physical signal is assigned a display value here
	-1999 0 +9999	(for input ohm, mA, V)
SCH1		In the case of a measuring transducer with standard signal, the
scale high level		physical signal is assigned a display value here
	-1999 100 +9999	(for input ohm, mA, V)
dF1		Is used to adapt the digital 2nd order input filter
digital filter	0 0,6 100	(time in s; 0 s = filter off)
Unit	1	1 = degrees Celsius
temperature unit	2	2 = degrees Fahrenheit

ConF > InP >InP1

(**bold** = factory settings)

Remark:

RWF50.2 e RWF50.3 cannot be connected to thermocouples.

If thermocouples have to be connected, convert the signal to a 4-20 mA one and set the RWF accordingly.

ConF > Cntr

Parameter	Value	Description
CtYP	1	1 = 3-position controller (open-stop-close only RWF50.2)
controller type	2	2 = continuative action controller (only RWF50.3)
CACt	1	1 = heating controller
control action	0	0 = cooling controller
SPL		
least value of the		set-point limitation prevents entry of values outside the defined
set-point range	-1999 0 +9999	range
SPH		
maximum value of the		set-point limitation prevents entry of values outside the defined
set-point range	-1999 100 +9999	range
oLLo		
set-point limitation		
start, operation limit		
low	-1999 +9999	lower working range limit
oLHi		
set-point limitation		
end, operation limit		
high	-1999 +9999	upper working range limit

(**bold** = factory settings)

ConF > rAFC

Activation boiler shock te RWF50 can activate the th		only on sites where the set-point is lower than 250°C and according
to rAL parameter.		
Parameter	Value	Description
FnCT		Choose type of range degrees/time
function	0	0 = deactivated
	1	1 = Kelvin degrees/minute
	2	2 = Kelvin degrees/hour
rASL		Slope of thermal shock protection (only with functions 1 and 2)
ramp rate	0,0 999,9	
toLP tolerance band ramp	0 9999	width of tolerance band (in K) about the set-point 0 = tolerance band inactive 40 40 TRE6416/0911
rAL ramp limit	0 250	Ramp limit. When this value is lower than the temperature set- point, the RWF controls the output increasing the temp set point step by step according to rASL. If this is over the temp set point, the control is performed in cooling.

(**bold** = factory settings)

ConF > OutP (parameter under group only for RWF50.3)

Parameter	Value	Description
FnCt		1 = analog input 1 doubling with possibility to convert
tipo di controllo	1	(depending on par SiGn)
-	4	4 = modulation controller
SiGn		physical output signal (terminals A+, A-)
type of output signal	0	0 = 0÷20mA
	1	1 = 4÷20mA
	2	2 = 0÷10V
rOut		
Value when out of		
input range	0 101	signal (in percent) when measurement range is crossed
oPnt		value range of the output variable is assigned to a physical
zero point		output signal Per default, the setting corresponds to 0100%
		angular positioning for the controller outputs (terminals A+, A-)
	-1999 0 +9999	(effective only with FnCt = 1)
End		value range of the output variable is assigned to a physical
End value		output signal Per default, the setting corresponds to 0100%
		angular positioning for the controller outputs (terminals A+, A-)
	-1999 100 +9999	(effective only with FnCt = 1)

(**bold** = factory settings)

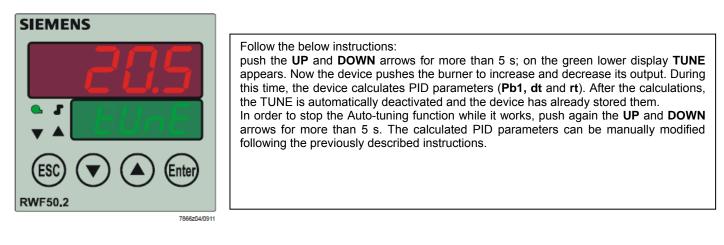
ConF > binF

Parameter	Value	Description
bin1		0 = without function
digital inputs		1 = set-point changeover (SP1 / SP2)
(terminals DG - D1)		2 = set-point shift (Opr > dSP parameter = value of set-point
	0	modify)
	1	4 = changeover of operating mode
	2	open – modulating operation;
	4	close – 2 stage operation.

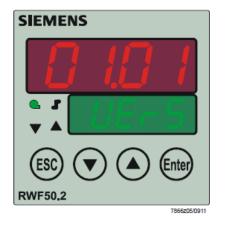
(**bold** = factory settings)

ConF > dISP

Parameter	Value	Description
diSU		display value for upper display:
upper display	0	0 = display power-off
(red)	1	1 = analog input value
	4	4 = Controller's angular positioning
	6	6 = set-point value
	7	7 = end value with thermal shock protection
diSL		display value for lower display:
lower display	0	0 = display power-off
(green)	1	1 = analog input value
	4	4 = Controller's angular positioning
	6	6 = set-point value
	7	7 = end value with thermal shock protection
tout		time (s) on completion of which the controller returns
timeout	0 180 250	automatically to the basic display, if no button is pressed
dECP	0	0 = no decimal place
decimal point	1	1 = one decimal place
	2	2 = two decimal places
CodE	0	0 = no lockout
level lockout	1	1 = configuration level lockout (ConF)
	2	2 = Parameter and configuration level lockout (PArA & ConF)
	3	3 = keyboard lockout

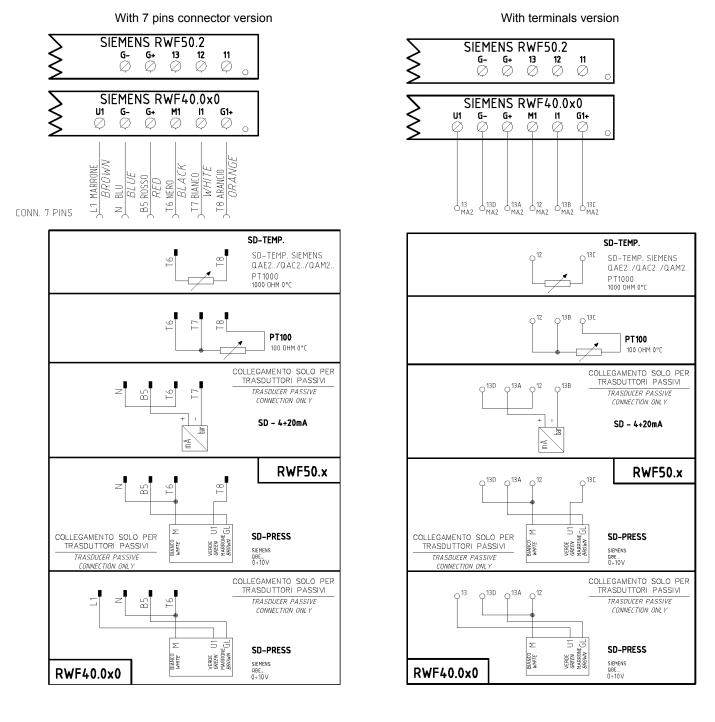

(**bold** = factory settings)

Manual control :


- in order to manual change the burner load, while firing keep pushing the **ESC** button for more than 5 s; on the lower green display **Hand** appears.
- using the UP and DOWN arrows, the load varies.
- Keep pushing the ESC button for getting the normal operation again.
- NB: every ime the device shuts the burner down (start led switched off contact 1N-1P open), the manual control is not active.

Device self-setting (auto-tuning):

If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request



Display of software version :

The software version is shown by pushing **Enter + UP arrow** on the upper display

Electric connection :

Matches terminals between RWF50.2 and RWF40.0x0

, ∞	к2 Ø	кз Ø	1N Ø	SIE 1P Ø	MENS L1 Ø	RWF N ∅	50.2		G- Ø	ն+ Ø	13 Ø	12 Ø	11 Ø	
_ Q ⊘	Y1 Ø	Y2 Ø	Q13	SIEM Q14	IENS L1 Ø	RWF4 ⊘	0.0×0 Te	U1 Ø	G- Ø	G+	M1	l1 Ø	G1+ ⊘	

Parameters summarising for RWF50.2x:

	Conf					Conf										
Navigation menù			Inp							Opr						
		Inp1					Cntr diSP			PArA						
Types of probe	SEn1	OFF1	SCL1	SCH1	Unit	SPL	SPH	dECP	Pb. 1	dt	rt	tt	HYS1 (*)	HYS3 (*)	SP1 (*)	
Siemens QAE2120	6	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80 °C	
Siemens QAM2120	6	0	needless	needless	1	0	80	1	10	80	350	(#)	-2,5	2,5	40°C	
Pt1000 (130°C max.)	4	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80°C	
Pt1000 (350°C max.)	4	0	needless	needless	1	0	350	1	10	80	350	(#)	-5	10	80°C	
Pt100 (130°C max.)	1	0	needless	needless	1	0	95	1	10	80	350	(#)	-5	5	80°C	
Pt100 (350°C max)	1	0	needless	needless	1	0	350	1	10	80	350	(#)	-5	10	80°C	
Probe 4÷20mA / 0÷1,6bar	16	0	0	160	needless	0	160	0	5	20	80	(#)	0	20	100 kPa	
Probe 4÷20mA / 0÷3bar	16	0	0	300	needless	0	300	0	5	20	80	(#)	0	20	200 kPa	
Probe 4÷20mA / 0÷10bar	16	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa	
Probe 4÷20mA / 0÷16bar	16	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa	
Probe 4÷20mA / 0÷25bar	16	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa	
Probe 4÷20mA / 0÷40bar	16	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa	
Siemens QBE2002 P4	17	0	0	400	needless	0	400	0	5	20	80	(#)	0	20	200 kPa	
Siemens QBE2002 P10	17	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa	
Siemens QBE2002 P16	17	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa	
Siemens QBE2002 P25	17	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa	
Siemens QBE2002 P40	17	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa	
Segnale 0÷10V	17	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(#)	to be fixed	to be fixed	to be fixed	
Segnale 4÷20mA	16	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(#)	to be fixed	to be fixed	to be fixed	

NOTE :

(#) tt – servo control run time

(#) it = serve control run time SQL33 ; STM30; SQM10; SQM40; SQM50; SQM54 = **30** (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = **12** (secondi) (*) These values are factory set - values <u>must be</u> set during operation at the plant based on the real working temperature/pressure value. WARNING : With pressure probes the parameters SP1, SCH, SCL, HYS1, HYS3 must be selected, and visualized in kPa (kilo Pascal). (<u>1bar = 100.000Pa = 100kPa</u>)

APPENDIX: PROBES CONNECTION

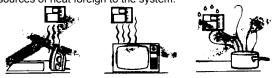
To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location.

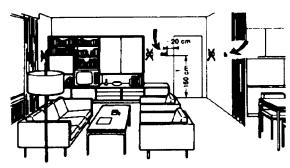
Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements.

Ambient probes (or ambient thermostats)

Installation

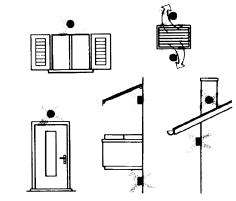
The sensors (or room thermostats) must be located in


reference rooms in a position where they can take real temperature measurements without being affected by foreign factors.


ioreign lactors.

It's good to be admired ...even better to be effective

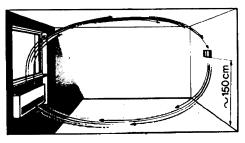
Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system.


Outside probes (weather) Installation

In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance.

General rule: on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade.

Positions to be avoided



Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever roofs.

The sensor must not be painted (measurement error).

Location

On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold).

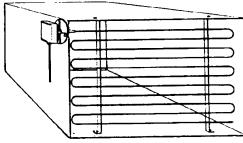
Installation position to be avoided

near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them.

Duct or pipe sensors

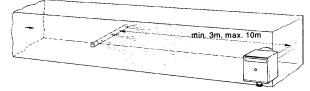

Installing temperature sensors

For measuring outlet air:

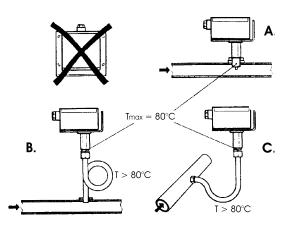

- after delivery fan or
- after coil to be controlled, at a distance of at least 0,5 m

For measuring room temperature:

• before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator.


Bend 0.4m sensor by hand (never use tools) as illustrated.

Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors.

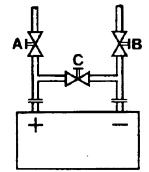

Installing combined humidity sensors

As max. humidity limit sensor on outlet (steam humidifiers).

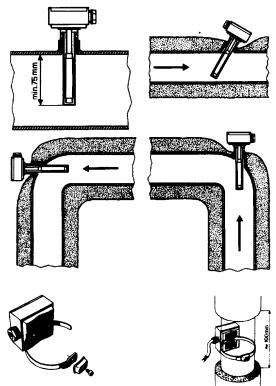
Installing pressure sensors

- A installation on ducts carrying fluids at max. temperature 80°C
- B installation on ducts at temperature over 80°C and for refrigerants
- C installation on ducts at high temperatures:
 - increase length of siphon
 - place sensor at side to prevent it being hit by hot air coming from the pipe.

Installing differential pressure sensors for water

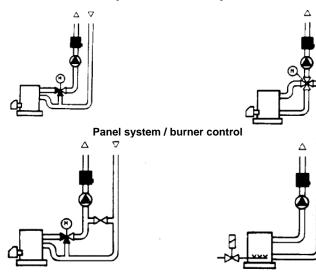

- Installation with casing facing down not allowed.-With temperature over 80°C, siphons are needed.
- To avoid damaging the sensor, you must comply with the following instructions

when installing:

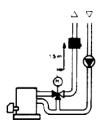

- make sure pressure difference is not greater than thevalue permitted by the sensor
- when there are high static pressures, make sure you insert shutoff valves A-B-C.

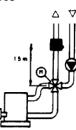
Putting into operation

Start disable 1=open C1=open C 2=open A2=close B 3=open B3=close A 4= close C


Immersion or strap-on sensors

Placing the probes (QAD22.../QAE21.../QAP21.../RCA...)


With pumps on outlet


with 3 ways valves / with 4 ways valves

With pumps on return

with 3 ways valves / with 4 ways valves

Immersion probes installation

Sensors must be installed on the stretch of pipe in which fluid circulates all the time.

The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow.

Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid.

Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.)

Installing QAD2.. strap-on sensors

Make sure fluid is circulating in the chosen location.

Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe.

Sensors come with straps for pipes up to 100 mm in diameter

Strap-on or immersion sensors? QAD2.. strap-on sensors

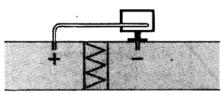
Advantages :

- 10 sec. time constant
- Installed with system running (no plumbing work)
- Installation can be changed easily if it proves incorrect.

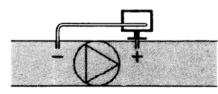
Limits:

- Suitable for pipe diameters max. 100 mm
- Can be affected by currents of air etc.

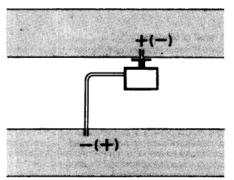
QAE2... immersion sensors

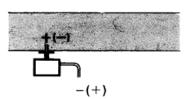

Advantages:

- Measure "mean" fluid temperature
- No external influence on measurement such as: currents of air, nearby pipes etc.

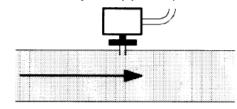

Limits:

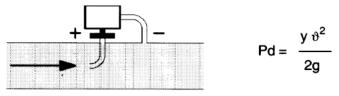
- Time constant with sheath: 20 sec.
- Hard to change installation position if it proves incorrect.


Installing differential pressure probes for air


A - Control a filter (clogging)

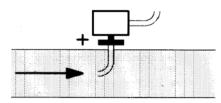
B - Control a fan (upstream/downstream)


C - Measurement of difference in pressure between two ducts


D - Measurement of difference in pressure between two rooms or of inside of duct and outside

Basic principles

Measuring static pressure(i.e. pressure exerted by air on pipe walls)


Measuring dinamic pressure

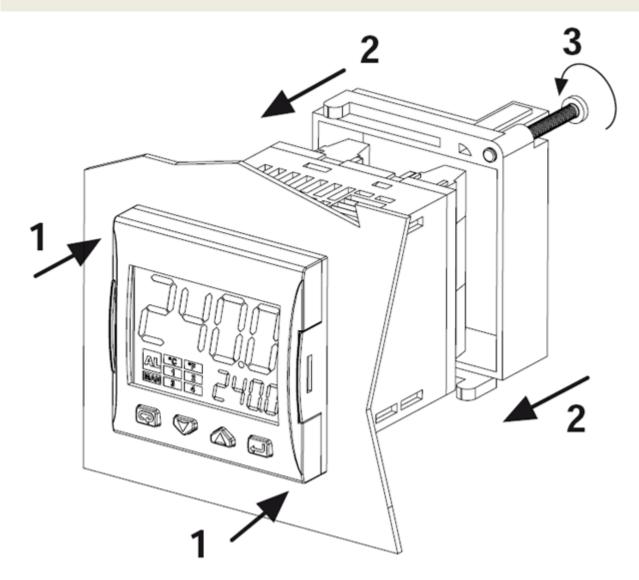
Key

- y Kg/m³, specific weight of air m/s, air speed
- g 9.81 m/s² gravity acceleration
- Pd mm C.A., dynamic pressure

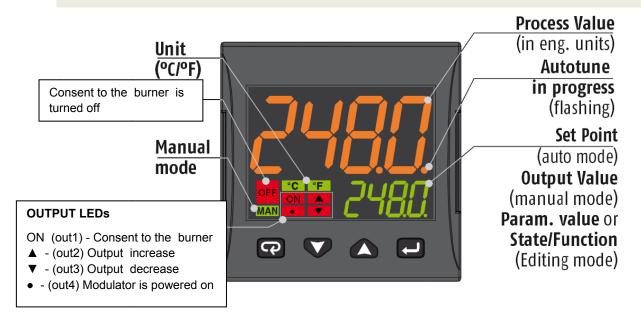
Measuring total pressure

Spare parts

Description	Code
Modulator RWF50.2 (uscita a 3 punti - apri, fermo, chiudi)	2570148
Modulator RWF50.3 (uscita continua 0÷20mA, 4÷20mA, 0÷10V)	2570149
Temperature probe Siemens QAE2120.010A (30÷130°C)	2560101
Temperature probe Siemens QAM2120.040 (-15÷+50°C)	2560135
Thermoresistor Pt1000 ø6mm L100mm (30÷130°C)	2560188
Thermoresistor Pt1000 ø10mm L200mm (0÷350°C)	2560103
Thermoresistor Pt100 ø10mm L200mm (0÷350°C)	2560145
Thermoresistor Pt100 ø8mm L85mm (0÷120°C)	25601C3
Pressure probe Siemens QBE2 P4 (0÷4bar)	2560159
Pressure probe Siemens QBE2 P10 (0÷10bar / signal 0÷10V)	2560160
Pressure probe Siemens QBE2 P16 (0÷16bar / signal 0÷10V)	2560167
Pressure probe Siemens QBE2 P25 (0÷25bar / signal 0÷10V)	2560161
Pressure probe Siemens QBE2 P40 (0÷40bar / signal 0÷10V)	2560162
Pressure probe Danfoss MBS 3200 P 1,6 (0÷1,6bar / signal 4÷20mA)	2560189
Pressure probe Danfoss MBS 3200 P 10 (0÷10bar / signal 4÷20mA)	2560190
Pressure probe Danfoss MBS 3200 P 16 (0÷16bar / signal 4÷20mA)	2560191
Pressure probe Danfoss MBS 3200 P 25 (0÷25bar / signal 4÷20mA)	2560192
Pressure probe Danfoss MBS 3200 P 40 (0÷40bar / signal 4÷20mA)	2560193
Pressure probe Siemens 7MF1565-3BB00-1AA1 (0÷1,6bar / signal 4÷20mA)	25601A3
Pressure probe Siemens 7MF1565-3CA00-1AA1 (0÷10bar / signal 4÷20mA)	25601A4
Sonda di pressione Siemens 7MF1565-3CB00-1AA1 (0÷16bar / signal	25601A5
Pressure probe Siemens 7MF1565-3CD00-1AA1 (0÷25bar / signal 4÷20mA)	25601A6
Pressure probe Siemens 7MF1565-3CE00-1AA1 (0÷40bar / signal 4÷20mA)	25601A7
Pressure probe Gefran E3E B1V6 MV (0÷1,6bar / segnale 4÷20mA)	25601C4
Pressure probe Danfoss E3E B01D MV (0÷10bar / segnale 4÷20mA)	25601C5
Pressure probe Danfoss E3E B16U MV (0÷16bar / segnale 4÷20mA)	25601C6
Pressure probe Danfoss E3E B25U MV (0÷25bar / segnale 4÷20mA)	25601C7
Pressure probe Danfoss E3E B04D MV (0÷40bar / segnale 4÷20mA))	25601C8

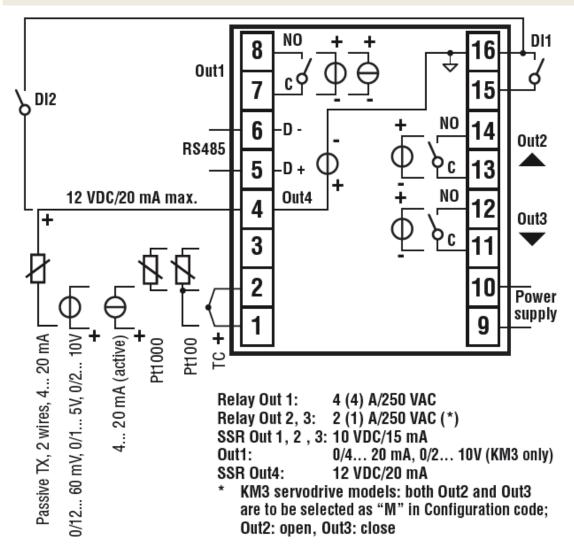

Note: Specifications and data subject to change. Errors and omissions excepted.

KM3 Modulator


USER MANUAL

M12927CA Rel.1.0 10/2020

MOUNTING



DISPLAY AND KEYS

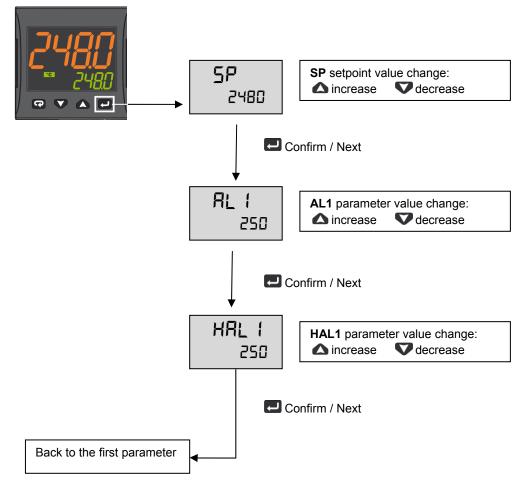
	Operator Mode	Editing Mode
	Access to: - Operator Commands (Timer, Setpoint selection) - Parameters - Configuration	Confirm and go to Next parameter
	Access to: - Operator additional information (Output value, running time)	Increase the displayed value or select the next element of the parameters list
	Access to: - Set Point	Decrease the displayed value or select the previous element
P	Programmable key: Start the programmed function (Autotune, Auto/Man, Timer)	Exit from Operator commands/Parameter setting/Configuration

CONNECTIONS DIAGRAM

Probe connection:

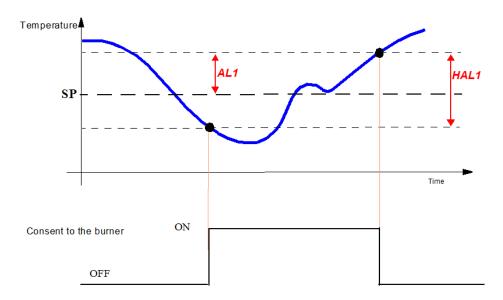
- PT1000/NTC/PTC: between terminal 3 and 2
- PT 100: between terminal 3 and 2 with terminal 1
- **Passive pressure probe** 0/4-20 mA: between terminal 4 (+) e 1 (-) Note: out4 must be activated (IO4F must be setted to ON)
- **Powered pressure probe** 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive) Note: set IO4F to ON to activate Out4

Power supply connection:

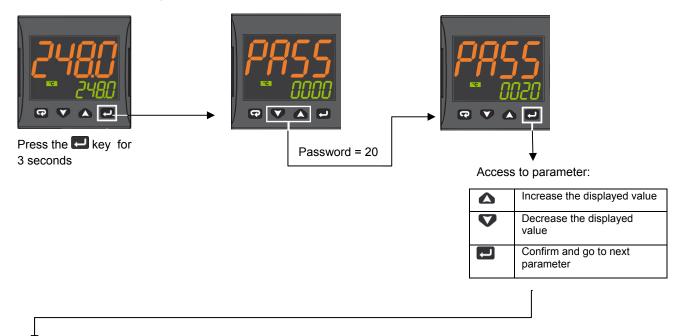

- Neutral wire: terminal 9
- Phase: terminal 10 (100...240 Vac)
- Close terminals 15-16 to switch to the set point 2

Output connection:

- Channel 1: terminal 7 and 8 (burner on off)
- Channel 2: terminal 11 and 12 (servomotor opens)
- Channel 3: terminal 13 and 14 (servomotor closes)


SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)

Push the 🛃 button to enter into the setpoint configuration:


To return to normal mode, press the 😨 key for 3 seconds or wait the 10s timeout

Operation example

LIMITED ACCESS LEVEL

Proceed as follows to change some parameters that are not visible in standard user mode:

Param	Description	Values	Default
SEnS	Input type	Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K	Depends on the probe
SP	Set point 1	SPLL SPLH	
AL1	AL1 threshold	AL1L AL1H (E.U.)	
HAL1	AL1 hysteresis	1 9999 (E.U.)	
Pb	Proportional band	1 9999 (E.U.)	
ti	Integral time	0 (oFF) 9999 (s)	
td	Derivative time	0 (oFF) 9999 (s)	See page 7
Str.t	Servomotor stroke time	51000 seconds	
db.S	Servomotor dead band	0100%	
SPLL	Minimum set point value	-1999 SPHL	
SPHL	Maximum set point value	SPLL 9999	
dp	Decimal point position	0 3	
SP 2	Set point 2	SPLLSPLH	60
A.SP	Selection of the active set point	"SP" " nSP"	SP

To exit the parameter setting procedure press the 😨 key (for 3 s) or wait until the timeout expiration (about 30 seconds)

Parameter Serie dp SSC FSC Initial Initial Parameter Strict SPLL SPLL </th <th>Parameter Group</th> <th>inP</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>AL1</th> <th></th> <th>Бñ Б</th> <th></th> <th></th> <th></th> <th></th> <th>SP</th> <th></th> <th></th>	Parameter Group	inP						AL1		Бñ Б					SP		
Image: blackImage: black<	Parameter	Sens	dp	SSC	FSc	unit	104.F	AL1	HAL1	Рb	ti	td	Str.t	db.S	SPLL	SPHL	SP
Dec Scale Scale Off On p i d servo Band SP SP SP Point Min Max °C on 5 10 10 10 10 Min Min Min Max 1 1 m °C on 5 10 10 350 1 * 5 0 95 1 1 m °C on 10 10 10 350 1 * 5 0 95 95 1 0 100 °C on 10 10 350 1 * 5 0 95 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(**)</td> <td>(***)</td> <td>(***)</td> <td>(***)</td> <td>(***)</td> <td>(***)</td> <td></td> <td></td> <td></td> <td></td> <td>(***)</td>							(**)	(***)	(***)	(***)	(***)	(***)					(***)
PointMinMaxMoMinMaxMoMinMaxMoMinMax11 \circ \circ on510103501 \ast 5309511 \circ \circ on1010103501 \ast 530951 \circ \circ on510103501 \ast 530951 \circ \circ on510103501 \ast 503501 \circ \circ on1010103501 \ast 503501 \circ \circ on2025103501 \ast 503500 \circ 0 \circ	Probes		Dec	Scale	Scale			Off	On	٩		σ	servo	Band	SP	SP	Set
			Point	Min	Max								time s	Mo.	Min	Мах	point
	Pt1000 (130°C max)	Pt10	1			ů	on	5	10	10	350	1	*	5	30	95	80
	Pt1000 (350°C max)	PT10	1			°	on	10	10	10	350	1	*	5	0	350	80
	Pt100 (130°C max)	PT1	1			ပ	uo	5	10	10	350	1	*	5	0	95	80
	Pt100 (350°C max)	Pt1	1			°	on	10	10	10	350	1	*	5	0	350	80
	Pt100 (0+100°C 4+20mA)	4.20	1	0	100		on	5	10	10	350	1	*	5	0	95	80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Thermocouple K (1200°C max)	crAL	0			°	on	20	25	10	350	1	*	5	0	1200	80
	Thermocouple J (1000°C max)	ſ	0			°	on	20	25	10	350	1	*	5	0	1000	80
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4-20mA / 0-1,6barPressure probe	4.20	0	0	160		on	20	20	5	120	1	*	5	0	160	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4-20mA / 0-10bar Pressure probe	4.20	0	0	1000		on	50	50	5	120	٢	*	5	0	1000	600
0 0 2500 on 125 120 1 * 5 0 2500 0 0 4000 on 200 200 5 120 1 * 5 0 2500 0 0 4000 0 200 200 5 120 1 * 5 0 4000 0 0 125 12 1 * 5 0 2500	4-20mA / 0-16bar Pressure probe	4.20	0	0	1600		uo	80	80	5	120	1	*	5	0	1600	600
0 0 4000 on 200 5 120 1 * 5 0 4000 0 0 2500 0 125 125 5 120 1 * 5 0 4000	4-20mA / 0-25bar Pressure probe	4.20	0	0	2500		on	125	125	5	120	1	*	5	0	2500	600
0 0 2500 0 125 125 5 120 1 * 5 0 2500	4-20mA / 0-40bar Pressure probe	4.20	0	0	4000		uo	200	200	5	120	-	*	5	0	4000	600
	QBE2002 / 0-25bar Pressure probe	0.10	0	0	2500		on	125	125	5	120	-	*	5	0	2500	600

7

Probe parameters configuration MODULATORE ASCON KM3

Note:

(*) Str.t - Servomotor stroke time SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (Seconds) STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (Seconds)

(**) Out 4 ... on Display led °4 must be switched on, otherwise change the io4.F parameter value from "on" to "out4", confirm the value, quit the configuration mode then change again the io4.F parameter value from "out4" to "on".

(***) Factory settings. These values must be adapted to machine conditions

N.B. For pressure probe, SP, SPHL, SPLL parameters values are expressed in Kpa (1 bar = 100 Kpa).

CONFIGURATION

How to access configuration level

The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions).

- 1. Push the 🛃 button for more than 5 seconds. The upper display will show PASS while the lower display will show 0.
- Using \triangle and ∇ buttons set the programmed password. 2.

According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section.

- a. Enter "30" as password to view all the configuration parameters
- b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv = A or Liv = O will be editable. Leave the password blank to edit "user level" parameters, that are identified by attribute Liv = O
- C.
- 3. Push the 🛃 button. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: [¬]. In other words the upper display will show: [¬] inP (group of the **Input parameters**).

The instrument is in configuration mode. To press 😨 for more than 5 seconds, the instrument will return to the "standard display.

Keyboard functions during parameter changing:

	Operator Mode
	When the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group.
$\mathbf{\Delta}$	Allows to increase the value of the selected parameter.
	Allows to decrease the value of the selected parameter.
Ģ	Short presses allow you to exit the current group of parameters and select a new group. A long press terminates the configuration procedure (the instrument returns to the normal display).
€ + +	These two keys allow to return to the previous group. Proceed as follows: Push the 😨 button and maintaining the pressure, then push the 🛁; release both the buttons.

Configuration Parameters

inP	GRO	UP - inpu	it confiuration		
Liv	N°	Param	Description	Values	Default
A	1	SEnS	Input type	Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K	Depends on the probe
A	2	dp	Decimal point position	0 3	See page 7
A	3	SSc	Initial scale read-out for linear inputs (avaiable only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999 9999	0
С	4	FSc	Full scale read-out for linear input inputs (avaiable only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999 9999	Depends on the probe
С	5	unit	Unit of measure (present only in the case of temperature probe)	°C/°F	°C
С	6	Fil	Digital filter on the measured value	0 (= OFF) 20.0 s	1.0
С	7	inE	Selection of the Sensor Out of Range type that will enable the safety output value	or = Over range ou = Under range our = over e under range	or

С	8	oPE	Safety output value	-100 100	0
С	9	io4.F	I/O4 function selection	on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12 24 VDC	on
C	10	diF1	Digital input 1 function	oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, 6 = HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, 10 = Timer Run/Hold, 11 = Timer Run/Reset, with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Run/Hold, 16 = Program Run/Hold, 17 = Program Run/Hold, 18 = Sequential SP selection, 19 = SP1 - SP2 selection, 20 = SP1 SP4 binary selection, 21 = Digital inputs in parallel	19
С	12	di.A	Digital Inputs Action (DI2 only if configured)	0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action 2 = DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action	0

Out	GRO	UP- Outp	out parameters		
Liv	N°	Param	Description	Values	Default
С	14	o1F	Out 1 function	AL = Alarm output	AL
С	15	o1AL	Initial scale value of the analog retransmission	-1999 Ao1H	1
С	18	o1Ac	Out 1 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	rEUr.r
С	19	o2F	Out 2 function	H.rEG = Heating output	H.rEG
С	21	o2Ac	Out 2 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir
С	22	o3F	Out 3 function	H.rEG = Heating output	H.rEG
С	24	o3Ac	Out 3 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir

Liv	N°	Param	Descrizione	Values	Default
С	28	AL1t	Tipo allarme AL1	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the	HidE

				windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the	
С	29	Ab1	Alarm 1 function	band 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change	0
С	30	AL1L	For High and low alarms, it is the low limit of the AL1 threshold; For band alarm, it is low alarm threshold	-1999 AL1H (E.U.)	-199.9
С	31	AL1H	For High and low alarms, it is the high limit of the AL1 threshold; For band alarm, it is high alarm threshold	AL1L 9999 (E.U.)	999.9
0	32	AL1	AL1 threshold	AL1L AL1H (E.U.)	See page 7
0	33	HAL1	AL1 hysteresis	1 9999 (E.U.)	See page 7
С	34	AL1d	AL1 delay	0 (oFF) 9999 (s)	oFF
С	35	AL10	Alarm 1 enabling during Stand-by mode and out of range conditions	 0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition 	1

GRI	JPPO	AL2 - pa	rametri allarme 2		
Liv	N°	Param	Description	Values	Default
С	36	AL2t	Alarm 2 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	SE.br
С	37	Ab2	Alarm 2 function	0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change	0
С	42	AL2d	AL2 hysteresis	0 (oFF) 9999 (s)	oFF
С	43	AL2o	Alarm 2 enabling during Stand-by mode and out of range conditions	 0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition 	0

AL3	Grou	up - alarn	n 3 parameters		
Liv	N°	Param	Description	Values	Default
	44	AL3t	Alarm 3 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	nonE

LbA Group - Loop break alarm					
Liv	N°	Param	Descrizione	Values	Default
С	52	LbAt	LBA time	Da 0 (oFF) a 9999 (s)	oFF

Liv	N°	Param	Description	Values	Default
С	56	cont	Control type	Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis nr = Heat/Cool ON/OFF control with neutral zone 3Pt = Servomotor control (available only when Output 2 and Output 3 have been ordered as "M")	3pt
С	57	Auto	Autotuning selection	 -4 = Oscillating auto-tune with automaticrestart at power up and after all point change -3 = Oscillating auto-tune with manual start -2 = Oscillating -tune with auto-matic start at the first power up only -1 = Oscillating auto-tune with auto-matic restart at every power up 0 = Not used 1 = Fast auto tuning with automatic restart at every power up 2 = Fast auto-tune with manual start 4 = FAST auto-tune with automatic restart at power up only 3 = FAST auto-tune with automatic restart at power up and after set point change 5 = Evo-tune with automatic start the first power up 6 = Evo-tune with automatic start the first power up 7 = Evo-tune with automatic restart at power up and after a set point change 	7
С	58	tunE	Manual start of the Autotuning	oFF = Not active on = Active	oFF

С	59	SELF	Self tuning enabling	no = The instrument does not perform the self- tuning YES = The instrument is performing the self- tuning	No
A	62	Pb	Proportional band	1 9999 (E.U.)	See page 7
A	63	ti	Integral time	0 (oFF) 9999 (s)	See page 7
A	64	td	Derivative time	0 (oFF) 9999 (s)	See page 7
С	65	Fuoc	Fuzzy overshoot control	0.00 2.00	1
С	69	rS	Manual reset (Integral pre-load)	-100.0 +100.0 (%)	0.0
A	70	Str.t	Servomotor stroke time	51000 seconds	See page 7
А	71	db.S	Servomotor dead band	0100%	5
С	72	od	Delay at power up	0.00 (oFF) 99.59 (hh.mm)	oFF

SP	SP Group - Set point parameters							
Liv	N°	Param	Description	Values	Default			
С	76	nSP	Number of used set points	1 4	2			
A	77	SPLL	Minimum set point value	-1999 SPHL	See page 7			
A	78	SPHL	Maximum set point value	SPLL 9999	See page 7			
0	79	SP	Set point 1	SPLL SPLH	See page 7			
С	80	SP 2	Set point 2	SPLL SPLH	60			
	83	A.SP	Selection of the active set point	"SP" " nSP"	SP			
С	84	SP.rt	Remote set point type	RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc = The value will be scaled on the input range and this value will be used as remote SP	trin			
С	85	SPLr	Local/remote set point selection	Loc = Local rEn = Remote	Loc			
С	86	SP.u	Rate of rise for POSITIVE set point change (ramp UP)	0.01 99.99 (inF) Eng. units per minute	inF			
С	87	SP.d	Rate of rise for NEGATIVE set point change (ramp DOWN)	0.01 99.99 (inF) Eng. units per minute	inF			

PAn	PAn Group - Operator HMI							
Liv	N°	Param	Description	Values	Default			
С	118	PAS2	Level 2 password (limited access level)	oFF (Level 2 not protected by password) 1 200	20			
С	119	PAS3	Level 3 password (complete configuration level)	3 300	30			
С	120	PAS4	Password livello (livello configurazione a codice)	201 400	300			
С	121	uSrb	button function during RUN TIME	nonE = No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode	tunE			

C	122	diSP	Display management	AAc = Alarm reset ASi = Alarm acknowledge chSP = Sequential set point selection St.by = Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. Str.t = Timer run/hold/reset P.run = Program run P.rES = Program reset P.r.H.r = Program run/hold/reset Spo = Operative set point	SPo
С	123	di.cL	Display colour	 0 = The display colour is used to show the actual deviation (PV - SP) 1 = Display red (fix) 2 = Display green (fix) 3 = Display orange (fix) 	2
	125	diS.t	Display Timeout	oFF (display always ON) 0.1 99.59 (mm.ss)	oFF
С	126	fiLd	Filter on the displayed value	oFF (filter disabled) From 0.0 (oFF) to 20.0 (E.U.)	oFF
С	128	dSPu	Instrument status at power ON	AS.Pr = Starts in the same way it was prior to the power down Auto = Starts in Auto mode oP.0 = Starts in manual mode with a power output equal to zero St.bY = Starts in stand-by mode	Auto
С	129	oPr.E	Operative modes enabling	ALL = All modes will be selectable by the next parameter Au.oP = Auto and manual (OPLO) mode only will be selectable by the next parameter Au.Sb = Auto and Stand-by modes only will be selectable by the next parameter	ALL
С	130	oPEr	Operative mode selection	If oPr.E = ALL: - Auto = Auto mode - oPLo = Manual mode - St.bY = Stand by mode If oPr.E = Au.oP: - Auto = Auto mode - oPLo = Manual mode If oPr.E = Au.Sb: - Auto = Auto mode - St.bY = Stand by mode	Auto

Liv	N°	Param	Description	Values	Default
С	131	Add	Instrument address	oFF 1 254	1
С	132	bAud	baud rate	1200 = 1200 baud 2400 = 2400 baud 9600 = 9600 baud 19.2 = 19200 baud 38.4 = 38400 baud	9600
С	133	trSP	Selection of the value to be retransmitted (Master)	nonE = Retransmission not used (the instrument is a slave) rSP = The instrument becomes a Master and retransmits the operative set point PErc = The instrument become a Master and it retransmits the power output	nonE

con Group - Consumption parameters						
Liv	N°	Param	Description	Values	Default	
2	134	Co.tY	Count type	oFF = Not used	oFF	
				1 = Instantaneous power (kW)		
				2 = Power consumption (kW/h)		
				3 = Energy used during program execution. This		
				measure starts from		
				zero when a program runs end stops at the end		
				of the program. A		
				new program execution will reset the value		
				4 = Total worked days: number of hours the		
				instrument is turned ON		
				divided by 24.		
				5 = Total worked hours: number of hours the		
				instrument is turned ON.		
				6 = Total worked days with threshold: number of		
				hours the instrument is		
				turned ON divided by 24, the controller is forced		
				in stand-by when		
				Co.ty value reaches the threshold set in [137]		
				h.Job.		
				7 = Total worked hours with threshold: number of		
				hours the instrument		
				is turned ON, the controller is forced in stand-by		
				when Co.ty value		
				reaches the threshold set in [137] h.Job.		
				8 = Totalizer of control relay worked days:		
				number of hours the control		
				relay has been in ON condition, divided by 24.		
				9 = Totalizer of control relay worked hours:		
				number of hours the control		
				relay has been in ON condition.		
				10 = Totalizer of control relay worked days with		
				threshold: number of		
				hours the control relay has been in ON condition		
				divided by 24,		
				the controller is forced in stand-by when Co.ty		
				value reaches the		
				threshold set in [137] h.Job.		
				11 = Totalizer of control relay worked hours with		
				threshold: number of		
				hours the control relay has been in ON condition,		
				the controller is		
				forced in stand-by when Co.ty value reaches the		
				threshold set in		
		L		[137] h.Job.	<u> </u>	
2	138	t.Job	Worked time (not resettable)	0 9999 days	0	

cAL	cAL Group - User calibration group						
Liv	N°	Param	Description	Values	Default		
С	139	AL.P	Adjust Low Point	From -1999 to (AH.P - 10) in engineering units	0		
С	140	AL.o	Adjust Low Offset	-300 +300 (E.U.)	0		
С	141	AH.P	Adjust High Point	From (AL.P + 10) to 9999 engineering units	999.9		
С	142	AH.o	Adjust High Offset	-300 +300	0		

OPERATIVE MODES

When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters.

At power ON the instrument can start in one of the following mode depending on its configuration:

Automatic Mode In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value.

Manual Mode (OPLO): In Manual mode the the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made.

Stand by Mode (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero.

We define all the above described conditions as "Standard Display".

As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected.

AUTOMATIC MODE

Keyboard function when the instrument is in Auto mode:

	Modo Operatore
ſ	Allows entry into parameter modification procedures
	Allows you to start the "Direct set point modification" function (see below).
	Allows you to display the "additional informations" (see below).
C	Performs the action programmed by [121] uSrb (Debutton function during RUN TIME) parameter

Additional information

This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available.

- 1. When the instrument is showing the "standard display" push 🛆 button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action
- 2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below:

where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2)..

- 3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter:
 - P843
- 4. Push 🛆 button again. When the wattmeter function is running the lower display will show U followed by the measured energy..
- 5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time.
- 6. Push 🛆 button. The instrument returns to the "standard display".

Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display..

Direct set point modification

This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress.

- 1. Push **V** button. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value.
- 2. By \triangle and ∇ buttons, assign to this parameter the desired value
- 3. Do not push any button for more than 5 second or push the 🛃 button. In both cases the instrument memorize the new value and come back to the "standard display".

Manual mode

This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the \triangle and ∇ buttons.

In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H100 (100% output power with reverse action) to C100 (100% output power with direct action).

Notes:

- During manual mode, the alarms are operative.
- If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode.
- If you set manual modes during self-tune execution, the self- tune function will be aborted.
- During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally..

STAND-BY MODE

This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY".

Notes:

- During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting.
- If you set stand by mode during program execution, the program will be aborted.
- If you set stand by mode during self-tune execution, the self- tune function will be aborted.
- During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.
- When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed).

AUTOTUNE (EVOTUNE)

Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press 😨 button for 3 seconds.

ERROR MESSAGES

The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications:

Over-range:

Under-range

The sensor break will be signalled as an out of range:

Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively.

To check the out of span Error condition, proceed as follows:

- 1. Check the input signal source and the connecting line.
- 2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration.
- 3. If no error is detected, send the instrument to your supplier to be checked.

List of possible errors

ErAT Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message.

ouLd Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate..

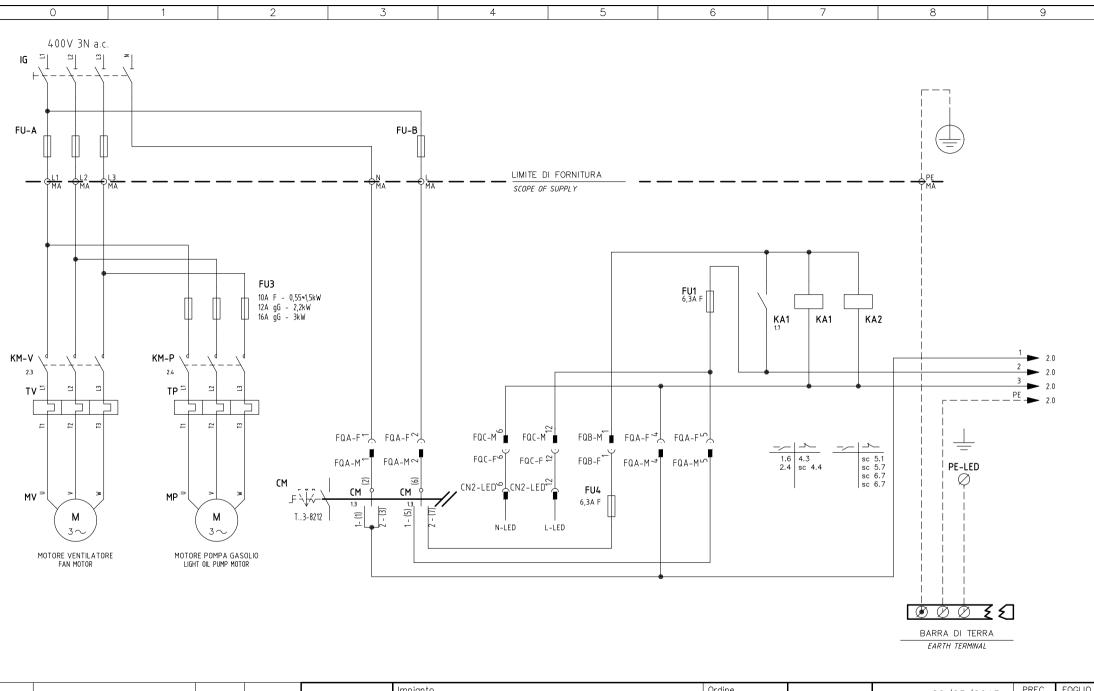
NoAt Auto-tune not finished within 12 hours.

ErEP Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier.

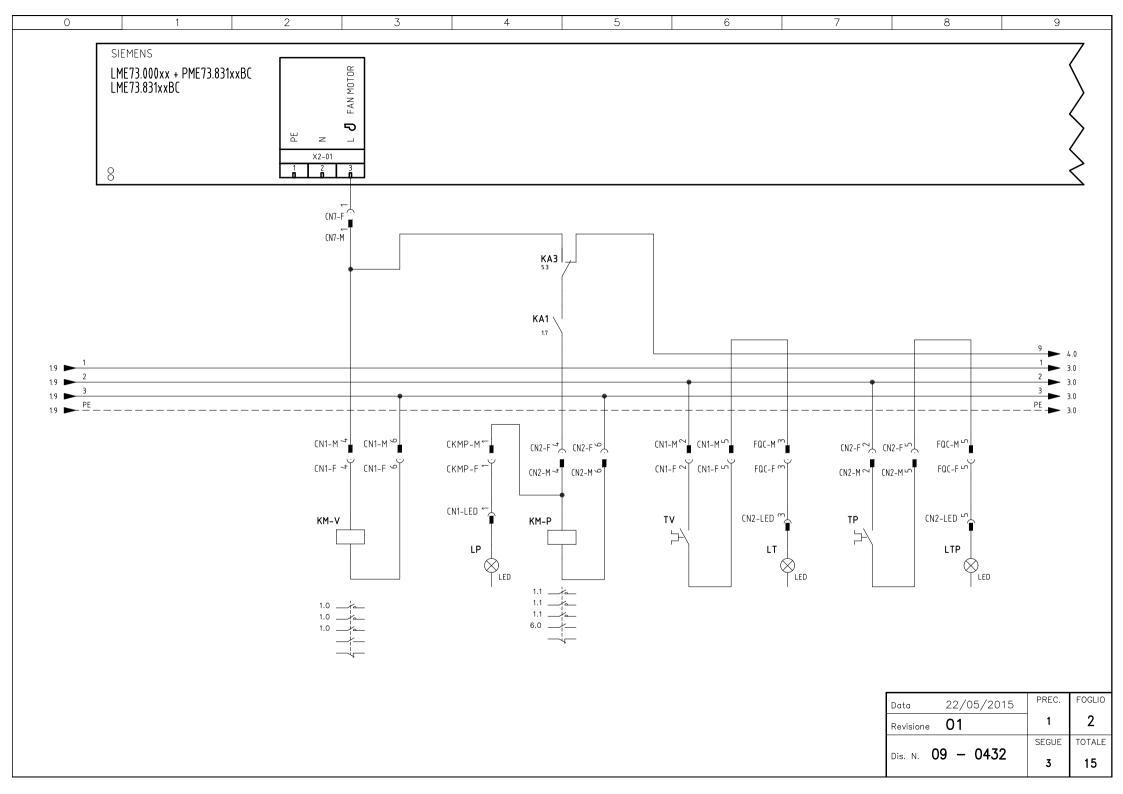
RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier.

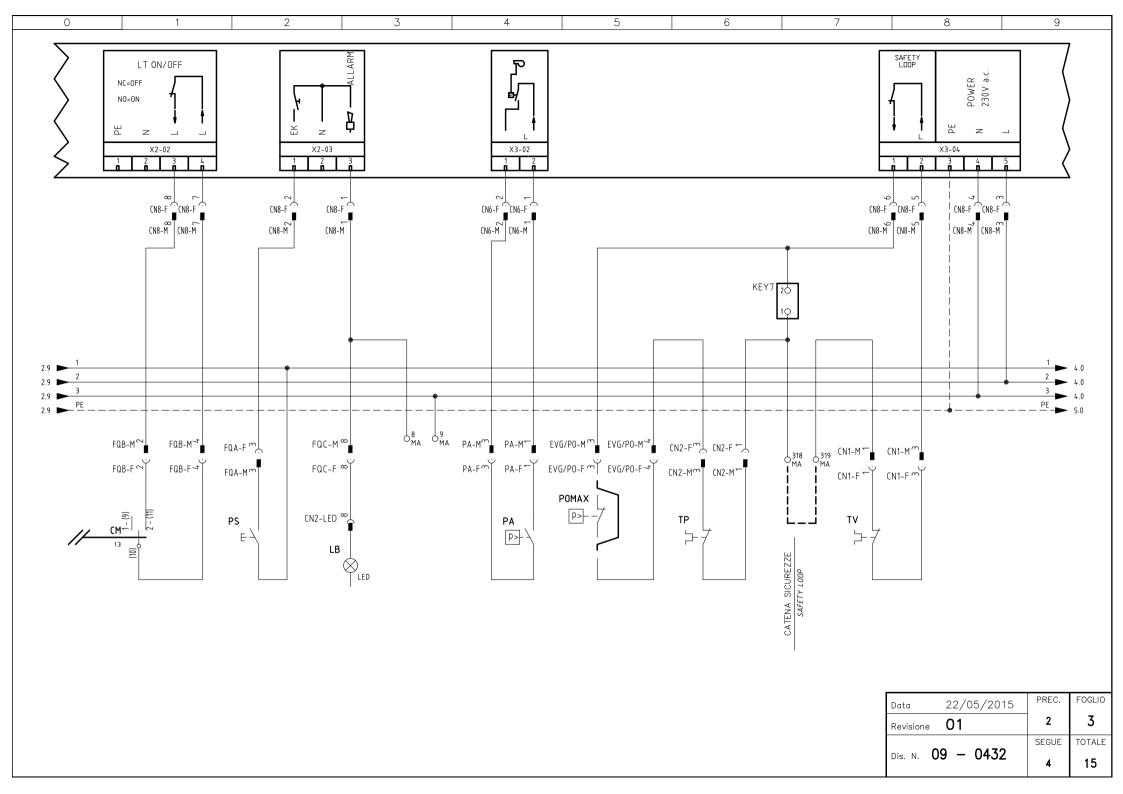
Errt Possible problem of the calibration memory. When this error is detected, send the instrument to your supplier.

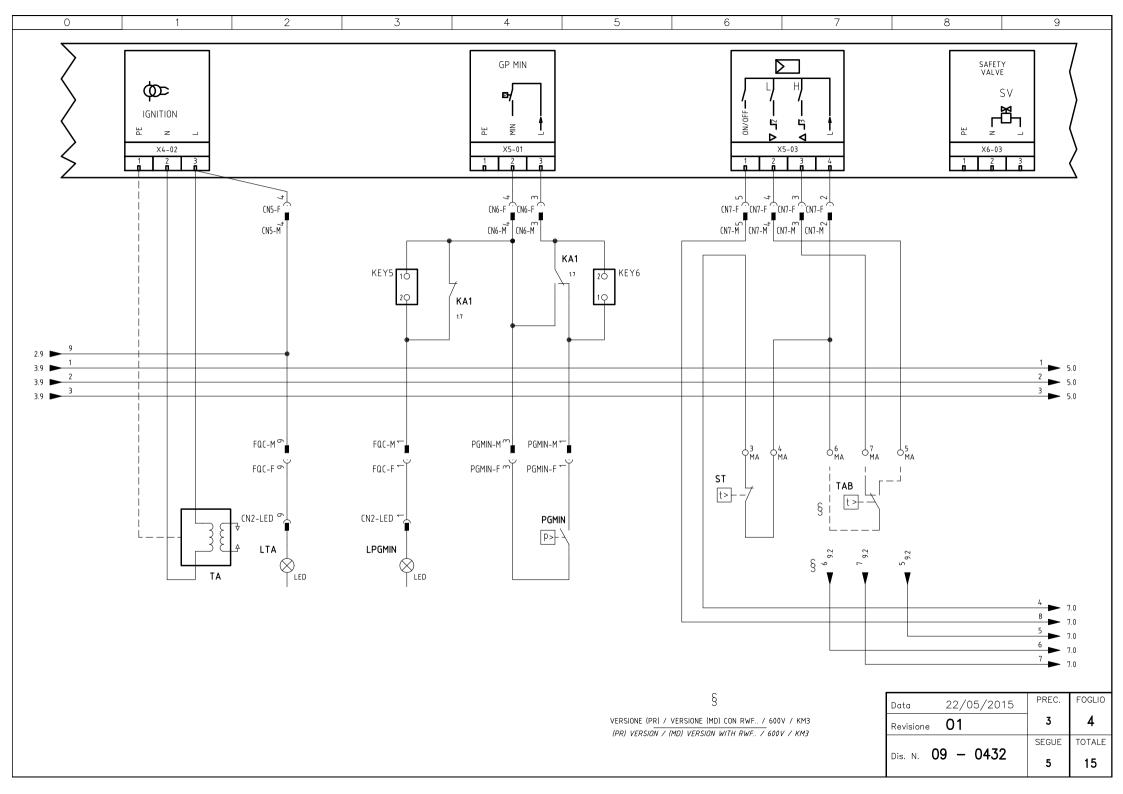
FACTORY RESET

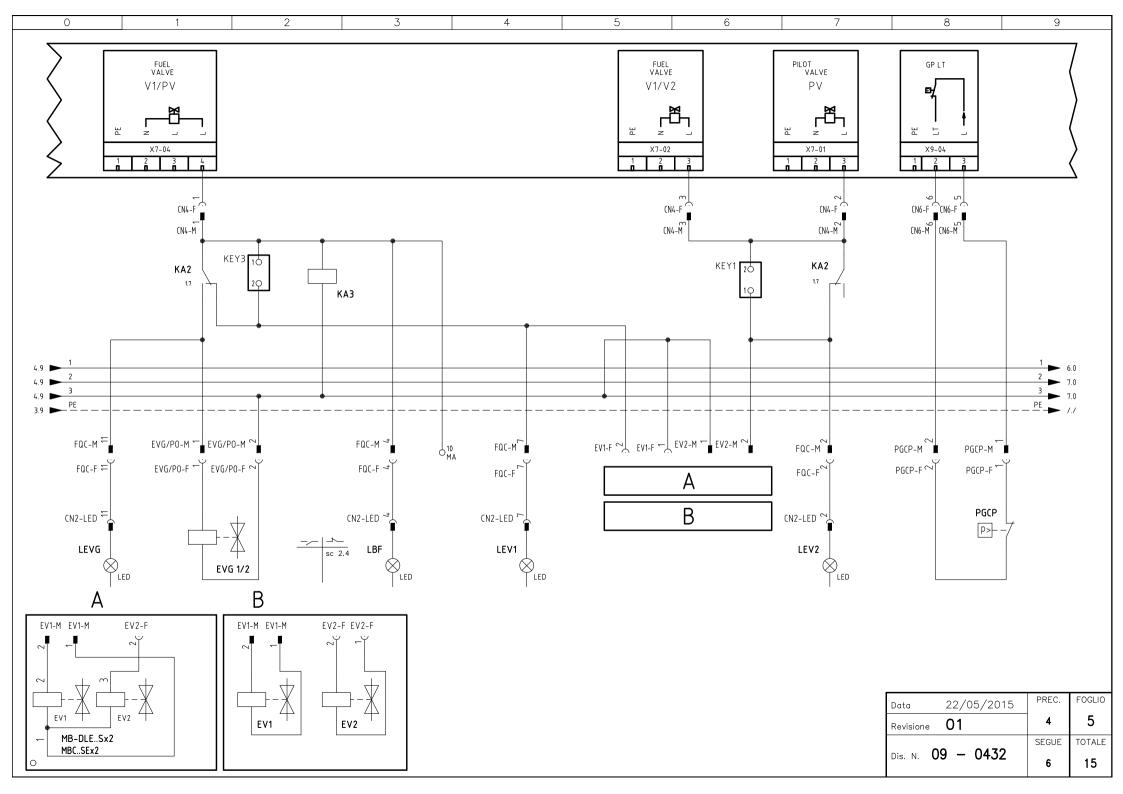

Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON).

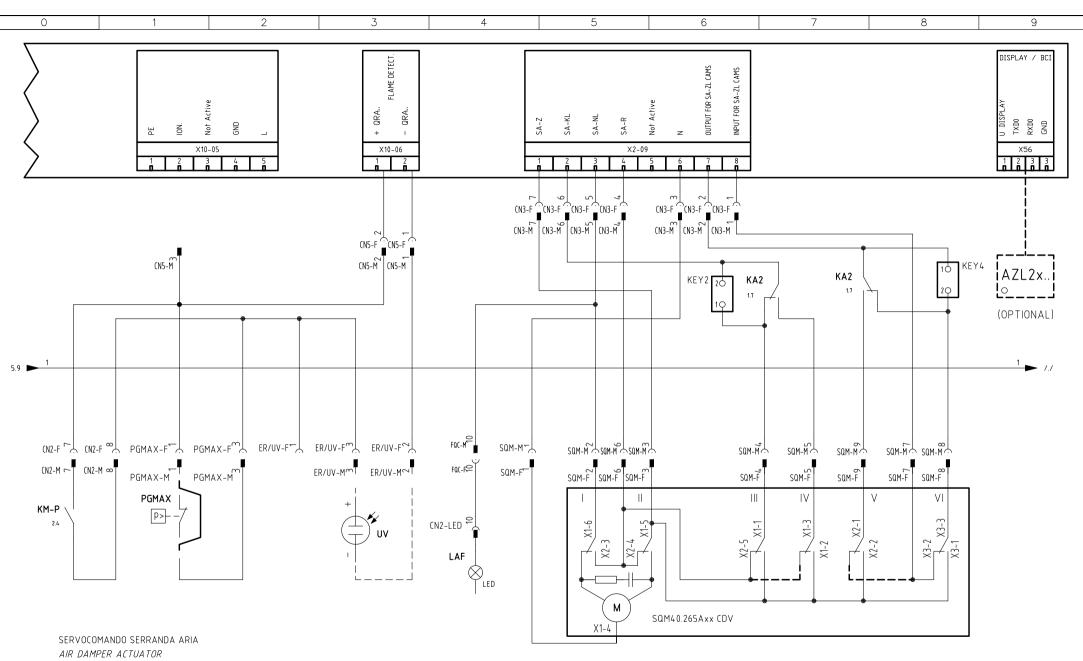
The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows:

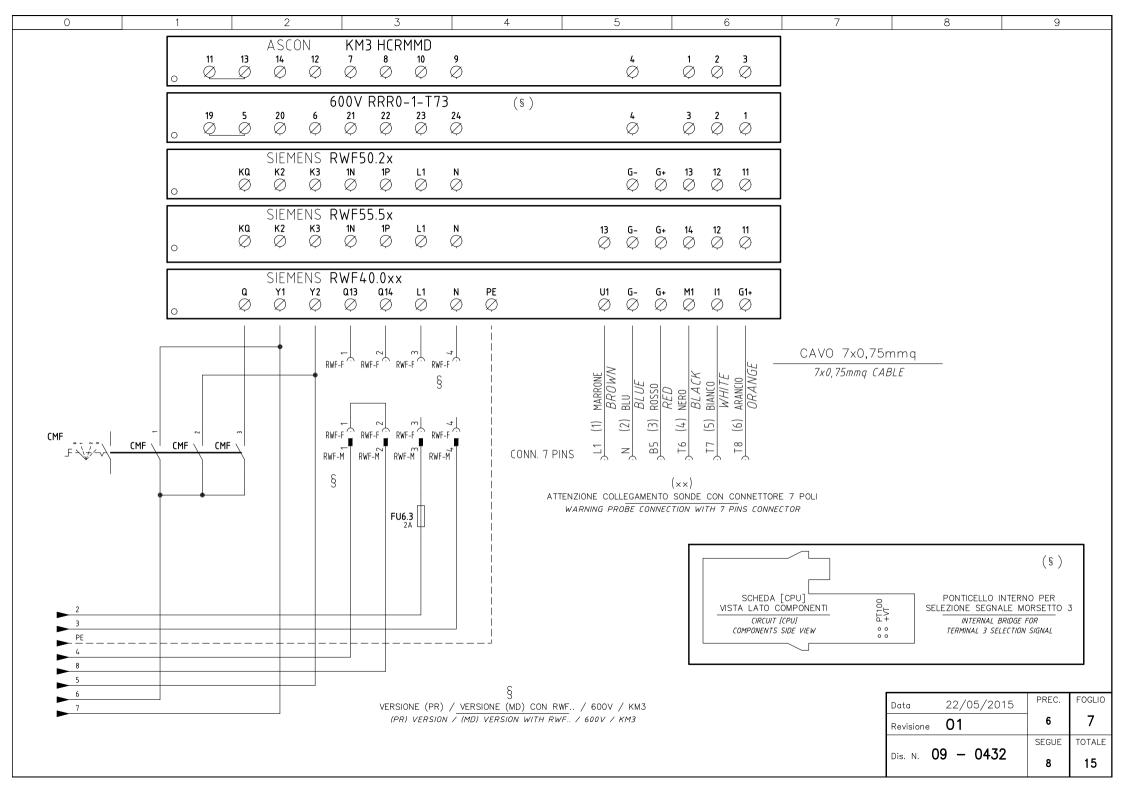

- 1. Press the 🖵 button for more than 5 seconds. The upper display will show PASS while the lower display shows 0;
- 2. Using \triangle and ∇ buttons set the value -481;
- 3. Push 🗖 button;
- 4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON.

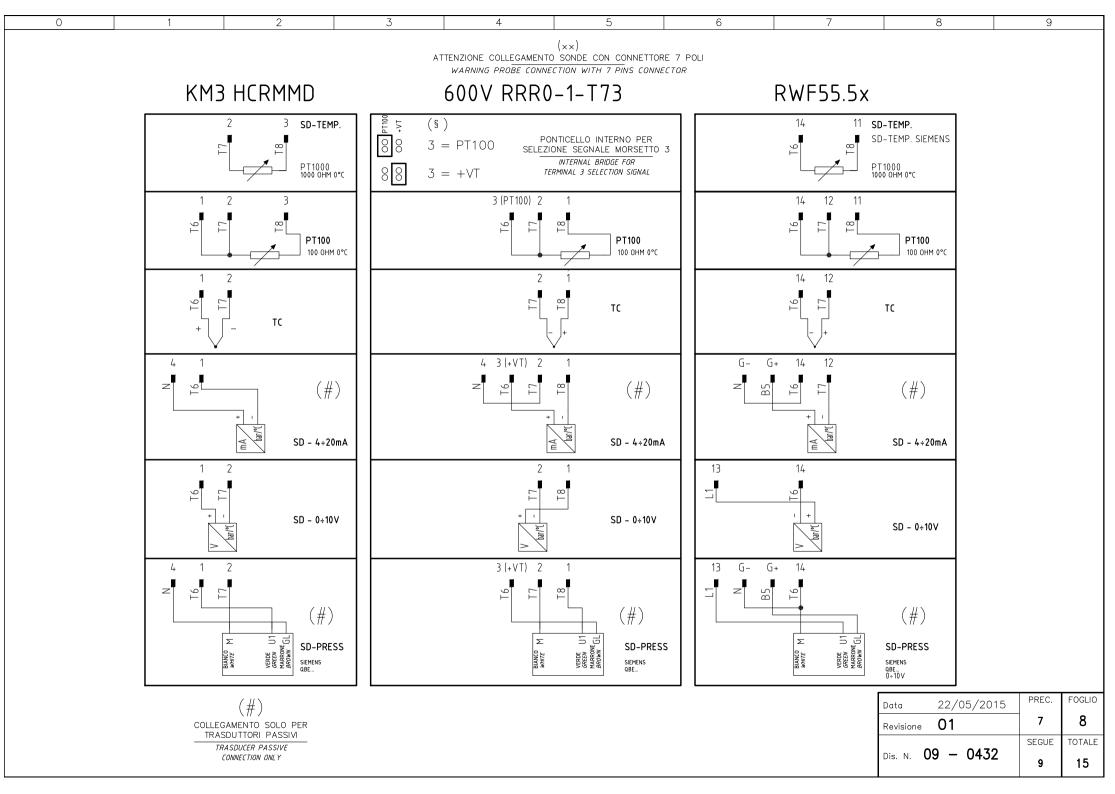

The procedure is complete.

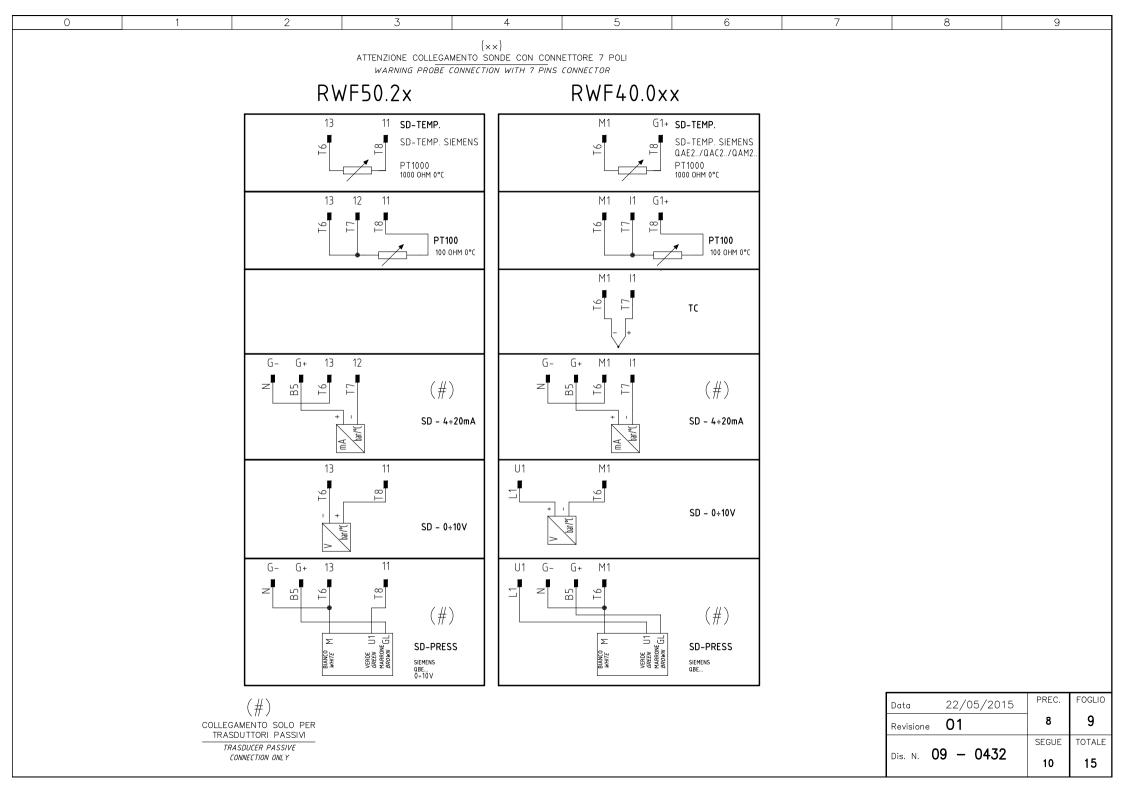

Note: The complete list of the default parameters is available in Chapter "Configuration".

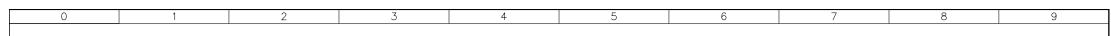


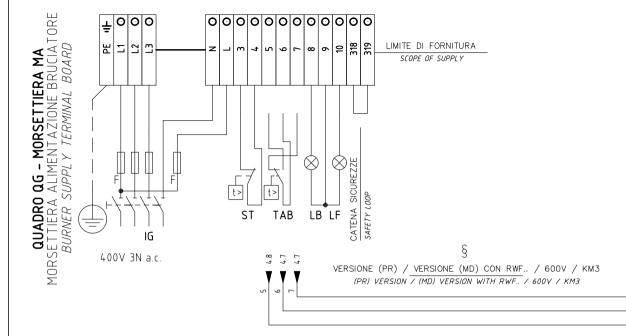

					Impianto	Ordine		Data	22/05/2015	PREC.	FOGLIO
					TIPI/TYPES_HR91A÷520A/HTP91A÷520A/G/H/K				01	1	
				TIMICAR	MODELLO/MODEL xGPR(MD).x.xx.A.1.xx	Commessa	Data Controllato	Revisione	01	/	1
				UNIGAS	Descrizione		30/03/2016			SEGUE	TOTALE
01	"RWF40" MODULATOR ADDED	30/03/16	U. PINTON		LME73.xx + COD. 6100574 + COD. 6100566				09 - 0432	2	15
REV	. MODIFICA	DATA	FIRME			U. PINTON	G. SCATTOLIN			2	13

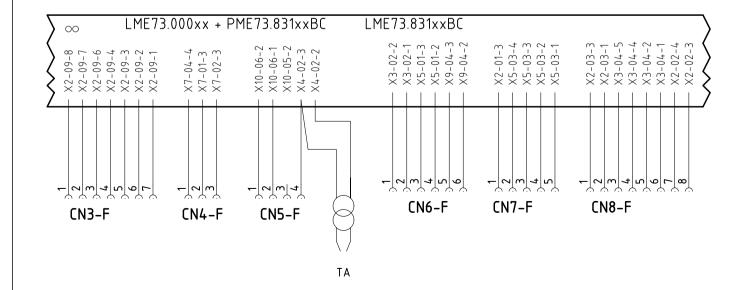


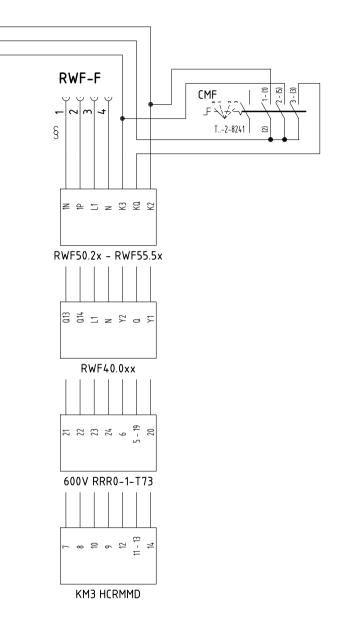


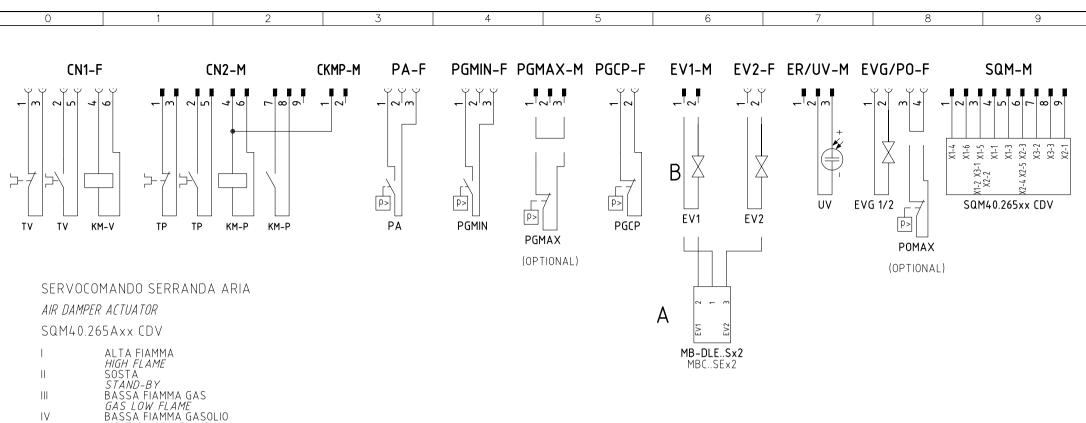

SQM40.265Axx CDV


I	ALTA FIAMMA
0	HIGH FLAME SOSTA
Ш	<i>STAND-BY</i> BASSA FIAMMA GAS
IV	<i>GAS LOW FLAME</i> BASSA FIAMMA GASOLIO
v	<i>LIGHT OIL LOW FLAME</i> ACCENSIONE GASOLIO
VI	<i>LIGHT OIL IGNITION</i> ACCENSIONE GAS
	GAS IGNITION

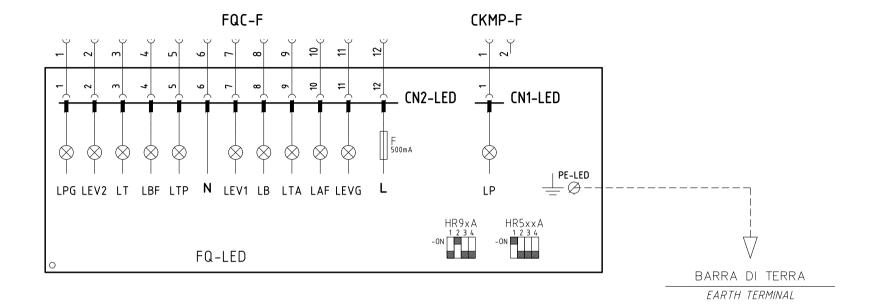

Data	22/05/2015	PREC.	FOGLIO
Revisione	01	5	6
	0 0470	SEGUE	TOTALE
Dis. N. 🕻)9 – 0432	7	15

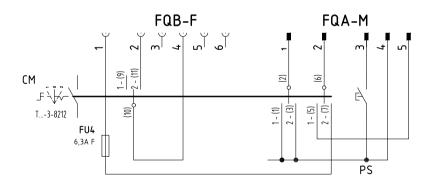






Data	22/05/2015	PREC.	FOGLIO	
Revisione	01	9	10	
	0 0470	SEGUE	TOTALE	
Dis. N. U	9 – 0432	11	15	




- IV
- LIGHT OIL LOW FLAME
- ACCENSIONE GASOLIO V
- LIGHT OIL IGNITION ٧I
- ACCENSIONE GAS GAS IGNITION

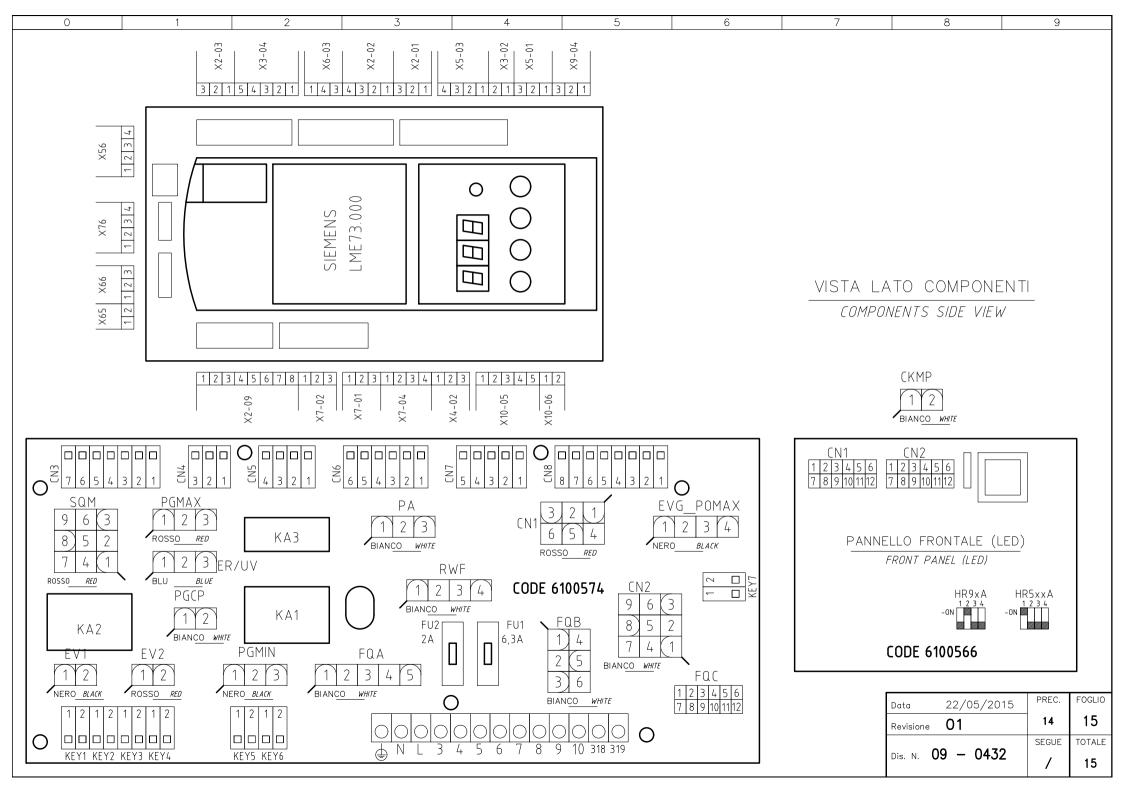
KEY1 KEY2 KEY3 KEY4 KEY5 KEY6 KEY7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |0|0|0|0|0|0|0|0|

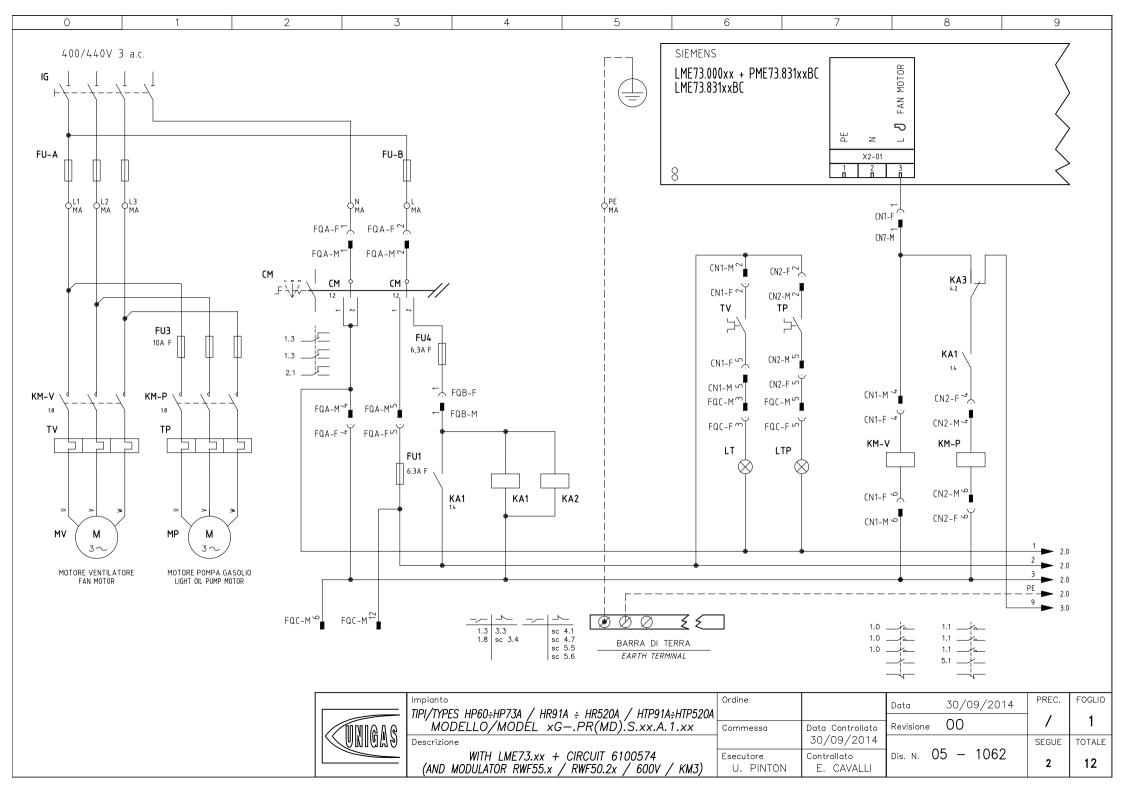
Data	22/05/2015	PREC.	FOGLIO
Revisione	01	10	11
	0 0470	SEGUE	TOTALE
Dis. N. C	9 – 0432	12	15

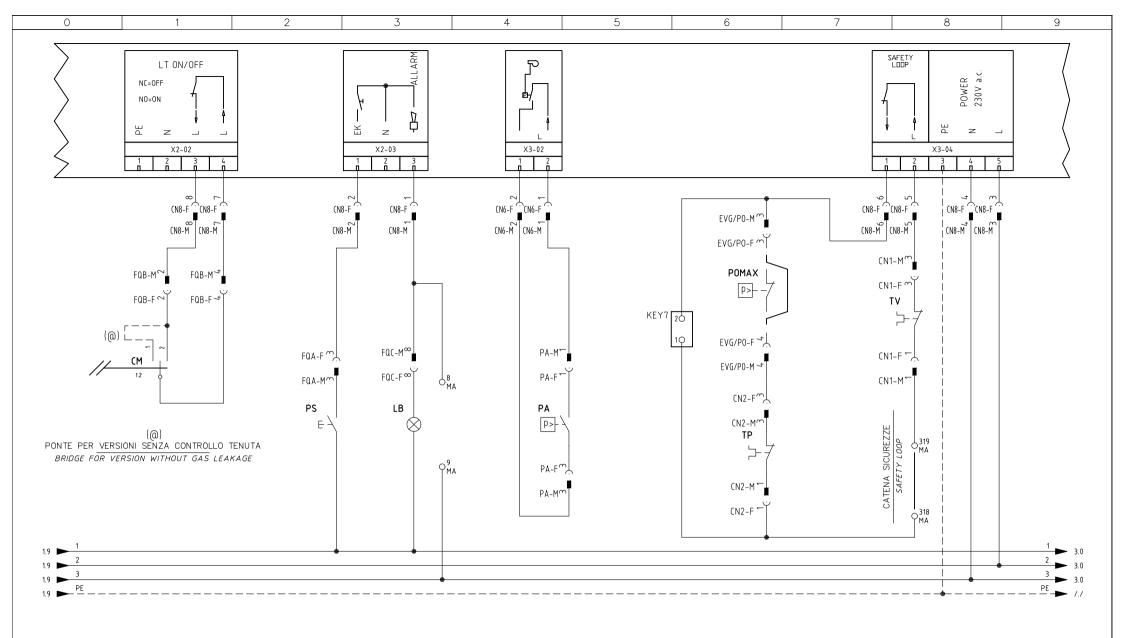
0	1	2	3	4	5	6	7	8	9

Data 22/05/2015		PREC.	FOGLIO
Revisione	01	11	12
	0 0170	SEGUE	TOTALE
Dis. N. U	9 – 0432	13	15

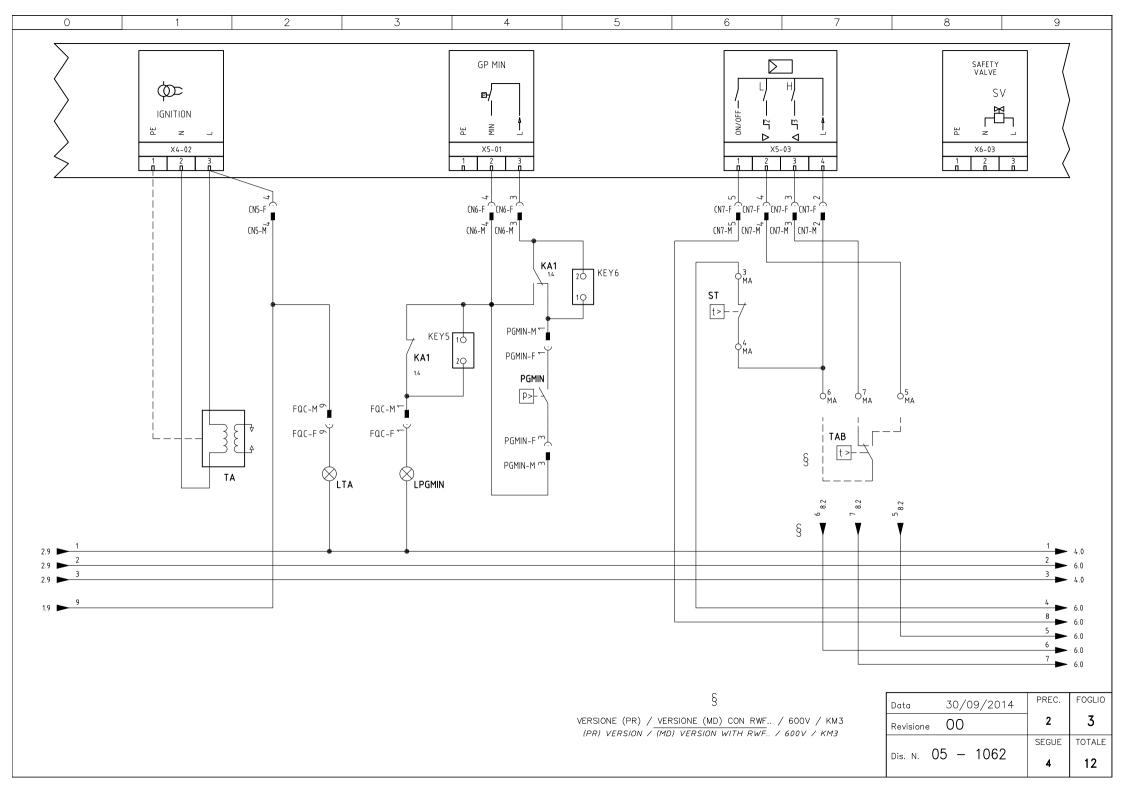
0 1 2 3 4 5 6 7 8 9										
	0	1	2	3	4	5	6	7	8	9

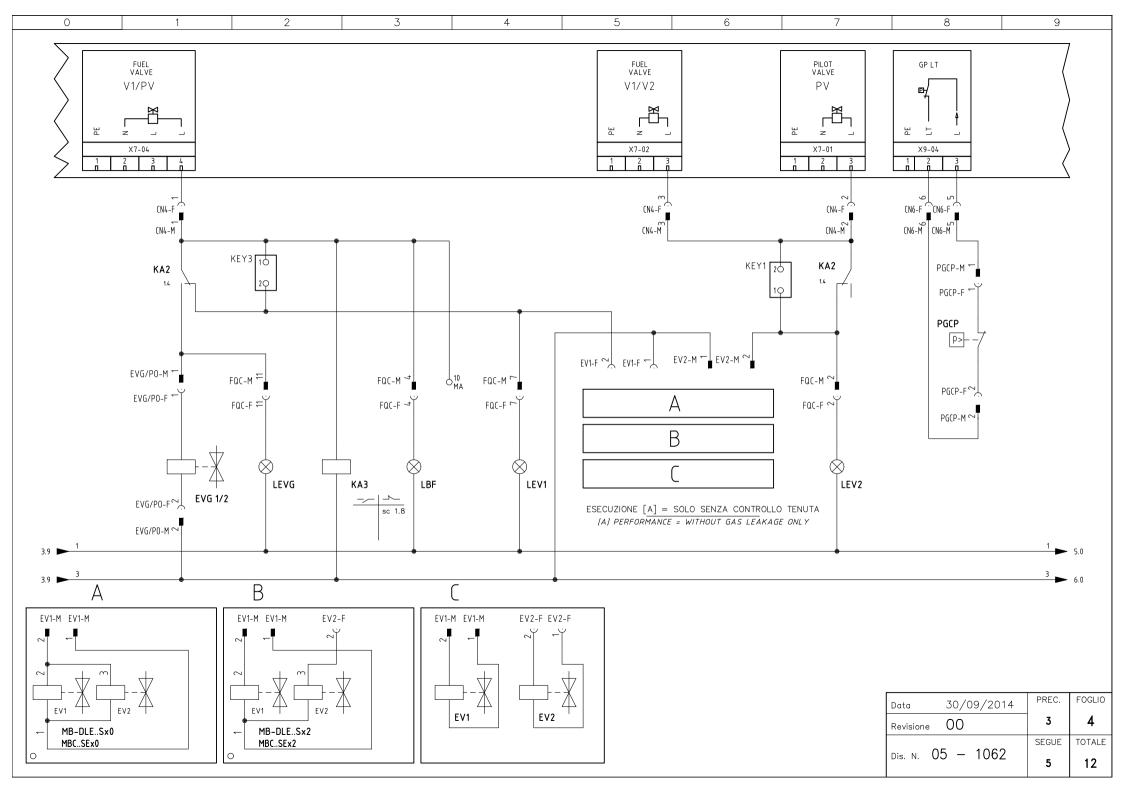

Sigla/Item	Foglio/Sheet	Funzione	Function
600V RRR0-1-T73	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
AZL2x	6	INTERFACCIA UTENTE	USER INTERFACE
[M	1	COMMUTATORE FUNZIONAMENTO 1)GAS 0)SPENTO 2)GASOLIO	MANUAL OPERATION SWITCH 1)GAS 0)OFF 2)LIGHT OIL
IMF	7	COMMUT. MANUALE FUNZ. 0)FERMO 1)ALTA FIAMMA 2)BASSA FIAMMA 3)AUTOMATICO	MANUAL SWITCH 0)OFF 1)HIGH FLAME 2)LOW FLAME 3)AUTOMATIC
EV1	5	ELETTROVALVOLA GAS LATO RETE	UPSTREAM GAS SOLENOID VALVE
V2	5	ELETTROVALVOLA GAS LATO BRUCIATORE	DOWNSTREAM GAS SOLENOID VALVE
VG 1/2	5	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVES
Q-LED	12	PANNELLO FRONTALE (LED)	FRONT PANEL (LED)
U1	1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
:U3	1	FUSIBILI LINEA POMPA	PUMP LINE FUSES
U4	1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
U6.3	7	FUSIBILE	FUSE
U-A	1	FUSIBILI DI LINEA	LINE FUSES
U-B	1	FUSIBILE DI LINEA	LINE FUSE
Ĵ	1	INTERRUTTORE GENERALE	MAINS SWITCH
(A1	1	RELE'' AUSILIARIO	AUXILIARY RELAY
A2	1	RELE'' AUSILIARIO	AUXILIARY RELAY
(A3	5	RELE'' AUSILIARIO	AUXILIARY RELAY
(M3 HCRMMD	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
(M-P	2	CONTATTORE MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR CONTACTOR
(M-V	2	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
AF	6	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
В	3	LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE	INDICATOR LIGHT FOR BURNER LOCK-OUT
BF	5	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
EV1	5	LAMPADA SEGNALAZIONE APERTURA [EV1]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1]
EV2	5	LAMPADA SEGNALAZIONE APERTURA [EV2]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2]
EVG	5	LAMPADA SEGNALAZIONE APERTURA [EVG]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG]
1E73.000xx + PME73.831xxBC	2	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
ME73.831xxBC	2	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
P	2	LAMPADA SEGNALAZIONE FUNZIONAMENTO POMPA	INDICATOR LIGHT FOR PUMP OPERATION
PGMIN	4	LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE	INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK
.Τ	2	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT

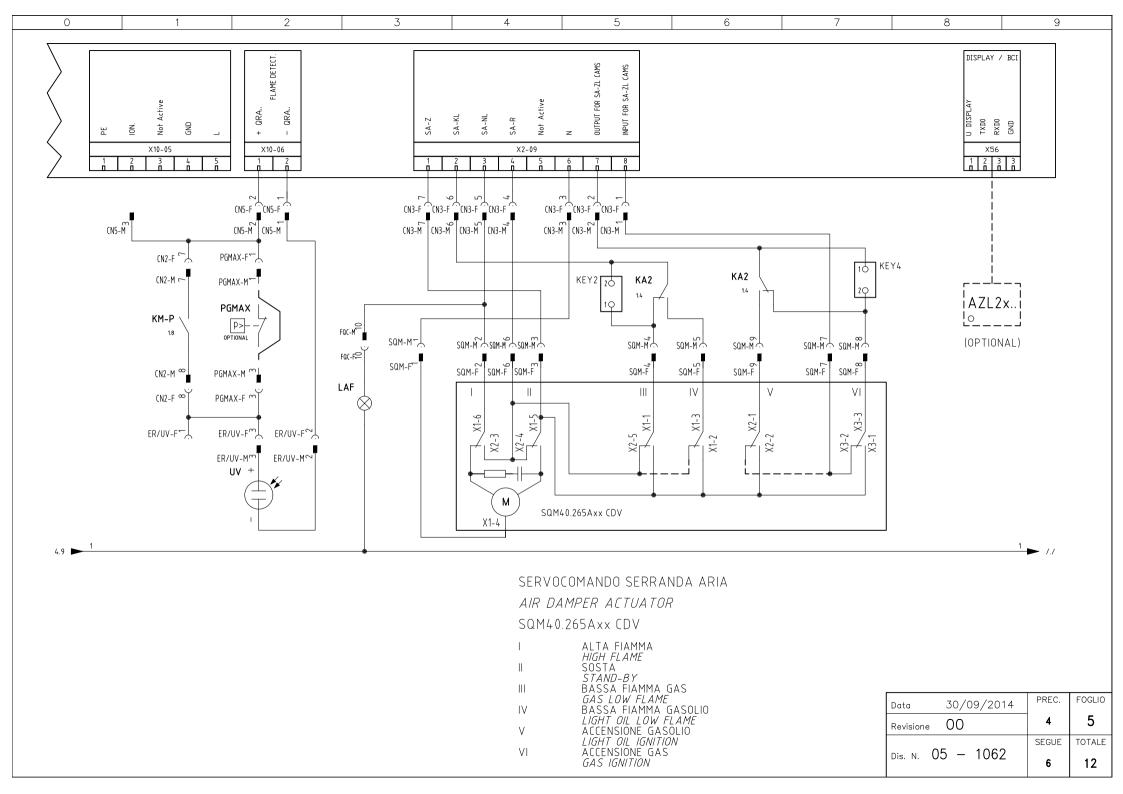

Data	22/05/2015	PREC.	FOGLIO
Revisione	01	12	13
	0 0470	SEGUE	TOTALE
Dis. N. U	Dis. N. 09 - 0432		15

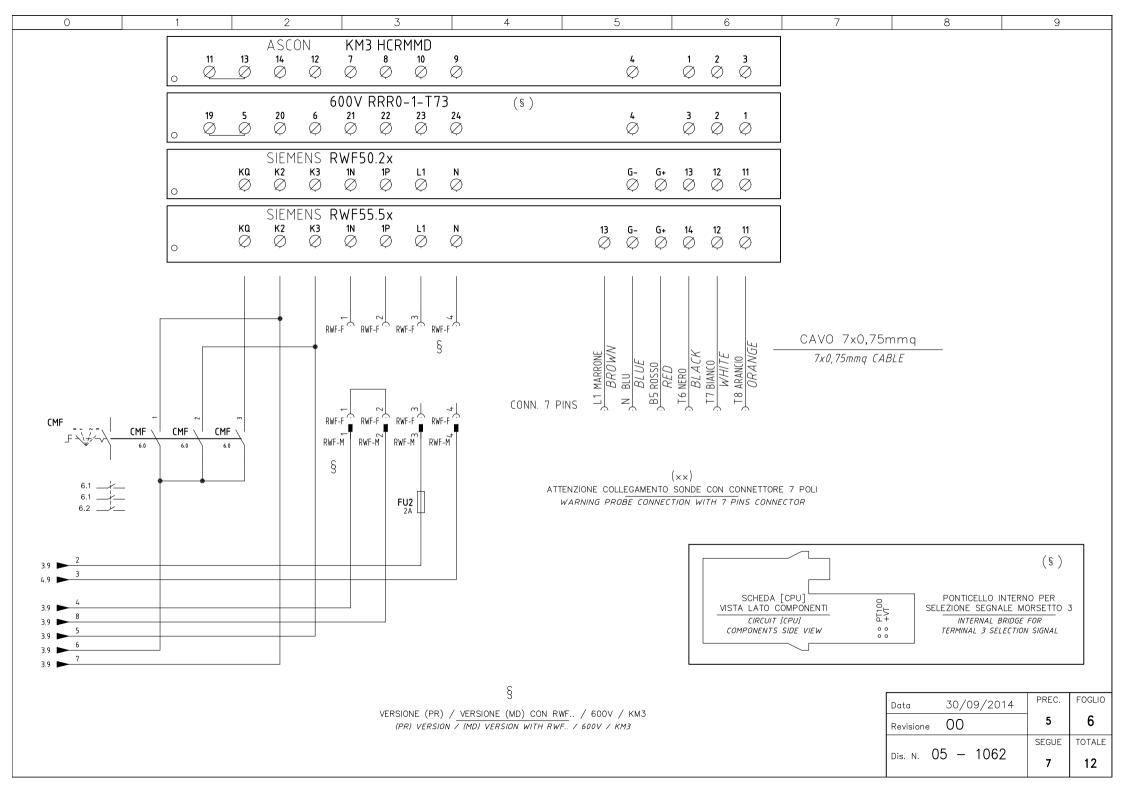

0 1 2 3 4 5 6 7 8 9										
	0	1	2	3	4	5	6	7	8	9

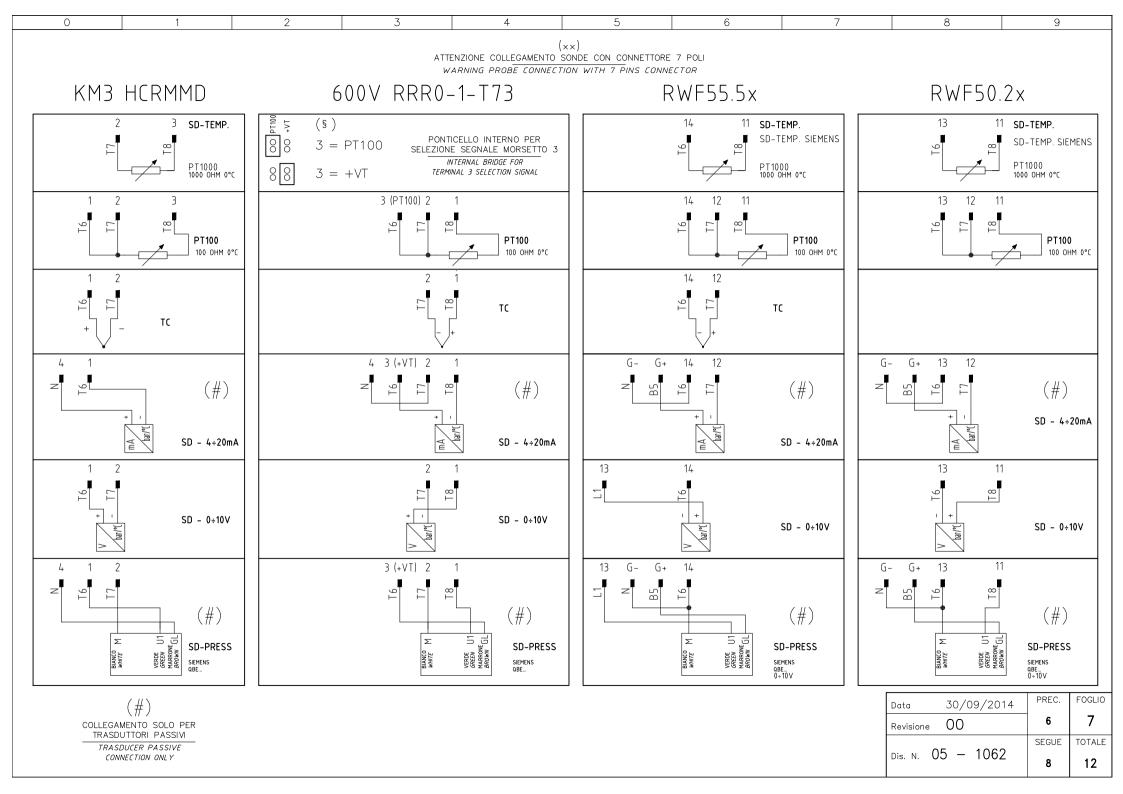
Sigla/Item	Foglio/Sheet	Funzione	Function
LTA	4	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
LTP	2	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT
MB-DLESx0	5	GRUPPO VALVOLE GAS	GAS VALVES GROUP
MB-DLESx2	5	GRUPPO VALVOLE GAS	GAS VALVES GROUP
MBCSEx0	5	GRUPPO VALVOLE GAS (ALTERNATIVO)	GAS VALVES GROUP (ALTERNATIVE)
MBCSEx2	5	GRUPPO VALVOLE GAS (ALTERNATIVO)	GAS VALVES GROUP (ALTERNATIVE)
MP	1	MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR
MV	1	MOTORE VENTILATORE	FAN MOTOR
PA	3	PRESSOSTATO ARIA	AIR PRESSURE SWITCH
PGCP	5	PRESSOSTATO GAS CONTROLLO PERDITE	GAS LEAKAGE PRESSURE SWITCH
PGMAX	6	PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL)	MAXIMUM PRESSURE GAS SWITCH (OPTIONAL)
PGMIN	4	PRESSOSTATO GAS DI MINIMA PRESSIONE	MINIMUM GAS PRESSURE SWITCH
POMAX	3	PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL)	MAXIMUM OIL PRESSURE SWITCH (OTIONAL)
PS	3	PULSANTE SBLOCCO FIAMMA	FLAME UNLOCK BUTTON
PT100	8	SONDA DI TEMPERATURA	TEMPERATURE PROBE
RWF40.0xx	7	REGOLATORE MODULANTE	BURNER MODULATOR
RWF50.2x	7	REGOLATORE MODULANTE	BURNER MODULATOR
RWF55.5x	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
SD-PRESS	8	SONDA DI PRESSIONE	PRESSURE PROBE
SD-TEMP.	8	SONDA DI TEMPERATURA	TEMPERATURE PROBE
SD - 0÷10V	8	TRASDUTTORE USCITA IN TENSIONE	TRANSDUCER VOLTAGE OUTPUT
SD - 4÷20mA	8	TRASDUTTORE USCITA IN CORRENTE	TRANSDUCER CURRENT OUTPUT
SQM40.265Axx CDV	6	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER ACTUATOR
ST	4	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES
TA	4	TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER
ТАВ	4	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES
TC	8	TERMOCOPPIA	THERMOCOUPLE
TP	1	TERMICO MOTORE POMPA	PUMP MOTOR THERMAL
ΤV	1	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL
UV	6	SONDA UV RILEVAZIONE FIAMMA	UV FLAME DETECTOR

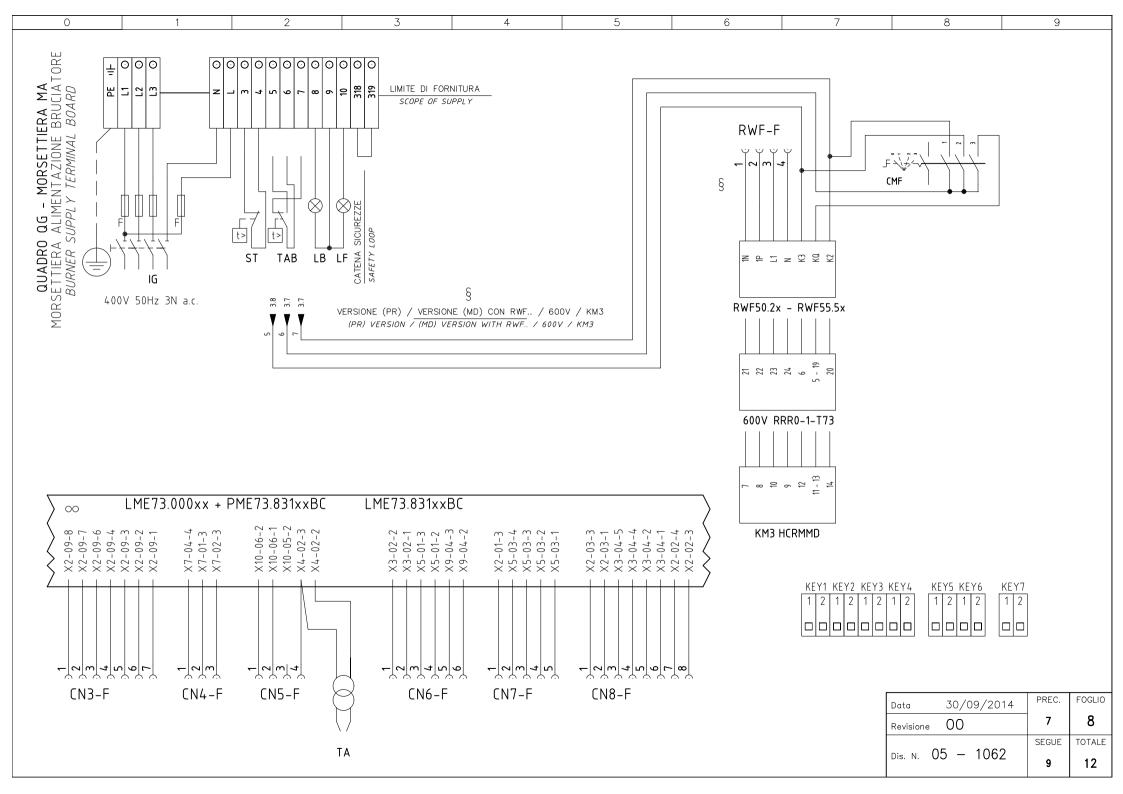

Data	22/05/2015	PREC.	FOGLIO
Revisione	01	13	14
	0 0470	SEGUE	TOTALE
Dis. N. U	9 – 0432	15	15

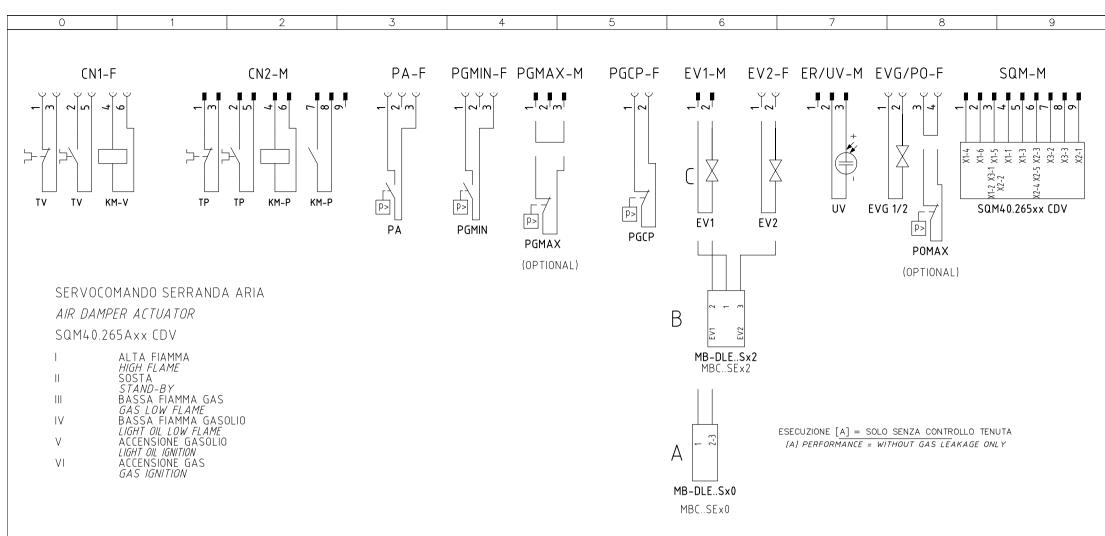


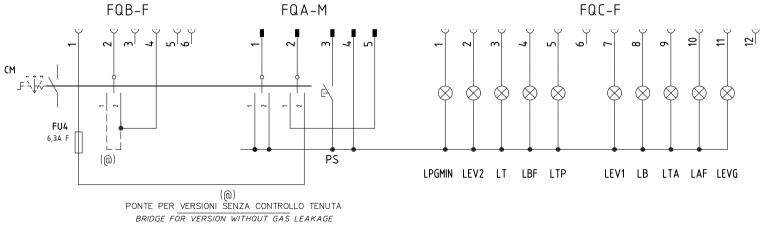




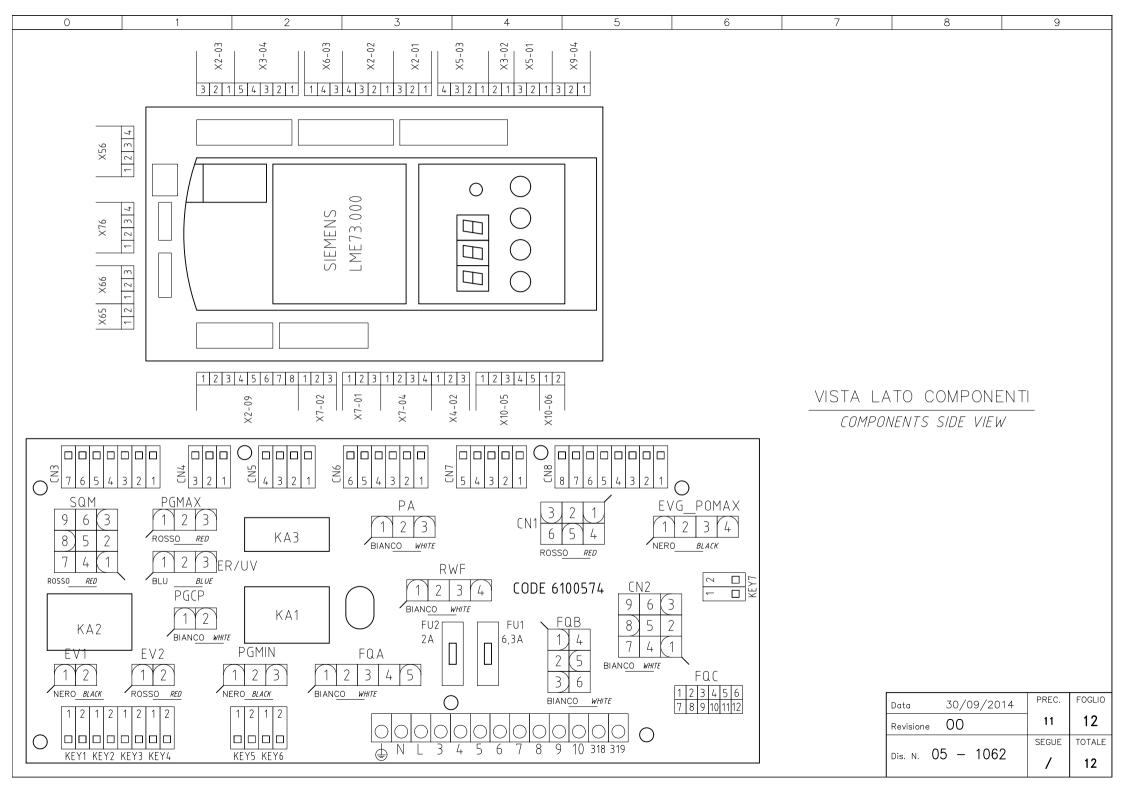

Data	30/09/2014	PREC.	FOGLIO
Revisione	00	1	2
	F 1000	SEGUE	TOTALE
Dis. N. U	5 - 1062	3	12







Data	30/09/2014	PREC.	FOGLIO	
Revisione	00	8	9	
	F 4000	SEGUE	TOTALE	
Dis. N. U	5 - 1062	10	12	


0	1	2	3	4	5	6	7	8	9

Sigla/Item	Foglio/Sheet	Funzione	Function
600V RRR0-1-T73	6	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
AZL2x	5	INTERFACCIA UTENTE	USER INTERFACE
CM	1	COMMUTATORE FUNZIONAMENTO 1)GAS 0)SPENTO 2)GASOLIO	MANUAL OPERATION SWITCH 1)GAS 0)OFF 2)LIGHT OIL
CMF	6	COMMUT. MANUALE FUNZ. 0)FERMO 1)ALTA FIAMMA 2)BASSA FIAMMA 3)AUTOMATICO	MANUAL SWITCH 0)OFF 1)HIGH FLAME 2)LOW FLAME 3)AUTOMATIC
EV1	4	ELETTROVALVOLA GAS LATO RETE	UPSTREAM GAS SOLENOID VALVE
EV2	4	ELETTROVALVOLA GAS LATO BRUCIATORE	DOWNSTREAM GAS SOLENOID VALVE
EVG 1/2	4	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVE
FU1	1	FUSIBILE LINEA AUSILIARI	AUXILIARY LINE FUSE
FU2	6	FUSIBILE	FUSE
FU3	1	FUSIBILI LINEA POMPA	PUMP LINE FUSES
FU4	1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
FU-A	1	FUSIBILI DI LINEA	LINE FUSES
FU-B	1	FUSIBILE DI LINEA	LINE FUSE
IG	1	INTERRUTTORE GENERALE	MAINS SWITCH
KA1	1	RELE' AUSILIARIO	AUXILIARY RELAY
KA2	1	RELE' AUSILIARIO	AUXILIARY RELAY
КАЗ	4	RELE' AUSILIARIO	AUXILIARY RELAY
KM3 HCRMMD	6	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
KM-P	1	CONTATTORE MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR CONTACTOR
KM-V	1	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
LAF	5	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
LB	2	LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE	INDICATOR LIGHT FOR BURNER LOCK-OUT
LBF	4	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
LEV1	4	LAMPADA SEGNALAZIONE APERTURA [EV1]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1]
LEV2	4	LAMPADA SEGNALAZIONE APERTURA [EV2]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2]
LEVG	4	LAMPADA SEGNALAZIONE APERTURA [EVG]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG]
LME73.000xx + PME73.831xxBC	1	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
LME73.831xxBC	1	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
LPGMIN	3	LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE	INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK
LT	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT
LTA	3	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
LTP	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT

Data	30/09/2014	PREC.	FOGLIO
Revisione	00	9	10
05 1000		SEGUE	TOTALE
Dis. N. U	5 - 1062	11	12

0	1	2	3	4	5	6	7	8	9	
Sigle /Itom	Item Foglio/Sheet Funzione				Ever-March 1					
Sigla/Item	Foglio/ Sheer					Function				
MB-DLESx0	4	GRUPPO VALVOLE C					GAS VALVES GROUP			
MB-DLESx2	4	GRUPPO VALVOLE C				GAS VALVES GROUP				
MBCSEx0	4	GRUPPO VALVOLE C				GAS VALVES GROUP (ALTERNATIVE)				
MBCSEx2	4	GRUPPO VALVOLE C					GAS VALVES GROUP (ALTERNATIVE)			
MP	1	MOTORE POMPA GA				LIGHT OIL PUMP MOTOR	{			
MV	1	MOTORE VENTILATO				FAN MOTOR				
PA	2	PRESSOSTATO ARIA				AIR PRESSURE SWITCH				
PGCP	4		CONTROLLO PERDITE	,		GAS LEAKAGE PRESSU				
PGMAX	5		DI MASSIMA PRESSIC			MAXIMUM PRESSURE GAS SWITCH (OPTIONAL)				
PGMIN	3	PRESSOSTATO GAS DI MINIMA PRESSIONE			MINIMUM GAS PRESSURE SWITCH					
POMAX	2	PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL)			MAXIMUM OIL PRESSURE SWITCH (OTIONAL)					
PS	2	PULSANTE SBLOCCO FIAMMA		FLAME UNLOCK BUTTON						
PT100	7	SONDA DI TEMPERA	TURA			TEMPERATURE PROBE				
RWF50.2x	6	REGOLATORE MODU	_ANTE			BURNER MODULATOR				
RWF55.5x	6	REGOLATORE MODULANTE (ALTERNATIVO) BURNER MODULATOR (ALTERNATIVE)								
SD-PRESS	7	SONDA DI PRESSION	E			PRESSURE PROBE				
SD-TEMP.	7	SONDA DI TEMPERA	TURA			TEMPERATURE PROBE				
SD - 0÷10V	7	TRASDUTTORE USC	TA IN TENSIONE			TRANSDUCER VOLTAGE	E OUTPUT			
SD - 4÷20mA	7	TRASDUTTORE USC	TA IN CORRENTE			TRANSDUCER CURRENT OUTPUT				
SQM40.265Axx CDV	5	SERVOCOMANDO SE	RRANDA ARIA			AIR DAMPER ACTUATOR				
ST	3	SERIE TERMOSTATI	(PRESSOSTATI			SERIES OF THERMOSTATS OR PRESSURE SWITCHES				
TA	3	TRASFORMATORE DI ACCENSIONE			IGNITION TRANSFORMER					
ТАВ	3	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA				HIGH-LOW THERMOSTAT/PRESSURE SWITCHES				
TC	7	TERMOCOPPIA				THERMOCOUPLE				
TP	1					PUMP MOTOR THERMAL				
TV	1	TERMICO MOTORE VENTILATORE FAN MOTOR THERMAL								
UV	5	SONDA UV RILEVAZIONE FIAMMA				UV FLAME DETECTOR				

Data	30/09/2014	PREC.	FOGLIO
Revisione	00	10	11
	F 1000	SEGUE	TOTALE
Dis. N. U	5 - 1062	12	12

