KP60 KP72 KP73 Dual fuel gas - heavy oil burners Micro-processor controlled LMV2x/3x MANUAL OF INSTALLATION - USE - MAINTENANCE BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### DANGERS, WARNINGS AND NOTES OF CAUTION This manual is supplied as an integral and essential part of the product and must be delivered to the user. Information included in this section are dedicated both to the user and to personnel following product installation and maintenance. The user will find further information about operating and use restrictions, in the second section of this manual. we highly recommend to read it. Carefully keep this manual for future reference. #### The following: - Entails the customer's acknowledgement and acceptance of the company's general terms and conditions of sale, in force at the date of order confirmation and available in the appendix to the current price lists - Is intended exclusively for specialised, experienced and trained users able to operate in conditions that are safe for people, the device and the environment, and in full compliance with the requirements set out on the following pages and with current health and safety regulations. Information regarding assembly/installation, maintenance, replacement and repair is always and exclusively intended for (and therefore only to be carried out by) specialised personnel and/or directly by the Authorised Technical Service #### **IMPORTANT:** The supply has been made at the best conditions on the basis of the customer's order and technical indications concerning the state of the places and the installation systems, as well as the need to prepare certain certifications and / or additional adaptations with respect to the standard observed and transmitted for each product. In this respect, the manufacturer declines any responsibility for complaints, malfunctions, criticalities, damages and/or anything else consequent to incomplete, inaccurate and/or missing information, as well as failure to comply with the technical requirements and installation regulations, initial start-up, operational management and maintenance. For proper operation of the device, it is necessary to ensure the readability and conservation of the manual, also for future reference. In case of deterioration or more simply for reasons of technical and operational insight, contact the manufacturer directly. Text, descriptions, images, examples and anything else contained in this document are the exclusive property of the manufacturer. Any reproduction is prohibited. #### **RISK ANALYSIS** #### Instruction manual supplied with the burner: This is an integral and essential part of the product and must not be separated from it. It must therefore be kept carefully for any necessary consultation and must accompany the burner even if it is transferred to another owner or user, or to another system. In the event of damage or loss, another copy must be requested from the local customer service centre; #### Delivery of the system and instruction manual The supplier of the system is obliged to accurately inform the user about: Use of the system; - any further testing that may be necessary before activating the system; - maintenance and the requirement to have the system checked at least once a year by a contractor or other specialised technician. To ensure periodic monitoring, the manufacturer recommends drawing up a Maintenance Agreement. #### **WARRANTY AND LIABILITY** In particular, warranty and liability claims will no longer be valid in the event of damage to persons and/or property if such damage is due to any of the following causes: - Incorrect installation, start-up, use and maintenance of the burner; - Improper, incorrect or unreasonable use of the burner; - Operation by unqualified personnel; - Carrying out of unauthorised changes to the device; - Use of the burner with safety devices that are faulty, incorrectly applied and/or not working; - Installation of untested supplementary components on the burner; - Powering of the burner with unsuitable fuels; - Faults in the fuel supply system; - Use of the burner even after an error and/or fault has occurred; - Repairs and/or overhauls incorrectly carried out; - Modification of the combustion chamber with inserts that prevent the regular development of the structurally established flame; - Insufficient and inappropriate supervision and care of the burner components most subject to wear and tear; - Use of non-original components, whether spare parts, kits, accessories and optionals; - Force majeure. Furthermore, the manufacturer declines all responsibility for non-compliance with this manual. **WARNING!** Failure to comply with this manual, operational negligence, incorrect installation and unauthorised modifications will result in the manufacturer's warranty for the burner being voided. #### Personnel training The user is the person, organisation or company that has acquired the appliance and intends to use it for the specific purpose. The user is responsible for the appliance and for training the personnel that operate it. #### The user: - Undertakes to entrust the machine to suitably trained and qualified personnel: - Must take all measures necessary to prevent unauthorised people gaining access to the appliance; - Undertakes to adequately inform personnel about application and observance of the safety requirements, and therefore ensure that they are familiar with the operating instructions and safety requirements; - Must inform the manufacturer if any faults or malfunctions of the accident prevention systems occur, and if there is any suspected danger; - Personnel must always use the personal protective equipment required by law and follow the instructions provided in this manual; - Personnel must observe all danger and caution notices on the appliance; - Personnel must not carry out, on their own initiative, operations or interventions outside their area of expertise; - Personnel must inform their superiors of any problem and danger that - The assembly of parts of other makes, or any modifications made, may alter the characteristics of the appliance and may therefore compromise operational safety. The manufacturer therefore declines all responsibility for damages arising from the use of non-original parts. #### **GENERAL INTRODUCTION** - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. • When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for WARNING! Failure to observe the information given in this manual, operating negligence, incorrect installation and carrying out of non authorised modifications will result in the annulment by the manufacturer of the guarantee that it supplies with the burner. The damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things: - Failure to comply with one of the WARNINGS in this chapter - Incorrect handling, installation, adjustment or maintenance of the burner - Incorrect use of the burner or incorrect use of its parts or optional supply #### SPECIAL INSTRUCTIONS FOR BURNERS - a Make the following checks: - the burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion; - only burners designed according to the regulations in force should be used: - this burner should be employed exclusively for the use for which it was designed; - before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel); - observe caution with hot burner
components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - remove the power supply by disconnecting the power cord from the mains: - disconnect the fuel supply by means of the hand-operated shutoff valve and remove the control handwheels from their spindles. #### Special warnings - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox. - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance: - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force: - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - e make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. #### GENERAL INSTRUCTIONS DEPENDING ON FUEL USED ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - do not touch the unit with wet or damp parts of the body and/or with bare feet: - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL #### **General Warnings** - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type; - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### Special instructions for using gas Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### **BURER DATA PLATE** For the following information, please refer to the data plate: - Burner type and burner model: must be reported in any communication with the supplier - Burner ID (serial number): must be reported in any communication with the supplier - Date of production (year and month) - Information about fuel type and network pressure | Туре | | |--------------|---| | Model | | | Year | | | S.Number | | | Output | | | Oil Flow | | | Fuel | | | Category | - | | Gas Pressure | | | Viscosity | | | El.Supply | | | El.Consump. | | | Fan Motor | | | Protection | - | | Drwaing n° | - | | P.I.N. | - | | | | Consump #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - immediately open doors and windows to create an air flow to purge the room; - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. #### Using oil pressure gauges Generally, pressure gauges are equipped with a manual valve. Open the valve only to take the reading and close it immediately afterwards. #### SYMBOLS USED # **BURNER SAFETY** The burners- and the configurations described below - comply with the regulations in force regarding health, safety and the environment. For more in-depth information, refer to the declarations of conformity that are an integral part of this Manual. **DANGER!** Incorrect motor rotation can seriously damage property and injure people. # A .Do not touch any mechanical moving parts with your hands or any other part of your body. Injury hazard Do not touch any parts containing fuel (i.e. tank and pipes). Scalding hazard Do not use the burner in situations other than the ones provided for in the data plate. Do not use fuels other than the ones stated. Do not use the burner in potentially explosive environments. Do not remove or by-pass any machine safety devices Do not remove any protection devices or open the burner or any other component while the burner is running. Do not disconnect any part of the burner or its components while the burner is running. Untrained staff must not modify any linkages. - After any maintenance, it is important to restore the protection devices before restarting the machine. - All safety devices must be kept in perfect working order. - Personnel authorized to maintain the machine must always be provided with suitable protections. **ATTENTION**: while running, the parts of the burner near the generator (coupling flange) are subject to overheating. Where necessary, avoid any contact risks by wearing suitable PPE. #### Safety and prevention - Opening or tampering with the burner components is not allowed, apart from the parts requiring maintenance. - Only those parts envisaged by the manufacturer can be replaced. #### **DIRECTIVES AND STANDARDS** #### Gas - Heavy oil burners #### European directives 2016/426/UE (appliances burning gaseous fuels) 2014/35/UE (Low Tension Directive) 2014/30/UE (Electromagnetic compatibility Directive) 2006/42/CE (Machinery Directive) #### Harmonized standards UNI EN 676 (Automatic forced draught burners for gaseous fuels) EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) EN 60204-1:2006 (Safety of machinery – Electrical equipment of machines.) **CEI EN 60335-1** (Specification for safety of household and similar electrical appliances); UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction); #### Industrial burners #### European directives 2006/42/CE (Machinery Directive) 2014/35/UE (Low Tension Directive) 2014/30/UE (Electromagnetic compatibility Directive) 2006/42/CE (Machinery Directive) #### Harmonized standards EN 746-2 (Industrial thermoprocessing equipment - Part 2: Safety requirements for combustion and fuel handling systems) **EN 55014-1** (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) **EN 60204-1:2006** (Safety of machinery – Electrical equipment of machines.) **CEI EN 60335-1** (Specification for safety of household and similar electrical appliances); UNI EN ISO 12100:2010 (Safety of machinery - General principles for design - Risk assessment and risk reduction); #### **PART
I: INSTALLATION MANUAL** #### **Burner model identification** Burners are identified by burner type and model. Burner model identification is described as follows. | Type | KP60 | Model | MP. | PR. | S. | | A. | 8. | 50 | EC | |------|------|-------|-----|-----|-----|-----|-----|-----|-----|-----| | | (1) | | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | | (1) BURNER TYPE | KP60 - KP72 - KP73 | |-----------------------------|--| | (2) FUEL | M - Natural gas - L - LPG N - Heavy oil, viscosity <= 50cSt (7° E) @ 50° C D - Heavy oil, viscosity <= 400cSt (50° E) @ 50° C P - Petroleum, viscosity 89cSt (12° E) @ 50° C | | (3) OPERATION | MD - Fully modulating - PR - Progressive | | (4) BLAST TUBE | S - Standard | | (5) DESTINATION COUNTRY | * - see data plate | | (6) BURNER VERSION | A - Standard | | (7) EQUIPMENT | 0 = 2 Gas valves 1 = 2 Gas valves + gas proving system 7 = 2 Gas valves+high gas pressure switch 8 = 2 Gas valves + gas proving system+high gas pressure switchl | | (8) GAS CONNECTION | $32 = \text{Rp1"}_{1/4} 40 = \text{Rp1"}_{1/2} 50 = \text{Rp2"} 65 = \text{DN65} 80 = \text{DN80}$ | | (9) MICRO-PROCESSOR CONTROL | EC = micro-processor control, without inverter ED = micro-processor control, with inverter | # Gas categories and countries of application | Countries | | |---|----------------------------------| | AL, AT, BE, BG, CH, CY, DE, DK, EE, ES, FI, FR, G IE, IS, IT, LT, LU, LV, MK, MT, NO, NL, PL, PT, RO, | B, GR, HR, HU,
SE, SI, SK, TR | | Gro | oup | |--------|--------| | Н | L (*) | | E | 2R (*) | | EK (*) | Er (*) | | LL (*) | E (R) | ^(*) Premix type ...N burners are not enabled to work with these gas categories. The above gas groups can be combined according to the standard EN437:2021 and national situation of countries. # Type of fuel used DANGER! The burner must be used only with the fuel specified in the burner data plate. # Specifications | BURNERS | | KP60 | KP60 | | | | | | |-------------------------------------|--------------------------------|--------------------------|--------------------------|--|--|--|--|--| | Output | min. kW - max. kW | 160 - 8 | 380 | | | | | | | Fuel | | MP | LP | | | | | | | Gas category | | (see next paragraph) | I _{3B/P} | | | | | | | Heavy oil viscosity | | See "Burner model id | lentification" table | | | | | | | Oil train inlet pressure | bar | 2 ma | Х | | | | | | | Gas rate | min max. (Stm ³ /h) | 17 - 93 | 6 - 33 | | | | | | | Gas pressure | min max. mbar | (Note | 2) | | | | | | | Heavy oil rate | min max. kg/h | 14 - 7 | 77 | | | | | | | Power supply | | 400V 3N ~ | · 50Hz | | | | | | | Total power consumption (Heavy oil) | kW | 6,65 | 5 | | | | | | | Total power consumption (Petroleum) | kW | 3,65 | 5 | | | | | | | Fan motor | kW | 1,1 | | | | | | | | Pump motor | kW | 0,55 | 5 | | | | | | | Pre-heater resistors (heavy oil) | kW | 4,5 | | | | | | | | Pre-heater resistors (Petroleum) | kW | 1,5 | | | | | | | | Protection | | IP40 |) | | | | | | | Operation | | Progressive - Ful | ly modulating | | | | | | | Gas Train 32 | | 32 / Rp1" _{1/4} | 32 / Rp1" _{1/4} | | | | | | | Gas Train 40 | Values size/Con compostion | 40 / Rp1" _{1/2} | 40 / Rp1" _{1/2} | | | | | | | Gas Train 50 | Valves size/Gas connection | 50 / Rp 2" | 50 / Rp 2" | | | | | | | Gas Train 65 | | 65 / DN65 | 65 / DN65 | | | | | | | Operating temperature | °C | -10 ÷ + | -50 | | | | | | | Storage temperature | °C | -20 ÷ +60 | | | | | | | | Working service | | Intermi | tent | | | | | | | Note1: | All gas flow rates are referred to Stm^3 / h (1.013 mbar absolute pressure, 15° C temperature) and are valid for G20 gas (net calorific value H_i = 34,02 MJ / Stm^3 = 9,45 kWh / Stm^3); | |----------|--| | Note2: | Maximum gas pressure= 360 mbar (with Dungs MBDLE) Maximum gas pressure= 500 mbar (with Siemens VGD or Dungs MultiBloc MBE) Minimum gas pressure= see gas curves. | | Warning: | Burners are suitable only for indoor operation with a maximum relative humidity of 80% | ^{*} NOTE ON THE BURNER WORKING SERVICE: LMV2 automatically stops after 24h of continuous working. The device immediately-starts up, automatically. LMV3 performs countinuous operation. The values in the diagrams refer to **natural gas** with a calorific value of 8125 kcal/Stm^3 (15°C , 1013 mbar) and a density of 0.714 kg/Stm^3 . The values in the diagrams refer to **GPL** with a calorific value of 22300 kcal/Stm³ (15°C, 1013 mbar) and a density of 2.14 kg/Stm³. When the calorific value and the density change, the pressure values should be adjusted accordingly. Where: $$\Delta p2 = \Delta p1 * \left(\frac{Q2}{Q1}\right)^2 * \left(\frac{\rho 2}{\rho 1}\right)$$ - $p\,1\,$ Natural gas pressure shown in diagram - p2 Real gas pressure - Q1 Natural gas flow rate shown in diagram - Q2 Real gas flow rate - ho1 Natural gas density shown in diagram - $\rho 2$ Real gas density | BURNERS | MP | KP720.xx | KP721.xx | KP73 | | | | | | | | | |-------------------------------------|--------------------------------|---|--|---------------|--|--|--|--|--|--|--|--| | Output | min. kW - max. kW | 330 - 1200 | 330 - 1550 | 300 - 2100 | | | | | | | | | | Fuel | | P - Petroleun | M- Natural gas
n, viscosity 89cSt (12 | 2° E) @ 50° C | | | | | | | | | | Gas category | | (see next paragraph) | | | | | | | | | | | | Heavy oil viscosity | | See "Burner model identification" table | | | | | | | | | | | | Oil train inlet pressure | bar | | 2 max | | | | | | | | | | | Gas rate | min max. (Stm ³ /h) | 35 - 127 | 35 - 164 | 32 - 222 | | | | | | | | | | Gas pressure | min max. mbar | (Note2) | | | | | | | | | | | | Heavy oil rate | min max. kg/h | 29 - 107 29 - 138 28 - 179 | | | | | | | | | | | | Power supply | | | 400V 3N ~ 50Hz | | | | | | | | | | | Total power consumption (Heavy oil) | kW | 11,25 | 11,25 | 16,6 | | | | | | | | | | Total power consumption (Petroleum) | kW | 5,91 | 5,91 | 8,6 | | | | | | | | | | Fan motor | kW | 2,2 | 2,2 | 3 | | | | | | | | | | Pump motor | kW | 0,55 | 0,55 | 1,1 | | | | | | | | | | Pre-heater resistors (heavy oil) | kW | 8 | 8 | 12 | | | | | | | | | | Pre-heater resistors (Petroleum) | kW | 2.66 | 2.66 | 4 | | | | | | | | | | Protection | | | IP40 | | | | | | | | | | | Operation | | Prog | ressive - Fully modu | lating | | | | | | | | | | Gas Train 40 | | 40 / Rp1" _{1/2} | 40 / Rp1" _{1/2} | - | | | | | | | | | | Gas Train 50 | Valves size / Gas | | 50 / Rp 2 | | | | | | | | | | | Gas Train 65 | connection | | 65 / DN65 | | | | | | | | | | | Gas Train 80 | | 80 / DN80 | | | | | | | | | | | | Operating temperature | °C | -10 ÷ +50 | | | | | | | | | | | | Storage temperature | °C | -20 ÷ +60 | | | | | | | | | | | | Working service | | | Intermitent | | | | | | | | | | | BURNERS | LP | KP720.xx | KP721.xx | KP73 | | | | | | | | |-------------------------------------|--------------------------------|---|---------------------------------|---------------|--|--|--|--|--|--|--| | Output | min. kW - max. kW | 330 - 1200 | 330 - 1550 | 300 - 2100 | | | | | | | | | Fuel | | P- Petroleum | L- LPG
, viscosity 89cSt (12 | 2° E) @ 50° C | | | | | | | | | Gas category | | | see next paragraph | , 0 | | | | | | | | | Gas category | | I _{3B/P} | | | | | | | | | | | Heavy oil viscosity | | See "Burner model identification" table | | | | | | | | | | | Oil train inlet pressure | bar | 2 max | | | | | | | | | | | Gas rate- LPG | min max. (Stm ³ /h) | 12,3 - 45 | | | | | | | | | | | Gas pressure | min max. mbar | | | | | | | | | | | | Heavy oil rate | min max. kg/h | 29 - 107 | 29 - 138 | 28 - 179 | | | | | | | | | Power supply | | | 400V 3N ~ 50Hz | | | | | | | | | | Total power consumption (Heavy oil) | kW | 11,25 | 11,25 | 16,6 | | | | | | | | | Total power consumption (Petroleum) | kW | 5,91 | 5,91 | 8,6 | | | | | | | | | Fan motor | kW | 2,2 | 2,2 | 3 | | | | | | | | | Pump motor | kW | 0,55 | 0,55 | 1,1 | | | | | | | | | Pre-heater resistors (heavy oil) | kW | 8 | 8 | 12 | | | | | | | | | Pre-heater resistors (Petroleum) | kW | 2.66 | 2.66 | 4 | | | | | | | | | Protection | | | IP40 | 1 | | | | | | | | | Operation | | Progi | ressive - Fully modu | lating | | | | | | | | | Gas Train 40 | | 40 / Rp1" _{1/2} | 40 / Rp1" _{1/2} | - | | | | | | | | | Gas Train 50 | Valves size / Gas | | 50 / Rp 2 | | | | | | | | | | Gas Train 65 | connection | | 65 / DN65 | | | | | | | | | | Gas Train 80 | | 80 / DN80 | | | | | | | | | | | Operating temperature | °C | -10 ÷ +50 | | | | | | | | | | | Storage temperature | °C | | -20 ÷ +60 | | | | | | | | | | Working service | | | Intermitent | | | | | | | | | | | *DN | Α | AC | AE | AN | В | BB | С | CC | D | DD | E | F | G | J | K | L | M | 0 | Q | R | S | U | W | Υ | Z | |---------|-----|------|----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | 32 | 1213 | 89 | 313 | 256 | 374 | 314 | 839 | 493 | 1251 | 160 | 755 | 496 | 250 | 202 | 240 | 335 | M12 | 190 | 368 | 112 | 256 | 580 | 619 | 156 | 120 | | KP60 | 40 | 1213 | 89 | 313 | 256 | 374 | 314 | 839 | 493 | 1251 | 160 | 755 | 496 | 250 | 202 | 240 | 335 | M12 | 190 | 439 | 112 | 327 | 580 | 619 | 156 | 120 | | I I I I | 50 | 1213 | 89 | 313 | 256 | 374 | 314 | 839 | 493 | 1251 | 160 | 755 | 496 | 250 | 202 | 240 | 335 | M12 | 190 | 447 | 112 | 335 | 580 | 619 | 156 | 120 | | | 65 | 1213 | 89 | 313 | 256 | 374 | 314 | 839 |
493 | 1436 | 160 | 774 | 496 | 250 | 202 | 240 | 335 | M12 | 190 | 515 | 112 | 403 | 560 | 619 | 156 | 120 | A COUNTERFLANGE IS MANDATORY:a gasket must be placed between the generator and the counterflange Reccomended counterflange Boiler recommended drilling template | | *DN | Α | AA | В | BB | С | CC | D | DD | E | EE | F | G | Н | J | K | L | М | Omin | Omax | Q | R | S | Т | U | V | W | Υ | Ζ | |-----------|-----|------|----|-----|----|-----|----|------|----|-----|----|-----|-----|-----|-----|-----|---|-----|------|------|---|---|---|---|---|---|---|-----|---| | KP72 xx0. | 50 | 1299 | - | 505 | - | 794 | - | 1100 | - | 580 | - | 520 | 300 | 340 | 230 | 300 | - | M12 | 216 | 250 | - | - | - | - | - | - | - | 211 | - | | KP72 xx0. | 65 | 1299 | - | 505 | - | 794 | - | 1230 | - | 710 | - | 520 | 300 | 340 | 265 | 300 | - | M12 | 216 | 250 | - | - | - | - | - | - | - | 211 | - | | KP72 xx0. | 80 | 1299 | • | 505 | - | 794 | - | 1245 | - | 725 | - | 520 | 300 | 340 | 265 | 300 | - | M12 | 216 | 250 | - | • | - | - | - | - | - | 211 | - | | KP72 xx1. | 50 | 1299 | • | 505 | - | 794 | - | 1225 | - | 705 | - | 520 | 300 | 340 | 230 | 300 | - | M12 | 216 | 250 | - | | - | - | | - | - | 211 | - | | KP72 xx1. | 65 | 1299 | - | 505 | - | 794 | - | 1340 | - | 810 | - | 520 | 300 | 340 | 265 | 300 | - | M12 | 216 | 250 | - | - | - | - | - | - | - | 211 | - | | KP72 xx1. | 80 | 1299 | - | 505 | - | 794 | - | 1345 | - | 825 | - | 520 | 300 | 340 | 265 | 300 | - | M12 | 216 | 250 | - | - | - | - | - | - | - | 211 | - | O min O max Burner flange O min O max A COUNTERFLANGE IS MANDATORY:a gasket must be placed between the generator and the counterflange ^{*}DN = gas valves size # Overall dimensions - (mm) | | DN | Α | AA | В | BB | С | CC | D | DD | Е | EE | F | G | J | K | L | M | Omin | Omax | Q | R | S | Т | U | ٧ | W | Y | Z | |------|----|------|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|-----|----|-----|-----|-----|-----|-----| | KP73 | 50 | 1320 | 140 | 459 | 373 | 800 | 495 | 1378 | 475 | 838 | 400 | 540 | 320 | 226 | 300 | 375 | M10 | 216 | 250 | 400 | 130 | 270 | 10 | 610 | 216 | 635 | 198 | 150 | | KP73 | 65 | 1320 | 140 | 459 | 373 | 800 | 495 | 1302 | 475 | 762 | 400 | 540 | 320 | 275 | 300 | 375 | M10 | 216 | 250 | 400 | 130 | 270 | 10 | 565 | 313 | 635 | 198 | 150 | | KP73 | 80 | 1320 | 140 | 459 | 373 | 800 | 495 | 1308 | 475 | 764 | 400 | 540 | 320 | 275 | 300 | 375 | M10 | 216 | 250 | 400 | 130 | 270 | 10 | 565 | 344 | 635 | 198 | 150 | ^{*}DN = gas valves size ATTENTION: the counterflange is an optional supplied only on request. A gasket must be placed between the generator and the counterflange NOTE: The following items are optional: 25, 31, 32, 33 NOTE: The following items are included only on certain types of burner: 10, 11, 12 ATTENTION: connect the oil return line to the degassing bottle (standard UNI 9248), as shown in the chapter "Recommendations to design heavy oil feeding plants" According to the gas train size and the burner type, MB-DLE safety valves are supplied. In this case, the item 21 is integrated in the valves. See the drawing on the left. | | LEGEND 3LMMD22 | | | | | |-----|----------------------------------|--|--|--|--| | | OIL TRAIN | | | | | | 1 | Filter | | | | | | 2 | Pump and pressure governor | | | | | | 3 | Electrical motor | | | | | | 33 | Pressure gauge with manual valve | | | | | | 4 | Electrical preheater tank | | | | | | Pb4 | Temperature probe | | | | | | Pb1 | Temperature probe | | | | | | Pb3 | Temperature probe | | | | | | 9 | 3-way solenoid valve | | | | | | 10 | Flexible hose | | | | | | 11 | Flexible hose | | | | | | 12 | Flexible hose | | | | | | Pb2 | Temperature probe | | | | | | 13 | Oil distributor | | | | | | 15 | Pressure governor | | | | | | 16 | Flexible hose | | | | | | 17 | Burner | | | | | | | COMBUSTION AIR TRAIN | | | | | | 40 | Air damper with actuator | | | | | # 18 Air damper with actuator 19 Pressure switch - PA 20 Draught fan with electromotor MAIN GAS TRAIN | 21 | Filter | |----|--| | 22 | Pressure switch - PGMIN | | 23 | Safety valve with built in gas governor (VGD series) | | 24 | Proving system pressure switch - PGCP | | 25 | Pressure switch - PGMAX | | 26 | Butterfly valve | | 29 | Safety valve with built in gas governor & Filter (MB-DLE | | 31 | Bellows unit | | 32 | Manual valve | Fig. 1 - 3I2MD24 v1 Hydraulic diagram #### ON BOARD ITEMS SUPPLIED LOOSE ITEMS __ _ BY OTHERS BY BURNER CONSTRUCTOR ATTENTION: connect the oil return line to the degassing bottle (standard UNI 9248), as shown in the chapter "Recommendations to design heavy oil feeding plants" #### **GAS TRAIN CONNECTION** ATTENTION: Before executing the connections to the gas pipe network, be sure that the manual cutoff valves are closed. The following diagrams show some examples of possible gas trains with the components supplied with the burner and those fitted by the installer. The gas trains and the connection of the burner to the fuel supply line must be done in accordance with current local regulations. Legend: - 1 Filter - 2 Low pressure switch PGMIN - 3 Safety valve - 4 Proving system pressure switch PGCP (*optional) - 5 High pressure switch PGMAX: mandatory for MBE, optional for VGD and DMV-DLE - 6 Butterfly valve - 7 Upstream manual valve - 8 Main burner - 9 Antivibration joint (*optional) with valves MBE 12 MBE pressure sensor # Performance curves KP72 ...0.xx KP72 ...1.xx kW BACK PRESSURE IN COMBUSTION CHAMBER mbar BACK PRESSURE IN COMBUSTION CHAMBER mbar To get the output in kcal/h, multiply value in kW by 860. Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C.**NOTE**: The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjusting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum # Pressure in the Network / gas flow rate curves #### Gas burners GAS PRESSURE IN THE NETWORK mbar Stm³/hGas rate Stm³/h KP72 ...0.xx KP72 ...1.xx **KP73** Stm³/hGas rate Stm³/h Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis. # Combustion head gas pressure curves depending on the flow rate #### Curves are referred to pressure = 0mbar in the combustion head! The curves referred to the gas pressure in the combustion head, depending on the gas flow rate, are referred to the burner properly adjusted (percentage of residual O_2 in the flues as shown in the "Recommended combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the actuator are at the maximum opening. Refer to Fig. 2, showing the correct way to measure the gas pressure, considering the values of pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications. Fig. 2 # Key - 1 Generator - 2 Pressure outlet on the combustion chamber - 3 Gas pressure outlet on the butterfly valve - 4 Differential pressure gauge # Measuring the gas pressure in the combustion head In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner. On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on the next paragraph), it is easy to find out the burner's output in Stm³/h (quoted on the x axis) from the pressure measured in the combustion head (quoted on the y axis). The data obtained must be considered when adjusting the gas flow rate. NOTE: THE PRESSURE-RATE CURVES ARE GIVEN AS INFORMATION ONLY; FOR A PROPER SETTING OF THE GAS RATE, PLEASE REFER TO THE GAS METER READING. # Pressure in combustion head - gas rate curves Oas pressure in the strength of o Gas rate Stm³/h #### **PART II: INSTALLATION** ### MOUNTING AND CONNECTING THE BURNER #### Transport and storage If the product must be stored, avoid humid and corrosive places. Observe the temperatures stated in the burner data table at the beginning of this manual. The packages containing the burners must be locked inside the means of transport in such a way as to guarantee the absence of dangerous movements and avoid any possible damage. In case of storage, the burners must be stored inside their packaging, in storerooms protected from the weather. Avoid humid or corrosive places and respect the temperatures indicated in the burner data table at the beginning of this manual. #### **Packing** The burners are despatched in cardboard boxes or wooden cages whose dimensions are: $1730 \text{mm} \times 1280 \text{mm} \times 1020 \text{mm} \text{ (L x P x H)}$ Packing cases of this kind are affected by humidity and are not suitable for stacking. The following are placed in each packing case: - burner with gas train detached; - gasket to be inserted between the burner and the boiler; - flexible oil pipes; - oil filter; - envelope containing this manual To get rid of the burner's packing, follow
the procedures laid down by current laws on disposal of materials. # Handling the burner ATTENTION! The handling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck. The burner is mounted on a stirrup provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler. ### Fitting the burner to the boiler To install the burner into the boiler, proceed as follows: - 1 make a hole on the closing door of the combustion chamber as described on paragraph "Overall dimensions") - 2 place the burner to the boiler: lift it up and handle it according to the procedure described on paragraph "Handling the burner"; - 3 place the stud bolts (5) on boiler's door, according to the burner drilling template described on paragraph "Overall dimensions"; - 4 fasten the stud bolts; - 5 place the gasket on the burner flange; - 6 install the burner into the boiler; - 7 fix the burner to the stud bolts, by means of the fixing nuts, according to the next picture. - 8 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). # Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the type of the blast tube. Verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube length follow the instructions of the boiler manufacturer. In absence of these consider the following: - Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than **Dist** = 100 mm into the combustion chamber. (please see the picture below) - Pressurised boilers with flame reversal: in this case the blast tube must penetrate **Dm** 50 ÷ 100 mm into combustion chamber in respect to the tube bundle plate.(please see the picture below) WARNING! Carefully seal the free space between blast tube and the refractory lining with ceramic fibre rope or other suitable means. The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer). The burner is designed to work positioned according to the picture below. Set the upper side of the burner flange in a horizontal position, in order to find the correct inclination of the pre-heating tank. For different installations, please contact the Technical Department. # Key - 1 Burner flange (upper side indicated) - 2 Bracket - 3 Pre-heating tank on the burner #### **GAS TRAIN CONNECTIONS** WARNING: before executing the connections to the gas pipe network, be sure that the manual cutoff valves are closed. ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves). ATTENTION: once the gas train is mounted, the gas proving test must be performed, according to the procedure set by laws in force. CAUTION: The direction of gas flow must follow the arrow on the body of the components mounted on the gas ramp (valves, filters, gaskets...). NOTE: the bellows unit, the manual cutoff valve and the gaskets are not part of the standard supply Following the "Hydraulic Schematics" section, the figure shows the components fitted by the installer. Procedure to install the double gas valve unit: two (2) gas flanges are required; they may be threaded or flanged depending on size first step: install the flanges to prevent entry of foreign bodies in the gas line on the gas pipe, clean the already assembled parts and then install the valve unit check gas flow direction: it must follow the arrow on the valve body ●VGD20: make sure the O-rings are correctly positioned between the flanges and the valve #### In all cases: - •ensure that the gaskets are correctly positioned between the flanges; - •fasten all the components with screws, according to the following diagrams: - make sure bolts on the flanges are properly tightened - •check that the connections of all components are leak . CAUTION: Use seals suitable for the gas used. WARNING: Slowly open the fuel cock to avoid breaking the pressure #### Gas Filter (if provided) regulator. The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burner valves, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices. ATTENTION: it is reccomended to install the filter with gas flow parallel to the floor in order to prevent dust fall on the safety valve during maintenance operation. Once the train is installed, connect the gas valves group and pressure switches plugs. # MultiBloc MB-DLE - Assembling the gas train # Mounting - 1 Mount flange onto tube lines: use appropriate sealing agent - 2 Insert MB-DLE: note position of O rings - 3 Remove MultiBloc between the threaded flanges - 4 After installation, perform leakage and functional test - 5 Disassembly in reverse order # **DUNGS MBE** #### Components and position of pressure switches - PGMIN minimum gas pressure switch - PGMIN minimum gas pressure switch (alternative - PGCP leakage control gas pressure switch - PGMAX maximum gas pressure switch - Actuator with integrated pressure stabiliser On equipment versions Facile VD-R must be installed upstream valve # PS pressure sensor connection to VD-R actuator and gas train Attention: In the case of the MBE... valve, a pressure limit switch downstream of the safety valve is mandatory. # Siemens VGD20.. e VGD40.. #### Components and position of pressure switches Connection of actuator SKP2... to gas train Siemens SKP2.. (pressure governor) - Connect the reference gas pipe (**TP** in figure; 8mm-external size pipe supplied loose), to the gas pressure nipples placed on the gas pipe, downstream the gas valves: gas pressure must be measured at a distance that must be at least 5 times the pipe size. - Leave the blowhole free (**SA** in figure). Should the spring fitted not permit satisfactory regulation, ask one of our service centres for a suitable replacement. - D: pressure adjustment spring seat WARNING: removing the four screws BS causes the device to be unserviceable! # version with SKP2 (built-in pressure stabilizer)Siemens VGD../VRD.. SKPx5 (Auxiliary-optional micro switch)Gas valve If the auxiliary microswitch (POC) is required, a dedicated actuator, different from the one usually supplied, must be ordered. The connection is shown in the figure. # Siemens VGD Pressure taps # Integrated proving system (burners equipped with LME7x, LMV, LDU) This paragraph describes the integrated proving system operation sequence: - At the beginning both the valves (EV1 and EV2) must be closed. - Test space evacuating: EV2 valve (burner side) opens and keep this position for a preset time (td4), in order the bring the test space to ambient pressure. Test atmospheric pressure: EV2 closes and keep this position for a preset time (test time td1). The pressure switch PGCP has not to detect a rise of pressure. - Test space filling: EV1 opens and keep this position for a preset time (td3), in order to fill the test space. - Test gas pressure: EV1 closes and keep this position for a preset time (td2). The pressure switch PGCP has not to detect a pressure drop down. If all of the test phases are passed the proving system test is successful, if not a burner lockout happens. On LMV5x and LMV2x/3x and LME73 (except LME73.831BC), the valve proving can be parameterized to take place on startup, shutdown, or both. On LME73.831BC the valve proving is parameterized to take place on startup only. #### Double-pipe and single-pipe system The pumps that are used can be installed both into single-pipe and double-pipe systems. **Single-pipe system:** a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. **Double-pipe system:** as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-ble-eding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert
the by-pass plug **G** (as for ccw-rotation-referring to the pump shaft). Caution: Changing the direction of rotation, all connections on top and side are reversed. #### Bleed Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system. #### About the use of fuel pumps - Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result. - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream of the fuel unit. # Oil pumps #### KP60 - KP65 - KP72: # Pumps for heavy-oil viscosity up to 7° E at 50° C (burner model MN.) | Suntec E4 - E6 - E7 1001 | | | | | |--------------------------|------------------------|--|--|--| | Oil viscosity | 2.8 ÷ 450 cSt | | | | | Oil temperature | 0 ÷ 90°C | | | | | Inlet maximum pressure | 1,5 bar | | | | | Maximum return pressure | 1,5 bar | | | | | Minimum inlet pressure | - 0.45 to avoid gasing | | | | | Rotation speed max. | 3600 rpm | | | | Pump : Suntec E # Pumps for heavy oil viscosity up to 50° E at 50° C (burner model MD.) or eco-heavyoil viscosity 12 °E at 50°C (burner model ME.) | Suntec E4 - E6 -E7 1069 | | |-------------------------|------------------------| | Oil viscosity | 3 ÷ 75 cSt | | Oil temperature | 0 ÷ 130°C | | Minimum inlet pressure | - 0.35 to avoid gasing | | Inlet maximum pressure | 3.5 bar | | Maximum return pressure | 3.5 bar | | Rotation speed max. | 3600 гртобор/мин | #### **SUNTEC** - 1 Pressure governor - 2 Pump pressure gauge - 3 Vacuum pressure gauge - 4 To the nozzle - 5 Inlet - 6 Return - 1 **Key**Pressure governor - 2 Pump pressure gauge - 3 Inlet - 4 To the nozzle - 5 Return Note: the 1069 pumps are fitted with mechanical seal and electric pre-heater (80 W). ### **KP73**: | RF13. | | |-----------------------|----------------------------| | Suntec TA | | | Oil viscosity | 3 ÷ 75 cSt | | Oil temperature | 0 ÷ 150°C | | Min. suction pressure | - 0.45 bar to avoid gasing | | Max. suction pressure | 5 bar | | Max. return pressure | 5 bar | | Rotation speed | 3600 rpm max. | - 1 Inlet G1/2 - 2 To the nozzle G1/2 - 3 Return G1/2 - 4 Pressure gauge port G1/4 - 5 Vacuum gauge port G1/4 - 6 Pressure governor # Diesel filters (available on request) | | Item | Note | Connection | Max. operating
pressure | Max. operating temperature | Filtering
degree | Protection | |---|---------|------|------------|----------------------------|----------------------------|---------------------|------------| | 3 | GA70501 | - | 1" | 4 bar | 90 °C | 300 µ | IP65 | # Assembling the light oil flexible hoses To connect the flexible light oil hoses to the pump, proceed as follows, according to the pump provided: - 1 remove the closing nuts **A** and **R** on the inlet and return connections of the pump; - screw the rotating nut of the two flexible hoses on the pump **being careful to avoid exchanging the inlet and return lines**: see the arrows marked on the pump that show the inlet and the return (see prevoius paragraph). # Connections to the oil gun (KP73) - 1 Inlet - 2 Return - 3 Gun opening - 4 Heating wire (only for high density oil burners) - 5 Cartdrige-type heater (only for Ecoden or heavy oil burners) #### RECOMMENDATIONS TO DESIGN HEAVY OIL FEEDING PLANTS This paragraph is intended to give some suggestions to make feeding plants for heavy oil burners. To get a regular burner operation, it is very important to design the supplying system properly. Here some suggestions will be mentioned to give a brief description. The term "heavy oil" is generic and summarises several chemical-physical properties, above all viscosity. The excessive viscosity makes the oil impossible to be pumped, so it must be heated to let it flow in the pipeline; because of the low-boiling hydrocarbons and dissolved gases, the oil must be also pressurised. The pressurisation is also necessary to feed the burner pump avoiding its cavitation because of the high suction at the inlet. The supplying system scope is to pump and heat oil. The oil viscosity is referred in various unit measures; the most common are: °E, cSt, Saybolt and Redwood scales. Table 3 shows thevarious unit convertions (e.g.: 132 cSt viscosity corresponds to 17.5°E viscosity). The diagram in Fig. 3 shows how the heavy oil viscosity changes according to its temperature. Example: an oil with 22°E viscosity at 50°C once heated to 100°C gets a 3 °E viscosity. As far as the pumping capability, it depends on the type of the pump that pushes the oil even if on diagram in Fig. 3 a generic limit is quoted at about 100 °E, so it is recommended to refer to the specifications of the pump provided. Usually the oil minimum temperature at the oil pump inlet increases as viscosity does, in order to make the oil easy to pump. Referring to the diagram on Fig. 4, it is possible to realise that to pump an oil with 50°E viscosity at 50°C, it must be heated at about 80°C. #### Pipe heating system Pipe heating system must be provided, that is a system to heat pipes and plant components to mantain the viscosity in the pumping limits. Higher the oil viscosity and lower the ambient temperature, more necessary the pipe heating system. #### Inlet minimum pressure of the pump (both for supplying system and burner) A very low pressure leads to cavitation (signalled by its peculiar noise): the pump manifacturer declares the minimum value. Therefore, check the pump technical sheets. By increasing the oil temperature, also the minimum inlet pressure at the pump must increase, to avoid the gassification of the oil low-boiling products and the cavitation. The cavitation compromises the burner operation, it causes the pump to break too. The diagram on Fig. 5 roughly shows the inlet pump pressure according to the oil temperature. #### Pump operating maximum pressure (both for the supplying system and burner) Remember that pumps and all the system components through which the oil circulates, feature an upper limit. Always read the technical documentation for each component. Schemes on Fig. 5 and Fig. 8 are taken from UNI 9248 "liquid fuel feeding lines from tank to burner" standard and show how a feeding line should be designed. For other countries, see related laws in force. The pipe dimensioning, the execution and the winding dimensioning and other construcitve details must be provided by the installer. #### Adjusting the supplying oil ring According to the heavy oil viscosity used, in the table below indicative temperature and pressure values to be set are shown. **Note:** the temperature and pressure range allowed by the supplying ring components must be checked in the specifications table of the components themselves. | HEAVY OIL VISC | COSITY AT 50 °C | PRESSURE | TEMPERATURE | |----------------|-----------------|----------|-------------| | cSt | (°E) | bar | °C | | | < 50 (7) | 1- 2 | 20 | | > 50 (7) | < 110 (15) | 1- 2 | 50 | | > 110 (15) | < 400 (50) | 1- 2 | 65 | Tab. 1 # Viscosity units conversion table | Cinematics
viscosity
Centistokes (cSt) | Engler Degrees
(°E) | Saybolt
Seconds
Universal
(SSU) | Saybolt
Seconds
Furol (SSF) | Redwood
Seconds no.1
(Standard) | Redwood Seconds
no2 (Admiralty) | |--|------------------------|--|-----------------------------------|---------------------------------------|------------------------------------| | 1 | 1 | 31 | | 29 | | | 2.56 | 1.16 | 35 | | 32.1 | | | 4.3 | 1.31 | 40 | | 36.2 | 5.1 | | 7.4 | 1.58 | 50 | | 44.3 | 5.83 | | 10.3 | 1.88 | 60 | | 52.3 | 6.77 | | 13.1 | 2.17 | 70 | 12.95 | 60.9 | 7.6 | | 15.7 | 2.45 | 80 | 13.7 | 69.2 | 8.44 | | 18.2 | 2.73 | 90 | 14.44 | 77.6 | 9.3 | | 20.6 | 3.02 | 100 | 15.24 | 85.6 | 10.12 | | 32.1 | 4.48 | 150 | 19.3 | 128 | 14.48 | | 43.2 | 5.92 | 200 | 23.5 | 170 | 18.9 | | 54 | 7.35 | 250 | 28 | 212 | 23.45 | | 65 | 8.79 | 300 | 32.5 | 254 | 28 | | 87.6 | 11.7 | 400 | 41.9 | 338 | 37.1 | | 110 | 14.6 | 500 | 51.6 | 423 | 46.2 | | 132 | 17.5 | 600 | 61.4 | 508 | 55.4 | | 154 | 20.45 | 700 | 71.1 | 592 | 64.6 | | 176 | 23.35 | 800 | 81 | 677 | 73.8 | | 198 | 26.3 | 900 | 91 | 762 | 83 | | 220 | 29.2 | 1000 | 100.7 | 896 | 92.1 | | 330 | 43.8 | 1500 | 150 | 1270 | 138.2 | | 440 | 58.4 | 2000 | 200 | 1690 | 184.2 | | 550 | 73 | 2500 | 250 | 2120 | 230 | | 660 | 87.6 | 3000 | 300 | 2540 | 276 | | 880 | 117 | 4000 | 400 | 3380 | 368 | | 1100 |
146 | 5000 | 500 | 4230 | 461 | | 1320 | 175 | 6000 | 600 | 5080 | 553 | | 1540 | 204.5 | 7000 | 700 | 5920 | 645 | | 1760 | 233.5 | 8000 | 800 | 6770 | 737 | | 1980 | 263 | 9000 | 900 | 7620 | 829 | | 2200 | 292 | 10000 | 1000 | 8460 | 921 | | 3300 | 438 | 15000 | 1500 | 13700 | | | 4400 | 584 | 20000 | 2000 | 18400 | | Tab. 2 Fig. 3 #### Indicative diagram showing the oil temperature at burner pump inlet vs. oil viscosity Example: if the oil has a 50°E @ 50°C viscosity, the oil temperature at the pump inlet should be 80°C (see diagram). Fig. 4 ### Indicative diagram showing the oil pressure according to its temperature Fig. 5 #### Indicative diagram showing the oil atomising temperature according to its viscosity #### **VISCOSITY vs. TEMPERATURE DIAGRAM** Fig. 6 Example: if the oil has a 50°E @ 50°C viscosity, the oil atomising temperature should be between 145°C and 160°C (see diagram). Filter (supplied loose with the burner) 29 30 Solenoide valve 9 Maximum pressure switch 10 Minimum pressure switch 19 Thermometer 20 High pressure switch Fig. 7 3ID00014 v2 Hydraulic diagram - Two or more burners configuration Fig. 8 - 3ID0023 v2 - Hydraulic diagram - Single burner configuration # **Electrical connections** Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains. ATTENTION: before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section. - 3 To execute the electrical connections, proceed as follows:remove the cover from the electrical board, unscrewing the fixing screws; - 4 execute the electrical connections to the supply terminal board as shown in the attached wiring diagrams; - 5 check the direction of the fan motor (see next paragraph); - 6 refit the panel cover. WARNING:It is recommended to install a shunt trip disconnect switch that acts on the preheater unit supply line and avoids the oil overheating / resistance damage in case of a malfunction of the resistance contactor. Inside the electric board a free contact is provided (terminals 507 - 508) for this purpose. #### Note on electrical supply In the case where the power supply of the AUXILIARIES of the phase-phase burner (without a neutral), for the flame detection it is necessary to connect the RC circuit Siemens between the terminal 2 (terminal X3-04-4 in case of LMV2x, LMV3x, LMV5x, LME7x) of the base and the earth terminal, RC466890660. For LMV5 control box, please refer to the clabeling recommendations avaible on the Siemens CD attached to the burner #### Key C - Capacitor (22 nF , 250 V) LME / LMV - Siemens control box R - Resistor (1 M Ω) M: Terminal 2 (LGB, LME), Terminal X3-04-4 (LMV2x, LMV3x, LMV5, LME7x) RC466890660 - RC Siemens filter #### Rotation of electric motor Once the electrical connection of the burner is executed, remember to check the rotation of the electric motor. The motor should rotate according to the "arrow" symbol on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor. #### CAUTION: check the motor thermal cut-out adjustment NOTE: the burners are supplied for three-phase 380 V or 400 V supply, and in the case of three-phase 220 V or 230 V supply it is necessary to modify the electrical connections into the terminal box of the electric motor and replace the overload tripped relay. #### Connecting the oil heating resistors # AIR FLOW AND FUEL ADJUSTMENTAdjustments - brief description The air and fuel rates adjustments must be performed at the maximum ouptput first ("high flame"): see the LMV2.. related manual.. - Check that the combustion parameters are in the suggested limits. - Then, adjust the combustion values by setting the "fuel/air" ratio" curvepoints (see the LMV2.. related manual). - Set, now, the low flame output, in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. # Adjustments - brief description - The air and fuel rates adjustments must be performed at the maximum ouptput first ("high flame"): see the LMV related manual. - Check that the combustion parameters are in the suggested limits. - Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head". - Then, adjust the combustion values by setting the "gas/air" ratio" curvepoints (see the LMV related manual). - Set, now, the low flame output (according to the procedure described on the "Siemens LMV manual") in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. The heavy oil flow rate can be adjusted choosing a nozzle that suits the boiler/utilisation output and setting properly the delivery pressure values. WARNING! During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the fuel decrease slowly until the normal combustion values are achieved. WARNING! the combustion air excess must be adjusted according to the values in the following chart. | Recommended combustion parameters | | | | | |-----------------------------------|---------------------------------|--------------------------------|--|--| | Fuel | Recommended (%) CO ₂ | Recommended (%) O ₂ | | | | Natural gas | 9 ÷ 10 | 3 ÷ 4.8 | | | | Heavy oil | 11 ÷ 12.5 | 4.7 ÷ 6.7 | | | | Heavy oil <=7°E a 50 °C | 11 ÷ 12 | 4.2 ÷ 6.2 | | | # User interface The AZL2x.. display is shown below: The keys functions are the following: - 1 Service mode - 2 Info mode - 3 Parametere setting mode - 4 Plant heat request - 5 Oil pre-heater energised - 6 Fan motor energised - 7 Ignition transformers energised - 8 Open valves - 9 Flame - 10 Lock+unlock codes - 11 Closing actuator - 12 Opening actuator - 13 Unit measure - 14 Key **F + A** While pressing the two keys contemporarly, the **code** message will appear: by entering the proper password it is possible to access the **Service** mode. - 15 Key FUsed to adjust the "fuel" actuator position (Fuel): While pressing the F key, the "fuel" actuator position can be changed by means of the + and - keys. - by means of the + and keys. 16 Key A (Air): Used to adjust the "air" actuator position While pressing the A key, the "air" actuator position can be changed - by means of the + and keys. 17 Key -Key Used to decrease a a value - Used to enter Info and Serivce during the curve adjustments 18 Key +Key + Used to increase a a value - Used to enter Info and Serivce during the curve adjustments - 19 Keys (+ &)= ESC By pressing + and - at the same time, the ESCAPE function is perfomed: to enter a lower level menu - 20 Info and Enter keys Used for Info and Service menues Used as Enter key in the setting modes Used as **Reset** key in the burner operation mode Used to enter a lower level menu The display will show these data: The display will show these data: #### Setting menu The setting menu is divided into different blocks: | Bloc. | Descrizione | Description | Password | |-------|-----------------------|----------------|----------------------| | 100 | Informazioni generali | General | OEM / Service / Info | | 200 | Controllo bruciatore | Burner control | OEM / Service | | 400 | Curve rapporto | Ratio curves | OEM / Service | | 500 | Controllo rapporto | Ratio control | OEM / Service | | 600 | Servocomandi | Actuators | OEM / Service | | 700 | Storico errori | Error history | OEM / Service / Info | | 900 | Dati di processo | Process data | OEM / Service / Info | The accesses to the various blocks are allowed by passwords. Passwords are divided into three levels: - User level (info): no password needed - Service level (Service) # Manifacturer level (OEM) # **PHASES LIST** During operation, the following program phases are shown. The meaning for each phase is quoted in the table below | Fase / | Funzione | Function | |--------|--|---| | Ph00 | Fase blocco | Lockout phase | | Ph01 | Fase di sicurezza | Safety phase | | Ph10 | t10 = tempo raggiungimento posizione riposo | t10 = home run | | Ph12 | Pausa | Standby (stationary) | | Ph22 | t22 = tempo di salita ventilatore (motore ventilatore = ON, valvola intercettazione di sicurezza = ON) | t22 = fan ramp up time (fan motor = ON, safety shutoff valve = ON) | | Ph24 | Verso posizione preventilazione | Traveling to the prepurge position | | Ph30 | t1 = tempo preventilazione | t1 = prepurge time | | Ph36 | Verso posizione accensione | Traveling to the ignition position | | Ph38 | t3 = tempo preaccensione | t3 = preignition time | | Ph40 | TSA1 = primo tempo sicurezza (trasformatore accensione ON)TSA1 = primo tempo sicurezza (trasformatore accensione ON) | TSA1= 1st safety time (ignition transformer ON) | | Ph42 | TSA1 = primo tempo sicurezza (trasformatore accensione OFF) | TSA1 = 1st safety time (ignition transformer OFF) t42 = preignition time OFF | | Ph44 | t44 = intervallo 1 | t44 = interval 1 | | Ph50 | TSA2 = secondo tempo sicurezza | TSA2 = 2nd safety time | | Ph52 | t52 = intervallo 2 | t52 = interval 2 | | Ph60 | Funzionamento 1 (stazionario) | Operation 1 (stationary) | | Ph62 | t62 = massimo tempo bassa fiamma (funzionamento 2, in preparazione per spegnimento, verso bassa fiamma) | t62 = max. time low-fire (operation 2, preparing for shutdown, traveling to low-fire) | | Ph70 | t13 = tempo
postcombustione | t13 = afterburn time | | Ph72 | Verso posizione postcombustione | Traveling to the postpurge position | | Ph74 | t8 = tempo postventilazione | t8 = postpurge time | | Ph80 | t80 = tempo evacuazione controllo tenuta valvole | t80 = valve proving test evacuation time | | Ph81 | t81 = tempo perdita pressione atmosferica, prova atmosferica | t81 = leakage time test time atmospheric pressure, atmospheric test | | Ph82 | t82 = test perdita, test riempimento | t82 = leakage test filling test, filling | | Ph83 | t83 = tempo perdita pressione gas, test pressione | t83 = leakage test time gas pressure, pres
sure test | | Ph90 | Tempo attesa "mancanza gas" | Gas shortage waiting time | # **Entering the Parameter levels** By means of a proper use of the keys, it is possible to enter the various level parameters, as shown in the following flow chart: | 1 | Basic display | 3 | Service Level | 5 | Automatic return after menu use time-out (parameter 127) | |---|---------------|---|-----------------|---|--| | 2 | Info level | 4 | Parameter Level | 6 | Switching to the basic display | The burner and consequently the LMV2x.. are factory set; the air and fuel curves as set as well. #### Info level To enter the Info level, proceed as follows: 1 in any menu position, press keys + and - at the same time, then the program will start again: the display will show OFF. 2 until the display will show InFo, Press the enter (InFo) key - then il will show the first code (167) flashing, on the right side it will show the data entered. By pressing + or it is possible to scroll (up or down) the parameter list. - 4 If a dot-line is shown on the right, there is no enough room for complete visualisation: press **enter** again the data will be completely shown for 1 to 3 seconds. By pressing **enter** or **+** and- at the same time, the system will exit the parameter visualisation and go back to the flashing number. The **Info** level shows some basic parameters as: | Para-
meter | Description | |----------------|------------------------------------| | 167 | Cubic meters of fule (resettable) | | 162 | Operating hours (resettable) | | 163 | Device operating hours | | 164 | Burners start-ups (resettable) | | 166 | Total number of start-ups | | 113 | Burner number (i.e. serial number) | | Para-
meter | Description | |----------------|----------------------| | 107 | Software version | | 102 | Software date | | 103 | Device serial number | | 104 | Customer code | | 105 | Version | | 143 | Free | 5 Example: choose parameter 102 to show the date the display shows parameter 102 flashing on the left and characters ._._ on the right. - 6 press InFo for 1-3 seconds: the date will appear - 7 press InFo to go back to parameter "102" - 8 by pressing + / -, it is possible to scroll up/down the parameter list (see table above), or, by pressing ESC or InFo for more seconds, the display will show - 9 Once the last parameter is accessed (143) by pressing +, the **End** message will flash. 10 Press InFo and for more than three seconds or for more than three seconds orto return to the normal display. If a message like the one below is shown during operation, it means that the burner is locked out and the Errore code is shown (in the example "error code:4"); this message is alternating with another message Diagnostic code (in the example "diagnostic code:3"). Record the codes and find out the fault in the Error table. To perform the reset, press InFo for one second: The unit displays an event which does not lead to shutdown. The display shows current error code c: alternating with diagnostic code d: Press InFo to return to the display of phases. Example: Error code 111 / diagnostic code 0 To reset, press InFo for a second. Record the codes and check the Error List to find the type of faults. #### Service level To enter the Service mode, press InFo until the display will show: The service level shows all the information about flame intensity, actuators position, number and lock codes: | Parameter | Description | |-----------|--| | 954 | Flame intensity | | 121 | % output, if set = automatic operation | | 922 | Actuators position, 00=combustibile; 01= aria | | 161 | Lock-outs number | | 701725 | Lock-outs History (see chapter 23 in the LMV2x manual) | - 1 .the first parameter will be "954": the percentage of flame is shown on the right. By pressinf + or it is possible to scroll up/down the parameter list. - 2 Once the last parameter is accessed (143) by pressing +, the End message will blink. 3 PressPress InFo for more than three seconds or for more than three seconds orto return to the normal display. For further nformation, see tha LMV2 related manual. # ADJUSTING THE GAS VALVES GROUP # **Multibloc MB-DLE** The multibloc unit is a compact unit consisting of two valves, gas pressure switch, pressure stabilizer and gas filter. The valve is adjusted by means of the **RP** regulator after slackening the locking screw **VB** by a number of turns. By unscrewing the regulator **RP** the valve opens, screwing the valve closes. To set the fast opening remove cover **T**, reverse it upside down and use it as a tool to rotate screw **VR**. Clockwise rotation reduces start flow rate, anticlockwise rotation increases it. Do not use a screwdriver on the screw VR! The pressure stabilizer is adjusted by operating the screw **VS** located under the cover **C**. By screwing down the pressure is increased and by unscrewing it is reduced. Note: the screw VSB must be removed only in case of replacemente of the coil. # MultiBloc MBE Regulation VD-R whith PS | Outlet pressure | MIN | 10% | 25% | 50% | 75% | MAX | |-----------------|---------|----------|----------|-----------|-----------|-----------| | PS-10/40 | 4 mbar | 10 mbar | 25 mbar | 50 mbar | 75 mbar | 100 mbar | | | 0,4 kPa | 1,0 kPa | 2,5 kPa | 5,0 kPa | 7,5 kPa | 10,0 kPa | | | 2 "w.c. | 4 "w.c. | 10 "w.c. | 20 "w.c. | 30 "w.c. | 40 "w.c. | | PS-50/200 | 20 mbar | 50 mbar | 125 mbar | 250 mbar | 375 mbar | 500 mbar | | | 2,0 kPa | 5,0 kPa | 12,5 kPa | 25,0 kPa | 37,5 kPa | 50,0 kPa | | | 8 "w.c. | 20 "w.c. | 50 "w.c. | 100 "w.c. | 150 "w.c. | 200 "w.c. | **Caution:** check that the range of the installed spring is compatible with the gas pressure at the burner head (see appropriate diagram) to which must be added the back pressure and approx. 5 /10 mbar for various leaks and gas line. While making outlet pressure adjustments, do not exceed a value that creates a hazardous condition to the burner! # Siemens VGD../VRD.. version with SKP2 | Performance range (mbar) | | | | | | | |--------------------------|--------|----------|------------|--|--|--| | neutral yellow re | | | | | | | | Spring colour SKP 25.0 | 0 ÷ 22 | 15 ÷ 120 | 100 ÷ 250 | | | | | Spring colour SKP 25.4 | | 7 ÷ 700 | 150 ÷ 1500 | | | | The pressure adjusting range, upstream the gas valves group, changes according to the spring provided with the valve group. To replace the spring supplied with the valve group, proceed as follows: To increase or decrease gas pressure, and therefore gas flow rate, remove the cap **T** and use a screwdriver to adjust the regulating screw **VR**. Turn clockwise to increase the flow rate, counterclockwise to reduce it. # Calibration air and gas pressure switches The **air pressure switch** locks the control box if the air pressure is not the one requested. If it happens, unlock the burner by means of the control box unlock pushbutton, placed on the burner control panel. The **gas pressure switches** check the pressure to avoid the burner operate when the pressure value is not in the requested pressure range. # Calibration of low gas pressure switch With the burner operating at maximum power, increase the regulation pressure by slowly turning the control knob clockwise until the burner stops, taking care it does not go into lockout and the display shows the error "Err c20 d0". As for the gas pressure switch calibration, proceed as follows: - Be sure that the filter is clean. - Remove the transparent plastic cap. - While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch. - Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the limits laid down by law, slowly open the cutoff valve as to get values lower than these limits. - Check that the burner is operating correctly. - Clockwise turn the pressure switch adjusting ring nut (as to increase the pressure value) until the burner stops. - Slowly fully open the manual cutoff valve. - Refit the transparent plastic cover on the pressure switch. #### Calibration the maximum gas pressure switch (when provided) To calibrate the maximum pressure switch, proceed as follows according to its mounting position: - remove the pressure switch plastic cover; - if the maximum pressure switch is mounted upstreaam the gas valves: measure the gas pressure in the network, when flame is off; by means of the adjusting ring nut **VR**, set the value read, increased by the 30%. - if the maximum pressure switch is mounted downstream the "gas governor-gas valves" group and upstream the butterfly valve: light the burner, adjust it according to the procedure in the previous paragrph. Then, measure the gas pressure at the operating flow rate, downstream the "gas governor-gas valves" group and upstream the butterfly valve; by means of the adjusting ring nut VR, set the value read on step 2, increased by the 30%; - replace the plastic cover. # Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: - Remove the transparent plastic cap. - Once air and fuel setting have been
accomplished, startup the burner. - During the pre-purge phase o the operation, turn slowly the adjusting ring nut VR in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%. - Repeat the ignition cycle of the burner and check it runs properly. - Refit the transparent plastic cover on the pressure switch. #### Calibration gas leakage pressure switch (PGCP) - remove the pressure switch plastic cover; - adjust the PGCP pressure switch to the same value set for the minimum gas pressure switch; - replace the plastic cover. # Adjusting the combustion head #### **KP60 - KP72** Only if necessary, change the combusiton head position. The burner is factory-set with the head in its MAX position (maximum output). To let the burner operate at a lower output, turn clockwise the **VRT** screw and move progressively the combustion head back towards the MIN position. **Attention!** if it is necessary to change the head position, repeat the air and gas adjustments described above. #### **KP73** Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the **VB** screw and move progressively back the combustion head towards the MIN position, by turning clockwise the **VRT** ring nut. Fasten **VB** screw when the adjustment is accomplished. Attention! if it is necessary to change the head position, repeat the air and fuel adjustments described above. #### ADJUSTMENTS FOR OIL OPERATION Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break. ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open. Be sure that the mains switch is closed. # Oil thermostat adjustment Progressive and fully modulanting oil burners are equipped with electronic multi-thermostat Danfoss MCX, whose operation is controlled by thyristor. (for details refer to the attached technical documentation) Fig. 14 - Danfoss MCX Fig. 15 - Probe connections (Danfoss MCX) The oil viscosity at the nozzle, should be about 1,5 °E, which guarantees correct and safe functioning of the burner. The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications. | | Menu path | | | Oil viscosity at 50 °C according to the letter shown in the burner model | | | | | | |-----|-----------|-----|---|--|------------|-----------------------|------------------------|-------------------------|--| | | | | | Р | N | Е | D | Н | | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | | 12 °E | < 7°E | > 7 °E
< 15 °E | > 15 °E
< 50 °E | > 50 °E
< 530 °E | | | Par | | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | | Pb2 | tCI | Plant consent temperature probe (when installed) | 20 °C | 70 °C | 70 °C | 70 °C | | | | | Pb3 | Oil | Oil heater output temperature probe (PID regulation); | 60-70 °C | 110-120 °C | 120-130 °C | 130-140 °C | 140-150 °C | | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 °C | 120 °C | 130 °C | 140 °C | 150 °C | | | | Pb4 | tcn | Oil heater consent temperature probe | 40 °C | 100 °C | 100 °C | 110 °C | 120 °C | | | | | trS | Safety temperature tank resistors (manual reset) | 120 °C | 190-200 °C | 190-200 °C | 190-200 °C | 190-200 °C | | # Adjustment in the heavy oil operation The heavy oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the chart below and the diagram on Fig. 30-Fig. 31. # FLUIDICS KW3...60° # NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt Flow rate [kg/h] # FLUIDICS KW3...60° # NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cS # FLUIDICS KW3...60° # NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt # Adjustment procedure for light oil operation The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the table below and the diagram on Fig. 20 (as far as reading the pressure values, see next paragraphs). # FLUIDICS W2, WR2 NOZZLE: REFERENCE DIAGRAM (INDICATIVE ONLY) | | FLOW RATE kg/h | | | |------------|----------------|-----|--| | DIMENSIONS | Min | Max | | | 40 | 13 | 40 | | | 50 | 16 | 50 | | | 60 | 20 | 60 | | | 70 | 23 | 70 | | | 80 | 26 | 80 | | | 90 | 30 | 90 | | | 100 | 33 | 100 | | | 115 | 38 | 115 | | | 130 | 43 | 130 | | | 145 | 48 | 145 | | | 160 | 53 | 160 | | | 180 | 59 | 180 | | | 200 | 66 | 200 | | | 225 | 74 | 225 | | | 250 | 82 | 250 | | | 275 | 91 | 275 | | | 300 | 99 | 300 | | | 330 | 109 | 330 | | | 360 | 119 | 360 | | | 400 | 132 | 400 | | | 450 | 148 | 450 | | | 500 | 165 | 500 | | | 550 | 181 | 550 | | | 600 | 198 | 600 | | | 650 | 214 | 650 | | | 700 | 231 | 700 | | | 750 | 250 | 750 | | | 800 | 267 | 800 | | Atomisation angle Tab. 3 ATTENTION! To achieve the maximum flow rate close completely the return line. #### **ADJUSTMENTS FOR OIL OPERATION** - 1 Once the air and gas flow rates are adjusted, turn the burner off, switch to the oil operation (OIL, on the burner control panel). - 2 with the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged; 3 bleed the air from the **M** pressure gauge port by loosing the cap without removing it, then release the contactor. - 4 As for setting the fuel/air ratio curve, see the LMV related manual. - Only if necessary, adjust the supply pressure as follows; insert a pressure gauge into the port shown on figure and act on on the pump adjusting screw **VR**. Pressure values are indicated at the beginning of this paragraph. - In order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge), checking always the combustion parameters. Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. #### **PART II: OPERATION** #### LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE. OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON. IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. - Choose the type of fuel by turning the switch, on the burner control panel. CAUTION: if the fuel chosen is oil, be sure the cutoff valves on the feed and return pipes are open. - Check the control box is not locked; if so, reset it by means of the reset LMV button. - Check the series of thermostats and pressure switches allow the burner to start. #### Gas operation The gas minimum pressure switch, installed upstream from the safety valves, ensures the network distributes the gas at a pressure suitable to switch on the machine start cycle. In compliance with the regulations in force, the cycle starts with the pre-ventilation phase. (Burners fitted with gas proving system). The gas safety valves proving system can be executed during this phase and/or at the burner shut-off, according to the device setting. Failing which a safety interlock is tripped. The fan starts and the air damper, driven by the servomotor, opens as far as the high flame position. The air pressure switch, detecting a pressure, ensures the fan's operation. Failing which a safety interlock is tripped. At the end of preventilation, in sequence, the burner management system moves the servomotor to the ignition position, supplies the ignition transformer and orders the opening of the gas safety valve group. The gas from the net passes through a filter, the double safety valves and the pressure regulator. The regulator holds the gas head pressure within the use limits. Fuel and comburent are channelled separately till they meet in the flame development area (combustion chamber) where the spark, discharged by the ignition electrodes located on the burner's head, must ignite the flame in a safety time of less than 3 s, as provided for by the reference regulations. The flame is detected by a sensor that can be an ionization or UV or IR sensor. Failing which a
safety interlock is tripped. From now on flame detection will be continuous, until the burner is switched off. At the end of the safety time, the control unit de-energizes the ignition transformer, moving the servomotor to the low or high flame position according to system demand. The burner operation is now controlled by the modulator, if any, or by the boiler controller (i.e.: high-low flame thermostat). The dedicated actuators move, simultaneously and proportionally, the air damper, the fuel butterfly valve, the head position (if the burner include this option) and the VSD optimizing exhaust gas values and obtaining efficient combustion. The position of the combustion head, set manually or automatically (if the option is included in the supply), contributes to adjust the bur- ner's output. If the monitored variable (pressure or temperature) of the boiler/generator/oven fluid exceeds a preset value, the machine switch-off phase is started. The flame control unit moves the servomotor to the low flame position (minimum power supplied), closes the safety valves and starts the post-ventilation phase, if any. At the end of this stage, the burner remains in stand-by waiting for a new start-up sequence For further details, see the attached equipment manual. #### **Heavy Oil operation** The supply and atomization temperature is a variable that must be carefully determined for the burner to work correctly. A temperature probe controls the oil input temperature into the machine and enables the ignition cycle start-up phase when the fuel reaches a temperature allowing it to be pumped. Another temperature probe or temperature switch (in reference to the supply), if any, checks the temperature on the oil return line to the tank and enables the ignition phase. In compliance with the regulations in force, the cycle starts with the pre-ventilation phase. The fan starts and the air damper, driven by the servomotor, opens. The air pressure switch, detecting a differential pressure, ensures the fan's operation. Failing which a safety interlock is tripped. During the pre-ventilation phase, the pump makes the fuel oil circulate in the machine hydraulic circuit. The fuel passes through a filter before entering into the pre-heating tanks, one or two according to the size of the burner, warming up before going back to the supply circuit. The pre-ventilation phase can then be completed and the ignition phase started. In sequence, the burner management system (BMS) moves the servomotor to a suitable position, supplies the ignition transformer and the valves allowing the nozzle to spray the oil into the combustion chamber, where it will mix with the comburent air. A PID thermoregulator, monitoring with two probes the oil temperature on both entering and exiting the electrical pre-heaters, ensures the oil reaches the nozzle at such a temperature as to allow the burner to switch on safely. The spark between the ignition electrodes on the burner head must ignite the flame in a safety time not exceeding 5 s, as provided for by the reference regulations. The presence of the flame is detected by UV or IR sensor. Failing which a safety interlock is tripped. From now on flame detection will be continuous, until the burner is switched off. At the end of the safety time, the control unit de-energizes the ignition transformer, moving the servomotor to the low or high flame position according to system demand. The burner operation is now controlled by the modulator, if any, or by the boiler controller (i.e.: high-low flame thermostat). The dedicated actuators move, simultaneously and proportionally, the air damper, the fuel butterfly valve, the head position (if the burner include this option) and the VSD optimizing exhaust gas values and obtaining efficient combustion. At the same time, the fuel oil PID thermoregulator keeps the temperature of the oil to the nozzle constant for the whole working curve, guaranteeing the best possible nebulization. This, combined with an optimal air/fuel ratio, allows optimizing exhaust gas values and obtaining efficient combustion. The position of the combustion head contributes to adjust the power supplied. If the monitored variable (pressure or temperature) of the boiler/generator/oven fluid exceeds a preset value, the machine switch-off phase is started. The flame control unit moves the servomotor to the low flame position (minimum power supplied), closes the safety valves and starts the post-ventilation phase, if any. At the end of this stage, the burner remains in stand-by waiting for a new start-up sequence. The oil pre-heating tank/s maintain(s) a temperature suitable to the quick re-ignition of the machine in this phase too. # **Burner front panel** # **KP60-72** #### KP73 #### PART III: MAINTENANCE At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL. # **ROUTINE MAINTENANCE** - Clean and examine the gas filter cartridge and replace it if necesssary (see next paragraph). - Check and clean the oil filter cartridge; replace it if necessary (see next paragraphs). - Examine the condition of the oil flexible hoses and check for possible leaks. - Check and clean if necessary the oil heaters and the tank, according to the fuel type and its use; remove the heaters flange fixing nuts and remove the heaters from the tank: clean by using steam or solvents and not metallic things. - Clean and examine the filter inside the oil pump. Filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit. - Remove and clean the combustion head (page 50). - Examine and clean the ignition electrodes, adjust and replace if necessary (see page 50). - Examine and clean the detection probe, adjust and replace if necessary (see page 61). - Examine the detection current (see page 52). - Remove and clean (page 57) the heavy oil nozzle (Important: use solvents for cleaning, not metal utensils) and at the end of the maintenance procedures, after replacing the burner, turn it on and check the shape of the flame; if in doubt replace the nozzle. Where the burner is used intensively it is recommended to replace the nozzle as a preventive measure, at the begin of the operating season. - Clean and grease joints and rotating parts. IMPORTANT: Remove the combustion head before checking the ignition electrodes. CAUTION: avoid the contact of steam, solvent and other liquids with the electric terminals of the resistor. On flanged heaters, replace the seal gasket before refitting it. Periodic inspections must be carried out to determine the frequency of cleaning. # Gas filter maintenance WARNING: Before opening the filter, close the manual cutoff valve downstream the filter and bleed the gas; check that inside the filter there is no pressurised gas. Per pulire o sostituire il filtro gas procedere nel modo seguente: # Pressure taps - Check the filter at least once a year! - Change the filter if the pressure difference between pressure connection 1 and 3 (Fig. 1-Fig. 3)is ∆p > 10 mbar. - Change the filter if the pressure difference between pressure connection 1 and 3 (Fig. 1-Fig. 3) is twice as high compared to the last check. You can change the filter without removing the fitting. - 1 Interrupt the gas supply closing the on-off valve. - 2 Remove screws 1 ÷ 4 using the Allen key n. 3 and remove filter cover 5 in Fig. 5. - 3 Remove the filter 6 and replace with a new one. - 4 Replace filter cover 5 and tighten screws 1 ÷ 4 without using any force and fasten. - 5 Perform leakage and functional test, p_{max} = 360 mbar. To clean or remove the filter, proceed as follows: - 1 remove the cap unscrewing the fixing screws (A); - 2 remove the filtering cartridge (B), clean it using water and soap, blow it with compressed air(or replace it, if necessary) - 3 replace the cartridge in its proper position taking care to place it inbetween the guides as not to hamper the cap replacement; be sure to replace the "O" ring into its place (C) and replace the cover fastening by the proper screws (A). # **MultiBloc VD-V VD-R Mounting** - 1. Position VD on VB, fig. 2+3. - 2. Slide VD forward up to the stop, fig. 4. - 3. Screw VD on with 2 M5 screws for each, max. 5 Nm/44 in.-lb., fig. 5/6. - 4. VD can be mounted rotated by 180°, fig. 7. # Siemens SKP15 e SKP25 Mounting # Thecnical procedure of self cleaning filters substitution (valid for all models) - 1 Close the bowl valve before the self cleaning filter - 2 Switch off any electrical equipment on board on the filter (example motorization or heaters) # WARNING! Drain the system by unscrewing the drain screw on the bottom of the self cleaning filter - 3 Disconnect the outlet pipe from the cover of the self cleaning filter - 4 Remove the cover with all the filter pack, leaving only the bowl on the line - 5 Clean any residue on the bottom of the bowl and clean the seat of the O-ring seal # WARNING! Replace the O-ring seal between the bowl and cover - 6 Insert the filter pack again making sure to respect the correct inlet/outlet direction or any references on the cover and tray - 7 Replace the filter by following the reverse order operations - 8 Make sure there is no leakage and give the power to any electrical equipmente on the filter #
Removing the oil gun, replacing the nozzle and the electrodes ATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To remove the oil gun, proceed as follows: - 1 remove the combustion head as described on the prevoius paragraph; - 2 remove the oil gun and the electrodes: check the oil gun, replace it if necessary; - 3 after removing the oil gun, unscrew the nozzle and replace it if necessary; - 4 in order to replace the electrodes, unscrew the fixing screws and remove them: place the new electrodes being careful to observe the measures shown on next paragraph; reassemble following the reversed procedure. **Caution**: adjust the nozzle position according to the procedure on the next paragraph. # (KP60, KP72) Electrodes Adjustment Important Note: Check the ignition and detection electrodes after removing/adjusting the combustion head. ATTENTION: avoid the ignition and detection electrodes to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrodes position after any intervention on the combustion head. Adjust the electrodes position, according to the quotes shown othe next picture | Α | В | С | Е | F | N | |-------|-----|-----|-------|---|-------| | 10÷15 | 3÷5 | 3÷4 | 10÷13 | 8 | 10÷13 | - 1 spillback nozzle opening / closi - 2 oil inlet - 3 oil return - 4 oil return # Removing the combustion head (KP73) - 1 Remove the cover **H**. - 2 Slide the photoresistance out of its housing. - 3 Unscrew the **V** screws that block the gas collector **G**, loosen the three jionts **E** and remove the ass.y as shown on the following picture. - 4 Clean the combustion head by means fo a vacuum cleaner; scrape off the scale by means fo a metallic brush. Note: to remount the burner, floow the same procedure in the reversed order. #### Key - 1 Inlet - 2 Return - 3 Gun opening - E Oil piping connections - G Gas manifold - H Cover - L Oil gun - V Screws # Removing the oil gun, replacing the nozzle and the electrodes (KP73) **ATTENTION:** avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head. To remove the oil gun, proceed as follows: - 1 remove the combustion head as described on the prevoius paragraph; - 2 loosen the **VL** screw and remove the oil gun and the electrodes: check the oil gun, replace it if necessary; - 3 after removing the oil gun, unscrew the nozzle and replace it if necessary; - 4 in order to replace the electrodes, unscrew the **VE** fixing screws and remove them: place the new electrodes being careful to observe the measures shown on : reassemble following the reversed procedure. Caution: adjust the nozzle position according to the air pipe, by means of the VU screw, ance the VL screw is fastened. # Adjusting the electrodes position (KP73) Adjust the electrodes position, according to the quotes shown in the next picture. Fig. 18 # Checking the detection current To check the detection signal follow the scheme in the picture below. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector. Minimum detection signal: 3.5Vdc Fig. 19 - Detection with detector QRI... | Device | Flame detector | Minimum detection signal | |------------------|----------------|---------------------------------| | Siemens LMV2x/3x | QRA | 70 μA (intensity of flame >24%) | # Cleaning and replacing the detection photocell #### Burner service term - In optimal operating conditions, and with preventive maintenance, the burner can last up to 20 years. - Upon expiry of the burner service term, it is necessary to carry out a technical diagnosis and, if necessary, an overall repair. - The burner status is considered to be at its limit if it is technically impossible to continue using it due to non-compliance with safety requirements or a decrease in performance. - The owner makes the decision whether to finish using the burner, or replacing and disposing of it based on the actual state of the appliance and any repair costs. - The use of the burner for other purposes after the expiry of the terms of use is strictly prohibited. The photocell working life is about 10000 working hours (about 1 year), at max 50°C after which it must be replaced. To clean/replace the detection photocell, proceed as follows: - 1 Disconnect the system from the electrical power supply. - 2 Shut off the fuel supply - 3 remove the photocell from its slot (see next figure); - 4 clean the bulbe if dirty, taking care not to touch it with bare hands; - 5 if necessary, replace the bulb; - 6 replace the photocell into its slot. # Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel valve of the supply line # Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". #### WIRING DIAGRAMS Refer to the attached wiring diagrams. # **WARNING** - 1 Electrical supply 230V / 400V 50Hz 3N a.c. - 2 Do not reverse phase with neutral - 3 Ensure burner is properly earthed # TROUBLESHOOTING Heavy oil operation | | THE BURNER
DOESN'T START | THE BURNER
REPEATS PRE-
PURGE | NOISY FUEL PUMP | THE BURNER
DOESN'T START
AND STOPS | THE BURNER
STARTS AND
STOPS | THE BURNER
DOESN'T SWITCH
TO HIGH FLAME | THE BURNER
STOPS DURING
OPERATION | THE BURNER STOPS
AND REPEATS THE
CYCLE DURING OPE-
RATION | |--|-----------------------------|-------------------------------------|-----------------|--|-----------------------------------|---|---|--| | MAIN SWITCH OPEN | • | | | | | | | | | LINE FUSE INTERVENTION | • | | | | | | | | | MAX. PRESSURE SWITCH FAULT | • | | | | | | | • | | FAN THERMAL CUTOUT INTERVENTION | • | | | | | | | | | AUXILIARY RELAIS FUSES INTERVENTION | • | | | | | | | | | CONTROL BOX FAULT | • | • | | • | • | | • | | | SERVOCONTROL FAULT | | | | | | • | | | | SMOKEY FLAME | | | | | • | | • | | | IGNITION TRANSFORMER FAULT | | | | • | | | | | | IGNITION ELECTRODE DIRTY OR WRONG POSITIONED | | | | • | | | | | | DIRTY NOZZLE | | | | • | | | • | | | FUEL SOLENOID VALVE DEFECTIVE | | | | • | | | • | | | PHOTORESISTOR DIRTY OR DEFECTIVE | | | | | • | | • | | | HI-LO FLAME THERMOSTAT DEFECTIVE | | | | | | • | | | | WRONG POSITION OF SERVOCONTROL CAMS | | | | | | • | | | | FUEL PRESSURE TOO LOW | | | | • | | | | | | DIRTY FUEL FILTERS | | | • | • | | | • | | # Gas operationTROUBLESHOOTING | | TROUBLE | | | | | | | | | | | |---|-------------------------|-------------------------|----------------------------|-------------------------------------|------------------------------|---------------------|--|-------------------------------|------------------------------|---------------------------|---| | CAUSE | THE BURNER DOESN'TSTART | CONTINUE WITH PRE-PURGE | DOESN'T START AND LOCK-OUT | DOESN'T START AND REPEATS THE CYCLE | STARTS AND REPEATS THE CYCLE | STARTS AND LOCK-OUT | THE FLAME MONITOR DEVICE DOESN'T GIVECON-
SENT TO START | DOESEN'T SWITCH TO HIGH FLAME | DOESEN'T RETURN IN LOW FLAME | LOCK-OUT DURING OPERATION | TTURNS OF AND REPEATS CYCLE DURING OPERA-
TION | | MAIN SWITCH OPEN | ●I | • | • | • | • | • | • | • | • | • | • | | LACK OF GAS | • | • | • | • | • | • | • | • | • | • | • | | MAXIMUM GAS PRESSURE SWITCH DEFECTIVE | ●l | • | ●l | • | • | • | • | • | • | • | • | | THERMOSTATS/PRESSURE SWITCHES DEFECTIVES | ●I | • | • | ●I | • | • | • | • | • | • | • | | OVERLOAD TRIPPED INTERVENTION | • | • | • | • | • | • | • | • | • | • | • | | AUXILIARIES FUSE INTERRUPTED | ●l | • | • | • | • | • | • | • | • | • | • | | DEFECTIVE CONTROL BOX | ●l | • | • | • | • | • | • | • | • | • | • | | DEFECTIVE ACTUATOR | • | • | • | • | • | • | • | • | • | • | • | | AIR PRESSURE SWITCH FAULT OR BAD SETTING | ●l | • | • | • | • | ●l | • | • | • | • | • | | MINIMUM GAS PRESSURE SWITCH DEFECTIVE OR GAS FILTER DIRTY | ●l | • | • | ●l | • | • | • | • | • | • | • | | IGNITION TRANSFORMER FAULT | • | • | • | • | • | • | • | • | • | • | • | | IGNITION ELECTRODES BAD POSITION | • | • | • | • | • | • | • | • | • | • | • | | BUTTERFLY VALVE BAD SETTING | • | • | • | • | • | • | • | • | • | • | • | | DEFECTIVE GAS GOVERNOR | • | • | • | ●l | • | • | • | • | • | • | • | | GAS VALVE DEFECTIVE | • | • | • | • | • | • | • | • | • | • | • | | BAD CONNECTION OR DEFECTIVE HIGH/
LOW FLAME THERMOSTAT OR PRESSURE
SWITCH | • | • | • | • | • | • | • | • | • | • | • | | ACTUATOR CAM WRONG SETTING | • | • | • | • | • | • | • | • | • | • | • | | UV PROBE DIRTY OR DEFECTIVE | • | • | • | • | • | • | • | • | • | • | • | C.I.B.UNIGAS S.p.A. Via L.Galvani ,9 - 35011Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945 website:www.cibunigas.it-e-mail:cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions excepted. # AZL2x - LMV2x/3x Burner Management System Service manual # INDEX | MICROPROCESSOR CONTROLLED SYSTEM | 6 | |--|----| | User interface | 6 | | Parameters level (heating engineer) | 8 | | Setting menu | 9 | | Block 000: Internal Parameter | 10 | | Block
100: General information | 10 | | Block 200: Burner control | 13 | | Block 400: Setting air/fuel ratio curves | 25 | | Block 500: Air/fuel ratio control | 26 | | Block 600: Actuators | 28 | | Block 700: Error history | 31 | | Block 900: Process data | 32 | | Actuators references | 33 | | Gas proving system | 33 | | Air-fuel curve points | 33 | | COMMISSIONING THE BURNER | 34 | | Warm setting | 38 | | Cold setting | 39 | | BURNER STARTUP WITH LMV2x ALREADY PROGRAMMED | 40 | | Reset / manual lockout | 42 | | Timeout for menu operation | 42 | | Entering the Parameter levels | 43 | | Info level | 44 | | Service level | 46 | | PHASES LIST | 47 | | BACKUP PARAMETER WITH AZL2x | 48 | | RESTORE PARAMETER FROM AZL2x TO LMV | 49 | | WIRING DIAGRAM | 65 | | Wiring connection for LMV20 | 65 | | Wiring variants for LMV27 | 66 | | Wiring variants for LMV26 | 67 | | Wiring variants for LMV37 | 68 | #### DANGERS, WARNINGS AND NOTES OF CAUTION THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts. Failure to comply with the above instructions is likely to impair the unit's safety. To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer. - For all the units that have been modified or have options fitted then original accessory equipment only shall be used. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things: - Failure to comply with one of the WARNINGS in this chapter - Incorrect handling, installation, adjustment or maintenance of the burner - Incorrect use of the burner or incorrect use of its parts or optional supply #### 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used. - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains. - b) Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### Special warnings - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox. - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance; - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. #### 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED # 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains. - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - do not touch the unit with wet or damp parts of the body and/or with bare feet: - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. # 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type; - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - a the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room
ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room; - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. #### **DIRECTIVES AND STANDARDS** #### Gas burners # European directives: - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: -UNI EN 676 (Gas Burners;-EN 55014-1Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus. -CEI EN 60335-1(Household and similar electrical appliances - Safety. Part 1: General requirements; -EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. -EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections) #### Light oil burners #### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: -CEI EN 60335-1(Household and similar electrical appliances - Safety. Part 1: General requirements; -UNI 267 Automatic forced draught burners for liquid fuels -EN 55014-1Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus. -EN 50165 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Heavy oil burners #### **European directives:** - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: -CEI EN 60335-1 Household and similar electrical appliances - SafetyPart 1: General requirements: -EN 55014-1Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus. - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Gas - Light oil burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: - -UNI EN 676 Gas Burners - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -UNI 267 Automatic forced draught burners for liquid fuels - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. # National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Gas - Heavy oil burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards : - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -UNI EN 676 (Gas Burners; - -CEI EN 60335-1(Household and similar electrical appliances Safety. Part 1: General requirements; - EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. #### National standards: -UNI 7824: Monobloc nebulizer burners for liquid fuels. Characteristics and test methods #### Industrial burners #### **European directives:** - Directive 2009/142/EC Gas Appliances; - Directive 2006/95/EC on low voltage; - Directive 2004/108/EC on electromagnetic compatibility #### Harmonised standards: - -EN 55014-1Electromagnetic compatibility Requirements for household appliances, electric tools and similar apparatus. - -EN 50165 Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements. - -UNI EN 746-2: Industrial thermoprocessing equipment #### Burner data plate For the following information, please refer to the data plate: - burner type and burner model: must be reported in any communication with the supplier - burner ID (serial number): must be reported in any communication with the supplier - date of production (year and month) - information about fuel type and network pressure | Туре | | |--------------|---| | Model | | | Year | - | | S.Number | - | | Output | - | | Oil Flow | - | | Fuel | - | | Category | - | | Gas Pressure | - | | Viscosity | - | | El.Supply | - | | El.Consump. | | | Fan Motor | - | | Protection | - | | Drwaing n° | - | | P.I.N. | | | | | #### **SYMBOLS USED** **WARNING!** Failure to observe the warning may result in irreparable damage to the unit or damage to the environment DANGER! Failure to observe the warning may result in serious injuries or death. WARNING! Failure to observe the warning may result in electric shock with lethal consequences # MICROPROCESSOR CONTROLLED SYSTEM The control system is made of the Siemens LMV central unit that performs all the burner control functions and of the Siemens AZL local programming unit that interfaces the system with the user. # Keys - 1 Burner - 2 AZL2.. - 3 Air actuator - 4 Fuel actuator - 5 LMV2.. # User interface The AZL2x.. display/programming unit is shown below: The keys functions are the following: #### Key F Used to adjust the "fuel" actuator position (Fuel): : While pressing the F key, the "fuel" actuator position can be changed by means of the + and - keys. #### Key A Used to adjust the "air" actuator position (Air): While pressing the A key, the "air" actuator position can be changed by means of the + and - keys. # Key F + A While pressing the two keys contemporarly, the code message will appear: by entering the proper password it is possible to access the Service mode. # Info and Enter keys Used for Info and Service menues Used as Enter key in the setting modes Used as Reset key in the burner operation mode Used to enter a lower level menu #### -Key - Used to decrease a a value Used to enter Info and Serivce during the curve adjustments Used to increase a a value Used to enter Info and Serivce during the curve adjustments #### Keys (+ & -)= ESC By pressing + and - at the same time, the ESCAPE function is perfored: to enter a lower level menu The display will show these data: Lock+unlock codes Flame Open valves Ignition transformers energised Fan motor energised Oil pre-heater energised Plant heat request Parametere setting mode Info mode Service mode Closing actuator Opening actuator **IUnit** measure # Parameters level (heating engineer) # Setting menu The seeting menu is divided into different blocks: | Bloc. | Descrizione | Description | Password | |-------|-----------------------------------|-----------------------------|----------------------| | 000 | | Internal parameters | OEM / Service | | 100 | Informazioni generali | General | OEM / Service / Info | | 200 | Controllo bruciatore | Burner control | OEM / Service | | 300 | Controllo bruciatore (solo LMV26) | Burner control (LMV26 only) | OEM / Service | | 400 | Curve rapporto | Ratio curves | OEM / Service | | 500 | Controllo rapporto | Ratio control | OEM / Service | | 600 | Servocomandi | Actuators | OEM / Service | | 700 | Storico errori | Error history | OEM / Service / Info | | 900 | Dati di processo | Process data | OEM / Service / Info | The access to the various blocks is allowed by passwords. Passwords are divided into three levels: - User level (info): no password needed - Service level (Service) - Manifacturer level (OEM) | Param. | Descrizione | Description | Password | |---------------------------------------|--|--|----------------| | 041 | Password livello assistenza (ingegnere del calore) | Password heating engineer (4 characters) | OEM | | 042 | Password livello OEM (costruttore del bruciatore) | Password OEM (5 characters) | OEM | | 050 Start backup/restore via AZL2x/PC | | Start backup / restore via AZL2/ PC software (set parameter to 1) Index 0: Create backup Index 1: Execute restore Error diagnostics via negative values (see error code 137) | so | | 055 | Identificazione bruciatore (backup dati) | Burner identification of AZL2 backup data set | SO | | 056 | | ASN extraction of AZL2 backup data set | SO | | 057 | Versione software creata dal set dati backup | Software version when creating the AZL2 backup data set | Service / Info | ## Block 100: General information | Param. | Descrizione | Description | Password | LMV20
LMV27 | LMV26 | LMV37 | |--------|---|---|--
----------------|-------|-------| | 102 | Data produzione (in gg-mm-aa) | Identification date (yy-mm-dd) | Service / Info | Х | Х | Х | | 103 | Numero identificativ | Identification number | Service / Info | Х | Х | Х | | 104 | Set di parametri preimpostati: codice cliente | Preselected parameter set: customer code | Service / Info | Х | Х | Х | | 105 | Set di parametri preimpostati: versione | Preselected parameter set: version | Service / Info | Х | Х | Х | | 107 | Versione softwar | Software version | Service / Info | Х | Х | Х | | 108 | Variante software | Software variant | Service / Info | Х | Х | Х | | 113 | Identificativo bruciatore | Burner identification | Service / Info
SO password
for writing | х | х | х | | 121 | Potenza manuale Valore "Undefined = automatico Impostare un valore inferiore a = in modo che il display mostri altrimenti, il controllore rimarrà sempre in stand-by e il display mostrerà la scritta OFF lampeggiante. | Manual output
Undefined = automatic mode | Service / Info | х | х | х | | 125 | Frequenza di rete
0 = 50 Hz
1 = 60 Hz | Mains frequency
0 = 50 Hz
1 = 60 Hz | Service / Info | х | х | х | |-----|---|--|----------------|---|---|---| | 126 | Luminosità display | Display brightness | Service / Info | Х | Х | Х | | 127 | Tempo dopo il quale, se non viene premuto nessun tast il software esce dalla modalita programmazione (valore fabbrica = 60min - range impostazione: 10 - 120 min) | Timeout for menu operation (default value = 60min - range: 10 - 120 min) | OEM | х | х | х | | 130 | Azzeramento Storico errori Impostare prima il parametro a 1 e poi a 2; se compare "0" = lo Storico è stato azzerato se compare "-1" = scaduto tempo sequ. 1_2 | Delete display of error history To delete display: set to 1 then to 2; return value "0" = error history deleted return value "-1" = timeout of 1_2 sequence | OEM / Service | x | х | х | | 141 | Attivazione comunicazione bus 0 = off 1 = Modbus 2 = riserva | Operating mode BACS 0 = off 1 = Modbus 2 = reserved | OEM / Service | | x | х | | 142 | Tempo d'arresto in caso di guasto di comunicazione | Setback time in the event of communication breakdown | OEM / Service | | Х | х | | 143 | Riserva | Reserved | Service / Info | | Х | Х | | 144 | Riserva | Reserved | OEM / Service | | Х | Х | | 145 | Indirizzo dispositivo per Modbus | Device address for Modbus | OEM / Service | | Х | Х | | 146 | Velocità di trasmissione per Modbus | Baud rate for Modbus | OEM / Service | | Х | Х | | 147 | Parità per Modbus | Parity for Modbus | OEM / Service | | Х | Х | | 148 | on una interruzione della comunicazione bus: 0 19.9 = bruciatore spento 20 100 = 20 100% potenza Per il funzionamento multistadio: 0 = bruciatore OFF, P1, P2, P3 non valido = nessun standard di prestazione della LMV. | Performance standard at interruption of communication with building automation For modulation operation the setting range is as fol-lows: 019.9 = burner off 20100 = 20100% burner rating For multistage operation apply to setting range: 0 = burner OFF, P1, P2, P3 Invalid = no performance standards of the building auto-mation | OEM / Service | | x | x | | 161 | Numero di avarie | Number of faults | Service / Info | Х | Х | Х | | 162 | Ore di esercizio (azzerabile da Service) | Operating hours (resettable by Service) | Service / Info | Х | Х | х | | 163 | Ore di esercizio (con dispositivo sotto tensione) | Operating hours (when unit is live) | Service / Info | х | х | х | | 164 | Numero di partenze (azzerabile da Service) | Number of startups (resettable by Service) | Service / Info | Х | Х | х | | 165 | Numero di partenze | Number of startups | Service / Info | Х | Х | Х | | 166 | Numero totale di partenze (non azzerabile) | Total number of startups | Service / Info | Х | Х | Х | |-----|--|--|----------------|---|---|---| | 167 | Volume combustibile (azzerabile da OEM) | Fuel volume (resettable by OEM) | Service / Info | Х | Х | х | | 172 | Fuel 1(secondo combustibile)Ore di esercizio (azzerabile da Service) | Fuel 1: Operation hours resettable | Service / Info | | х | | | 174 | Fuel 1 (secondo combustibile) Numero di partenze (azzerabile da Service) | Fuel 1: Number of startups resettable | Service / Info | | х | | | 175 | Fuel 1 (secondo combustibile) Numero di partenze | Fuel 1: Number of startups | Service / Info | | х | | | 177 | Fuel 1 (secondo combustibile) Volume combustibile (azzerabile da OEM) | Fuel 1: Fuel volume resettable (m³, I, ft³, gal) | Service / Info | | х | | | | r | | ď | |--|---|---|---| | | • | • | ۰ | | | | | | | | | | | | | | | | | Param. | Descrizione | Description | Password | LMV20
LMV27 | LMV26 | LMV37 | |--------|--|--|---|----------------|-------|-------| | | Modalità funzionamento bruciatore (rampa combustibile, modulante / multistadio, servocomandi, ecc.) | Burner operating mode (fuel train, modulating / multistage, actuators, etc) | | | | | | | = non definito (cancellazione curve) | = undefined (delete curves) | | | | | | | 1 = accensione diretta a gas (G mod) | 1 = gas direct ignition (G mod) | | | | | | | 2 = accensione tramite pilota gas con attacco
tra le due elettrovalvole EV1/EV2 del gas
(Gp1 mod) | 2 = ignition by gas pilot connected between
the two gas solenoid valves EV1/EV2 (Gp1
mod) | = ignition by gas pilot connected between
e two gas solenoid valves EV1/EV2 (Gp1 | | | | | | | 3 = ignition by gas pilot connected upstream the gas EV1 (Gp2 mod) | | | | | | 201 | 4 = accensione a gasolio - modulante (Lo mod) | 4 = light oil ignition - modulating (Lo mod) | OEM / Service | х | х | x | | 201 | 5 = accensione a gasolio - bistadio (Lo 2 stage) | 5 = light oil ignition - double stage (Lo 2 stage) | OEIVI / Service | | | * | | | 6 = accensione a gasolio - tristadio (Lo 3 stage) | 6 = light oil ignition - three stage (Lo 3 stage) | | | | | | | 7 = accensione diretta a gas - regolazione pneumatica (G mod pneu) | 7 = gas direct ignition - pneumatic regulation (G mod pneu) | | | | | | | | 8 = ignition by gas pilot connected between
the two gas solenoid valves EV1/EV2 - pneu-
matic regulation (Gp1 mod pneu) | | | | | | | 9 = accensione tramite pilota gas con attacco
a monte dell'elettrovalvola EV1 del gas -
regolazione pneumatica (Gp2 mod pneu) | 9 = ignition by gas pilot connected upstream the gas EV1 - pneumatic regulation (Gp2 mod pneu) | | | | | | | 10 = olio modulante con accensione tramite pilota (LOGp mod) | • | | | | | | | 11 = olio 2 stadi con accensione tramite pilota (LOGp 2-stage) | | | | | | | | 40 alia mandulanta ann Ourabrala annabrati | 13 = LoGp mod 2 fuel valves14 = G mod pneu without actuator | | | | | | | 13 = olio modulante con 2 valvole combusti-
bile e con accensione tramite pilota (LOGp 2
valvole) | | | | | | | | 14 = gas modulante pneumatico senza servo-
motori (Gmod pneu) | | | | | | | 4 | |---| | 4 | | | | | 15 = gas rampa Gp1 modulante pneumatico senza servomotori (Gp1 mod pneu) 16 = gas rampa Gp2 modulante pneumatico senza servomotori (Gp2 mod pneu) 17 = olio LO 2 stadi senza servomotori 18 = olio LO 3 stadi senza servomotori 19 = gas Gmod con solo servomotore gas 20 = gas Gp1 mod con solo servomotore gas 21 = gas Gp2 mod con solo servomotore olio | 15 = Gp1 mod pneu without actuator 16 = Gp2 mod pneu without actuator 17 = Lo 2-stage without actuator 18 = Lo 3-stage without actuator 19 = G mod gas actuator only 20 = Gp1 mod gas actuator only 21 = Gp2 mod gas actuator only 22 = Lo mod oil actuator only | | | | | |-----|---|--|---------------|---|---|---| | 208 | del programma) | Program stop 0 = deactivated 1 = pre-purge position (Ph24 - program phase 24) 2 = ignition position (Ph36 - program phase 36) 3 = interval 1 (Ph44 - program phase 44) 4 = interval 2 (Ph52 - program phase 52) | OEM / Service | x | x | x | | 210 | Allarme impedimento avviamento 0 = non attivo 1 = attivo | Alarm in the event of start prevention 0 = deactivated 1 = activated | OEM / Service | х | х | х | | 211 | Tempo aumento giri ventilatore (valore fabbrica = 2s - range impostazione: 2 - 60 s) | Fan ramp up time (default value = 2s - range: 2 - 60 s) | OEM / Service | х | x | х | | 212 | Tempo massimo raggiungimento bassa fiamma (valore fabbrica = 45 s - range impostazione: 0.2 s - 10 min) Stabilisce il massimo
intervallo di tempo durante il quale il bruciatore raggiunge la minima potenza e poi si spegne | Maximum time down to low-fire (default value = 45 s - range: 0.2 s - 10 min) It states the maximum time interval during which the burner drives to the low output and then turns off | OEM / Service | | х | | | 213 | Tempo minimo raggiungimento posizione di stand by (valore fabbrica = 2 s - range impostazione: 2 - 60 s) | Min. time home run (default value = 2 s - range: 2 - 60 s) | OEM | х | х | х | | 214 | Tempo massimo inizio partenza | Max. time start release | OEM | Х | Х | х | | 215 | Limite ripetizioni catena di sicurezza (valore fabbrica = 16 - range impostazione:1 - 16) | Repetition limit safety loop (default value = 16 - range: 1 - 16) | OEM / Service | х | х | х | | 217 | Tempo massimo per rilevazione segnale (valore fabbrica = 30s - range impostazione: 5s - 10 min) | Max. time to detector signal (default value = 30s - range: 5s - 10 min) | OEM | х | х | х | | | | ۰ | |---|---|---| | | 7 | ı | | • | • | ۰ | | | | | | | | | | 221 | Gas: sonda rilevazione fiamma attivo (valore fabbrica = 1) | Gas: active detector flame evaluation (default value = 1) 0 = QRB/QRC 1 = ION / QRA | OEM / Service | х | х | х | |-----|--|---|---------------|---|---|---| | 222 | EN676 rende obbligatoria la preventilazione. In ambito industriale, vedere i casi in cui la | Gas: Pre-purging (default value = 1) 1 = active 0 = deactivated WARNING: in the civil field, the prepurge is mandatory according to the standard EN676. In the industrial fiels, check if the pre purge can be avoided according to the stanrds EN746-2 If the prepurge is not performed, the burner must be equipped with two valves and the proving system. | OEM / Service | х | х | x | | 223 | Limite ripetizioni pressostato gas di minima pressione (valore fabbrica = 16 - range impostazione:1 - 16) | Repetition limit pressure switch-min-gas (default value = 16 - range:1 - 16) | OEM / Service | х | х | х | | 225 | Gas: tempo di preventilazione (valore fabbrica = 20s - range impostazione:20s - 60min) | Gas: Prepurge time (default value = 20s - range:20s - 60min) | OEM / Service | х | х | х | | 226 | Gas: tempo di preaccensione (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Gas: Preignition time (default value = 2s - range: 0.2s - 60min) | OEM / Service | х | х | х | | 227 | Gas: tempo di sicurezza 1 (TSA1) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Gas: Safety time 1 (TSA1) (default value = 3s - range: 0.2 - 10s) | OEM | х | х | х | | 229 | Gas: tempo di risposta a cadute di pressione entro TSA1 e TSA2 (valore fabbrica = 1.8s - range impostazione:0.2s - 9.8s) | Gas: time to respond to pressure faults in TSA1 e TSA2 (default value = 1.8s - range: 0.2s - 9.8s) | OEM | х | х | х | | 230 | Gas: Intervallo 1 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Gas: Interval 1 (default value = 2s - range: 0.2s - 60min) | OEM / Service | х | х | х | | 231 | Gas: tempo di sicurezza 2 (TSA2) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Gas: Safety time 2 (TSA2) (default value = 3s - range:0.2 - 10s) | OEM | х | х | х | | 232 | Gas: Intervallo 2 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Gas: Interval 2 (default value = 2s - range:0.2s - 60min) | OEM / Service | х | х | | | 233 | Gas: Tempo postcombustione (valore fabbrica = 8s - range impostazione:0.2s - 60s) | Gas: postcombustion time (default value = 8s - range:0.2s - 60s) | OEM / Service | х | х | х | | 234 | Gas: Tempo postventilazione (valore fabbrica = 0.2s - range impostazione:0.2s - 180min) | Gas: Postpurge time (default value = 0.2s - range:0.2s - 180min) | OEM / Service | х | Х | х | | | ľ | | | |---|---|---|---| | r | 1 | n | ı | | | | | | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | |-----|---|--|---------------|---|---|---| | 236 | 0 = inattivo
1 = pressostato gas di minima (a monte val-
vola V1) | Gas: Pressure switch-min input 0 = inactive 1 = pressure switch-min (upstream of fuel valve 1 (V1)) 2 = valve proving via pressure switch-min (between fuel valves 1 (V1) and 2 (V2)) | OEM / Service | x | x | | | 237 | Gas: Pressostato gas di massima / ingresso-POC 0 = inattivo 1= pressostato gas di massima 2= POC 3 = pressostato controllo perdite | Gas: Pressure switch-max / POC input 0 = inactive 1 = pressure switch-max 2 = POC 3 = pressure switch valve proving | | | х | х | | 239 | Gas: Forzatura al funzionamento intermittente 0 = disattivato 1 = attivato Attenzione : di default questo parametro è attivo = (1); esso è modificabile solo su LMV37. Dal punto di vista della sicurezza, il funzionamento continuo è valido esclusivamente per bruciatori di gas con elettrodo di rilevazione. | | OEM | | | x | | 240 | Limite ripetizioni perdita di fiamma (valore fabbrica = 2 - range impostazione:1 - 2) | Repetition limit loss of flame (default value= 2 - range:1 - 2) | OEM | х | х | х | | 241 | Gas: esecuzione controllo tenuta (valore fabbrica = 2) 0 = no controllo tenuta 1 = controllo tenuta in avviamento 2 = controllo tenuta in arresto 3 = controllo tenuta in arresto e in avviamento | Gas: execution proving test (default value= 2) 0 = no proving test 1 = proving test on startup 2 = proving test on shutdown 3 = proving test on shutdown and on startup | OEM / Service | х | х | х | | 242 | Gas: tempo evacuazione controllo tenuta (valore fabbrica = 3s - range impostazione:0.2s - 10s) | Gas: proving test evacuation time (default value = 3s - range:0.2s - 10s) | OEM | х | х | х | | 243 | Gas: tempo pressione atmosferica controllo tenuta (valore fabbrica = 10s - range impostazione:0.2s - 60s) | Gas: proving test time atmospheric pressure (default value = 10s - range:0.2s - 60s) | OEM | х | х | х | |-----|--|---|---------------|---|---|---| | 244 | Gas: tempo riempimento controllo tenuta (valore fabbrica = 3s - range impostazione:0.2s - 10s) | Gas: proving test filling time (default value = 3s - range:0.2s - 10s) | OEM | х | х | х | | 245 | Gas: tempo test pressione gas (valore fabbrica = 10s - range impostazione:0.2s - 60s) | Gas: proving test time gas pressure (default value = 10s - range:0.2s - 60s) | OEM | х | х | Х | | 246 | Gas: tempo attesa consenso pressostato di minima (valore fabbrica = 10s - range impostazione:0.2s - 60s) Se la pressione del gas è troppo bassa, in fase 22 non verrà eseguito l'avviamento: il sistema compie un numero impostabile di tentativi finché non si arriva al blocco. Il tempo di attesa tra un tentativo e il successivo viene raddoppiato ad ogni tentativo. | Gas: waiting time gas shortage (default value = 10s - range:0.2s - 60s) If the gas pressure is too low, in phase 22 the startup will not be performed: the system tries for a certain number of times the it locks out. The time interval between two attempts is doubled at each attempt. | OEM | x | x | x | | 248 | Gas: Tempo di post-ventilazione 3 (abortito con regolatore di potenza (LR)-ON | Gas: Postpurge time 3 (abortion with load controller (LR)-ON | OEM / Service | x | x | х | | 261 | Olio: sonda rilevazione fiamma attivo (valore fabbrica = 0) 0 = QRB/QRC 1 = ION / QRA | Oil: active detector flame evaluation (default value = 0) 0 = QRB/QRC 1 = ION / QRA | OEM / Service | х | х | х | | 262 | Olio: preventilazione (valore fabbrica = 1) 1 = attivo 0 = non attivo In ambito civile la norma EN267 rende obbligatoria la preventilazione. In ambito industriale, vedere i casi in cui la norma EN746-2 prevede la possibilità di non fare la preventilazione. | Oil: prepurging (default value = 1) 0 = deactivated 1 = activated 0 = deactivated WARNING: in the civil field, the prepurge is mandatory according to the standard EN267. In the industrial fiels, check if the pre purge can be avoided according to the standard EN746-2 | OEM / Service | x | x | x | | 265 | Olio: tempo preventilazione (valore fabbrica = 15s - range impostazione:15s - 60min) | Oil: prepurging time (default value = 15s - range:15s - 60min) | OEM / Service | х | Х | Х | | 266 | Olio: tempo preaccensione (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Oil: preignition time (default value = 2s - range:0.2s - 60min) | OEM / Service | х | x | Х | | 267 | Olio: tempo di sicurezza 1 (TSA1) (valore fabbrica = 5s - range impostazione:0.2 - 15s) | Oil: safety time 1 (TSA1) (default value = 5s - range:0.2 - 15s) | OEM | x | x | Х
 | 269 | Olio: tempo di risposta a cadute di pressione entro TSA1 e TSA2 (valore fabbrica = 1.8s - range impostazione:0.2s - 14.8s) | Oil: time to respond to pressure faults in TSA1 and TSA2 (default value = 1.8s - range:0.2s - 14.8s) | OEM | x | x | х | | | | ď | | | |---|---|---|---|--| | ١ | n | | (| | | | · | • | | | | | | | | | | | | | | | | 270 | Olio: Intervallo 1 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Oil: Interval 1 (default value = 2s - range:0.2s - 60min) | OEM / Service | x | х | х | |-----|--|---|---------------|---|---|---| | 271 | Olio: tempo di sicurezza 2 (TSA2) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Oil: safety time 2 (TSA2) (default value = 3s - range:0.2 - 10s) | OEM | х | х | х | | 272 | Olio: Intervallo 2 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Oil: Interval 2 (default value = 2s - range:0.2s - 60min) | OEM / Service | х | х | х | | 273 | Olio: Tempo postcombustione (valore fabbrica = 8s - range impostazione:0.2s - 60s) | Oil: Postcombustion time (default value = 8s - range:0.2s - 60s) | OEM / Service | х | х | х | | 274 | Olio: Tempo postventilazione (valore fabbrica = 0.2s - range impostazione:0.2s - 180min) | Oil: Postpurging time (default value = 0.2s - range:0.2s - 180min) | OEM / Service | х | х | х | | 276 | Olio : Pressostato olio di minima (default = 1) 0 = inattivo 1 = attivo dalla fase 38 2 = attivo dal tempo di sicurezza (TSA) | Oil. Pressure switch-min input 0 = inactive 1 = active from phase 38 2 = active from safety time (TSA) | OEM / Service | x | x | | | 277 | Olio: Pressostato olio di massima / ingresso-
POC
0 = inattivo
1= pressostato olio di massima
2= POC | Oil: Pressure switch-max/POC input 0 = inactive 1 = pressure switch-max 2 = POC | | | х | | | 279 | Olio: Forzatura al funzionamento intermittente 0 = disattivato 1 = attivato Attenzione : di default questo parametro è attivo = (1); esso è modificabile solo su LMV37 | Oil: Forced intermittent operation 0 = deactivated 1 = activated | OEM | | х | х | | 280 | Limite ripetizioni perdita di fiamma (valore fabbrica = 2 - range impostazione:1 - 2) | Repetition limit value loss of flame (default value = 2 - range:1 - 2) | OEM | х | х | х | | 281 | Olio: tempo iniezione olio (valore fabbr. = 1) 0 = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) | Oil: time oil ignition (default value = 1) 0 = short preignition (Ph38-progr. phase 38) 1 = long preignition (with fan) (Ph22 - program phase 22) | OEM / Service | х | x | х | | 284 | Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza (LR)-ON | Oil: Postpurge time 3 (abortion with load controller (LR)-ON | OEM / Service | х | х | х | # Block 300: Burner control (only with LMV26) | Param. | Descrizione | Description | Password | LMV20
LMV27 | PWV26 | LMV37 | |--------|--|--|---------------|----------------|-------|-------| | | Combustibile 1 : Modalità funzionamento bruciatore (rampa combustibile, modulante / multistadio, servocomandi, ecc.) | Fuel 1 : Burner operating mode (fuel train, modulating / multistage, actuators, etc) | | | | | | | = non definito (cancellazione curve) | = undefined (delete curves) | | | | | | | 1 = accensione diretta a gas (G mod) | 1 = gas direct ignition (G mod) | | | | | | | tra le due elettrovalvole EV1/EV2 del gas (Gp1 mod) | 2 = ignition by gas pilot connected between
the two gas solenoid valves EV1/EV2 (Gp1
mod) | | | | | | | 3 = accensione tramite pilota gas con attacco
a monte dell'elettrovalvola EV1 del gas (Gp2
mod) | 3 = ignition by gas pilot connected upstream the gas EV1 (Gp2 mod) | | | | | | | 4 = accensione a gasolio - modulante (Lo mod) | 4 = light oil ignition - modulating (Lo mod) | | | | | | 301 | 5 = accensione a gasolio - bistadio (Lo 2 stage) | 5 = light oil ignition - double stage (Lo 2 stage) | OEM / Service | | х | | | | 6 = accensione a gasolio - tristadio (Lo 3 stage) | 6 = light oil ignition - three stage (Lo 3 stage) | | | | | | | 7 = accensione diretta a gas - regolazione pneumatica (G mod pneu) | (G mod pneu) | | | | | | | 8 = accensione tramite pilota gas con attacco
tra le due elettrovalvole EV1/EV2 del gas -
regolazione pneumatica (Gp1 mod pneu) | 8 = ignition by gas pilot connected between
the two gas solenoid valves EV1/EV2 - pneu-
matic regulation (Gp1 mod pneu) | | | | | | | 9 = accensione tramite pilota gas con attacco
a monte dell'elettrovalvola EV1 del gas -
regolazione pneumatica (Gp2 mod pneu) | 9 = ignition by gas pilot connected upstream the gas EV1 - pneumatic regulation (Gp2 mod pneu) | | | | | | | 10 = olio modulante con accensione tramite pilota (LOGp mod) | 10 = LoGp mod | | | | | | \sim | | |--------|--| | 0 | | | | | | | T | | | | | |-----|---|--|---------------|---|--| | | 11 = olio 2 stadi con accensione tramite pilota | | | | | | | (LOGp 2-stage) | 12 = Lo mod 2 fuel valves | | | | | | 12 = olio modulante con 2 valvole combusti- | | | | | | | bile (LOmod 2 valvole) | 14 = G mod pneu without actuator | | | | | | 13 = olio modulante con 2 valvole combusti-
bile e con accensione tramite pilota (LOGp 2 | | | | | | | valvole) | 16 = Gp2 mod pneu without actuator | | | | | | 14 = gas modulante pneumatico senza servomotori (Gmod pneu) | | | | | | | 15 = gas rampa Gp1 modulante pneumatico senza servomotori (Gp1 mod pneu) | | | | | | | 16 = gas rampa Gp2 modulante pneumatico | | | | | | | senza servomotori (Gp2 mod pneu) | | | | | | | 17 = olio LO 2 stadi senza servomotori | 17 = Lo 2-stage without actuator | | | | | | 18 = olio LO 3 stadi senza servomotori | 18 = Lo 3-stage without actuator | | | | | | 19 = gas Gmod con solo servomotore gas | 19 = G mod gas actuator only | | | | | | 20 = gas Gp1 mod con solo servomotore gas | 20 = Gp1 mod gas actuator only | | Х | | | | 21 = gas Gp2 mod con solo servomotore gas | 21 = Gp2 mod gas actuator only | | | | | | 22 = olio LO mod con solo servomotore olio | 22 = Lo mod oil actuator only | | | | | | Combustibile 1 - Gas: sonda rilevazione | Fuel 1 - Gas: active detector flame evalua- | | | | | 204 | fiamma attivo (valore fabbrica = 1) - | tion (default value = 1) | 0514/0 | | | | 321 | 0 = QRB/QRC | 0 = QRB/QRC | OEM / Service | Х | | | | 1 = ION / QRA | 1 = ION / QRA | | | | | | Combustibile 1 - Gas: Preventilazione (valore fabbrica = 1) | Fuel 1 - Gas: Pre-purging (default value = 1) | | | | | | 1 = attivo | 1 = active | | | | | | 0 = non attivo | 0 = deactivated | | | | | | ATTENZIONE : In ambito civile la norma | WARNING: in the civil field, the prepurge is | | | | | 322 | EN676 rende obbligatoria la preventilazione. | mandatory according to the standard EN676. | OFM / O | | | | 322 | In ambito industriale, vedere i casi in cui la | In the industrial fiels, check if the pre purge | OEM / Service | Х | | | | norma EN746-2 prevede la possibilità di non | can be avoided according to the stanrds EN746-2 | | | | | | fare la preventilazione. | EN/40-2 | | | | | | In questi ultimi casi il bruciatore deve essere | If the prepurge is not performed, the burner
must be equipped with two valves and the | | | | | | costruito obbligatoriamente con controllo di | proving system. | | | | | | tenuta e valvole gas in classe A. | | | | | | 200 | Limite ripetizioni pressostato gas di minima | Repetition limit pressure switch-min-gas | | | | | 323 | pressione (valore fabbrica = 16 - range impostazione:1 - 16) | (default value = 16 - range:1 - 16) | OEM / Service | Х | | | | Combustibile 1 - Gas: tempo di preventila- | Fuel 1 - Gas: Prepurge time (default value = | | | | | 325 | zione (valore fabbrica = 20s - range imposta- | 20s - range:20s - 60min) | OEM / Service | X | | | | zione:20s - 60min) | | | | | | N 1 | |-----| | | | ~ | | | | | Combustibile 1 - Gas: tempo di preaccen- | Fuel 1 - Gas: Preignition time (default value = | | | | |-----|---|--|---------------|---|--| | 326 | sione (valore fabbrica = 2s - range imposta-
zione:0.2s - 60min) | 2s - range: 0.2s - 60min) | OEM / Service | х | | | 327 | Combustibile 1 - Gas: tempo di sicurezza 1 (TSA1) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Fuel 1 - Gas: Safety time 1 (TSA1) (default value = 3s - range: 0.2 - 10s) | OEM | х | | | 329 | Combustibile 1 - Gas: tempo di risposta a cadute di pressione entro TSA1 e TSA2 (valore fabbrica = 1.8s - range impostazione:0.2s - 9.8s) | Fuel 1 - Gas: time to respond to pressure faults in TSA1 e TSA2 (default value = 1.8s - range: 0.2s - 9.8s) | ОЕМ | х | | | 330 | Combustibile 1 - Gas: Intervallo 1 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Fuel 1 - Gas: Interval 1 (default value = 2s - range: 0.2s - 60min) | OEM / Service | х | | | 331 | Combustibile
1 - Gas: tempo di sicurezza 2 (TSA2) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Fuel 1 - Gas: Safety time 2 (TSA2) (default value = 3s - range:0.2 - 10s) | OEM | х | | | 332 | Combustibile 1 - Gas: Intervallo 2 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Fuel 1 - Gas: Interval 2 (default value = 2s - range:0.2s - 60min) | OEM / Service | х | | | 333 | Combustibile 1 - Gas: Tempo postcombustione (valore fabbrica = 8s - range impostazione:0.2s - 60s) | Fuel 1 - Gas: postcombustion time (default value = 8s - range:0.2s - 60s) | OEM / Service | х | | | 334 | Combustibile 1 - Gas: Tempo postventila-
zione (valore fabbrica = 0.2s - range impo-
stazione:0.2s - 180min) | Fuel 1 - Gas: Postpurge time (default value = 0.2s - range:0.2s - 180min) | OEM / Service | х | | | 336 | Combustibile 1 - Gas: Pressostato gas di minima (default = 1) 0 = inattivo 1 = pressostato gas di minima (a monte valvola V1) 2 = controllo perditavalvole via pressostato (montato tra le valvole V1 e V2) | 2 = valve proving via pressure switch-min | OEM / Service | х | | | 337 | Combustibile 1 - Gas: Pressostato gas di massima / ingressoPOC 0 = inattivo 1= pressostato gas di massima 2= POC 3 = pressostato controllo perdite | Fuel 1 - Gas: Pressure switch-max / POC input 0 = inactive 1 = pressure switch-max 2 = POC 3 = pressure switch valve proving | | х | | | 340 | Limite ripetizioni perdita di fiamma (valore fabbrica = 2 - range impostazione:1 - 2) | Repetition limit loss of flame (default value= 2 - range:1 - 2) | OEM | х | | |-----|---|---|---------------|---|--| | 341 | Combustibile 1 - Gas: esecuzione controllo tenuta (valore fabbrica = 2) 0 = no controllo tenuta 1 = controllo tenuta in avviamento 2 = controllo tenuta in arresto 3 = controllo tenuta in arresto e in avviamento | Fuel 1 - Gas: execution proving test (default value= 2) 0 = no proving test 1 = proving test on startup 2 = proving test on shutdown 3 = proving test on shutdown and on startup | OEM / Service | х | | | 342 | Combustibile 1 - Gas: tempo evacuazione controllo tenuta (valore fabbrica = 3s - range impostazione:0.2s - 10s) | Fuel 1 - Gas: proving test evacuation time (default value = 3s - range:0.2s - 10s) | OEM | х | | | 343 | Combustibile 1 - Gas: tempo pressione atmosferica controllo tenuta (valore fabbrica = 10s - range impostazione:0.2s - 60s) | Fuel 1 - Gas: proving test time atmospheric pressure (default value = 10s - range:0.2s - 60s) | OEM | х | | | 344 | Combustibile 1 - Gas: tempo riempimento controllo tenuta (valore fabbrica = 3s - range impostazione:0.2s - 10s) | Fuel 1 - Gas: proving test filling time (default value = 3s - range:0.2s - 10s) | OEM | x | | | 345 | Combustibile 1 - Gas: tempo test pressione gas (valore fabbrica = 10s - range impostazione:0.2s - 60s) | Fuel 1 - Gas: proving test time gas pressure (default value = 10s - range:0.2s - 60s) | OEM | х | | | 346 | Combustibile 1 - Gas: tempo attesa consenso pressostato di minima (valore fabbrica = 10s - range impostazione:0.2s - 60s) Se la pressione del gas è troppo bassa, in fase 22 non verrà eseguito l'avviamento: il sistema compie un numero impostabile di tentativi finché non si arriva al blocco. Il tempo di attesa tra un tentativo e il successivo viene raddoppiato ad ogni tentativo. | Fuel 1 - Gas: waiting time gas shortage (default value = 10s - range:0.2s - 60s) If the gas pressure is too low, in phase 22 the startup will not be performed: the system tries for a certain number of times the it locks out. The time interval between two attempts is doubled at each attempt. | OEM | х | | | 348 | Combustibile 1 - Gas: Tempo di post-ventilazione 3 (abortito con regolatore di potenza (LR)-ON | Fuel 1 - Gas: Postpurge time 3 (abortion with load controller (LR)-ON | OEM / Service | х | | | 361 | Combustibile 1 - Olio: sonda rilevazione fiamma attivo (valore fabbrica = 0) 0 = QRB/QRC 1 = ION / QRA | Fuel 1 - Oil: active detector flame evaluation (default value = 0) 0 = QRB/QRC 1 = ION / QRA | OEM / Service | x | | | 362 | Combustibile 1 - Olio: preventilazione (valore fabbrica = 1) 1 = attivo 0 = non attivo In ambito civile la norma EN267 rende obbligatoria la preventilazione. In ambito industriale, vedere i casi in cui la norma EN746-2 prevede la possibilità di non fare la preventilazione. | Fuel 1 - Oil: prepurging (default value = 1) 0 = deactivated 1 = activated 0 = deactivated WARNING: in the civil field, the prepurge is mandatory according to the standard EN267. In the industrial fiels, check if the pre purge can be avoided according to the standard EN746-2 | OEM / Service | x | | |-----|---|---|---------------|---|--| | 365 | Combustibile 1 - Olio: tempo preventilazione (valore fabbrica = 15s - range impostazione:15s - 60min) | Fuel 1 - Oil: prepurging time (default value = 15s - range:15s - 60min) | OEM / Service | х | | | 366 | Combustibile 1 - Olio: tempo preaccensione (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Fuel 1 - Oil: preignition time (default value = 2s - range:0.2s - 60min) | OEM / Service | х | | | 367 | Combustibile 1 - Olio: tempo di sicurezza 1 (TSA1) (valore fabbrica = 5s - range impostazione:0.2 - 15s) | Fuel 1 - Oil: safety time 1 (TSA1) (default value = 5s - range:0.2 - 15s) | OEM | х | | | 369 | Combustibile 1 - Olio: tempo di risposta a cadute di pressione entro TSA1 e TSA2 (valore fabbrica = 1.8s - range impostazione:0.2s - 14.8s) | Fuel 1 - Oil: time to respond to pressure faults in TSA1 and TSA2 (default value = 1.8s - range:0.2s - 14.8s) | OEM | х | | | 370 | Combustibile 1 - Olio: Intervallo 1 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Fuel 1 - Oil: Interval 1 (default value = 2s - range:0.2s - 60min) | OEM / Service | х | | | 371 | Combustibile 1 - Olio: tempo di sicurezza 2 (TSA2) (valore fabbrica = 3s - range impostazione:0.2 - 10s) | Fuel 1 - Oil: safety time 2 (TSA2) (default value = 3s - range:0.2 - 10s) | OEM | х | | | 372 | Combustibile 1 - Olio: Intervallo 2 (valore fabbrica = 2s - range impostazione:0.2s - 60min) | Fuel 1 - Oil: Interval 2 (default value = 2s - range:0.2s - 60min) | OEM / Service | х | | | 373 | Combustibile 1 - Olio: Tempo postcombustione (valore fabbrica = 8s - range impostazione:0.2s - 60s) | Fuel 1 - Oil: Postcombustion time (default value = 8s - range:0.2s - 60s) | OEM / Service | х | | | 374 | Combustibile 1 - Olio: Tempo postventila-
zione (valore fabbrica = 0.2s - range impo-
stazione:0.2s - 180min) | Fuel 1 - Oil: Postpurging time (default value = 0.2s - range:0.2s - 180min) | OEM / Service | х | | | 377 | Combustibile 1 - Olio: Pressostato olio di massima / ingressoPOC 0 = inattivo 1= pressostato olio di massima 2= POC | Fuel 1 - Oil: Pressure switch-max/POC input 0 = inactive 1 = pressure switch-max 2 = POC | | х | | | Limite ripetizioni perdita di fiamma (valore fabbrica = 2 - range impostazione:1 - 2) | Repetition limit value loss of flame (default value = 2 - range:1 - 2) | OEM | | х | | |---|--|---|--
--|---| | Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) | Fuel 1 - Oil: time oil ignition (default value = 1) | | | | | | 0 = preaccensione corta (Ph38 - fase programma 38) | 0 = short preignition (Ph38-progr. phase 38) | OEM / Service | | х | | | 1 = preaccensione lunga (con ventilatore)
(Ph22 - fase programma 22) | 1 = long preignition (with fan) (Ph22 - program phase 22) | | | | | | Combustibile 1 - Olio: Tempo di post-ventila-
zione 3 (abortito con regolatore di potenza
(LR)-ON | Fuel 1 - Oil: Postpurge time 3 (abortion with load controller (LR)-ON | OEM / Service | | х | | | | fabbrica = 2 - range impostazione:1 - 2) Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) 0 = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) Combustibile 1 - Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza | fabbrica = 2 - range impostazione:1 - 2) Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) O = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) Combustibile 1 - Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza value = 2 - range:1 - 2) Fuel 1 - Oil: time oil ignition (default value = 1) 0 = short preignition (Ph38-progr. phase 38) 1 = long preignition (with fan) (Ph22 - program phase 22) Fuel 1 - Oil: Postpurge time 3 (abortion with load controller (LR)-ON | fabbrica = 2 - range impostazione:1 - 2) Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) O = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) Combustibile 1 - Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza value = 2 - range:1 - 2) Fuel 1 - Oil: time oil ignition (default value = 1) O = short preignition (Ph38-progr. phase 38) OEM / Service | fabbrica = 2 - range impostazione:1 - 2) Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) O = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) Combustibile 1 - Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza value = 2 - range:1 - 2) Fuel 1 - Oil: time oil ignition (default value = 1) O = short preignition (Ph38-progr. phase 38) OEM / Service | fabbrica = 2 - range impostazione:1 - 2) Combustibile 1 - Olio: tempo iniezione olio (valore fabbr. = 1) O = preaccensione corta (Ph38 - fase programma 38) 1 = preaccensione lunga (con ventilatore) (Ph22 - fase programma 22) Combustibile 1 - Olio: Tempo di post-ventilazione 3 (abortito con regolatore di potenza value = 2 - range:1 - 2) Fuel 1 - Oil: time oil ignition (default value = 1) O = short preignition (Ph38-progr. phase 38) 1 = long preignition (with fan) (Ph22 - program phase 22) Fuel 1 - Oil: Postpurge time 3 (abortion with load controller (LR)-ON | # Block 400: Setting air/fuel ratio curves | Param. | Descrizione | Description | Password | LMV20
LMV27 | LMV26 | LMV37 | |--------|---|--|---------------|----------------|-------|-------| | 401 | Curve controllo servocomando combustibile (F): si accede alla lista dei punti da impostare (da P0 a P9) - consultare paragrafo "Impostazione curve" | Ratio control curve fuel actuator (F): it accesses to the parameter list of the points to be set (P0 to P9) - see paragrapf "Setting the curves" | OEM / Service | x | x | х | | 402 | Curve controllo servocomando aria (A): si accede alla lista dei punti da impostare (da P0 a P9) - consultare paragrafo "Impostazione curve" | Ratio control curve air actuator (A): it accesses to the parameter list of the points to be set (P0 to P9) - see paragraph "Setting the curves" | OEM / Service | x | x | х | | 403 | Curve controllo inverter (F + A): si accede alla lista dei punti da impostare (da P0 a P9) - consultare paragrafo "Impostazione curve" | Ratio control curves VSD (curve setting only) | SO | | x | х | | 404 | Combustibile 1 - Curve controllo servoco-
mando combustibile 1 (F): si accede alla lista
dei punti da impostare (da P0 a P9) - consul-
tare paragrafo "Impostazione curve" | Fuel 1: Ratio control curves fuel actuator (curve setting only) | SO | | х | | | 405 | Combustibile 1 - Curve controllo servoco-
mando aria (A): si accede alla lista dei punti
da impostare (da P0 a P9) - consultare para-
grafo "Impostazione curve" | Fuel 1: Ratio control curves air actuator (curve setting only) | SO | | х | | | 406 | Combustibile 1 - Curve controllo inverter (F + A): si accede alla lista dei punti da impostare (da P0 a P9) - consultare paragrafo "Impostazione curve" | Fuel 1: Ratio control curves VSD (curve setting only) | SO | | х | | Descrizione Param. Ramp up Ramp down Description LMV20 LMV27 **Password** OFM / Service OEM / Service Х Х Х Х LMV26 LMV37 522 523 Tempo rampa di salita inverter Tempo rampa di discesa inverter | | | Modulation 32 s | Parame
Modulation
48s | Modulation 64s | Modulation 80s | | | | |-----|--|------------------------|------------------------------------|----------------------------------|-----------------------|---------------|---|---| | 542 | Activation of VSD / PWM fan (Width Modulation) 0=deactived 1=actived | PWM = Pulse- | Activation of V3
(PWM = Pulse- | SD / PWM fan
-Width Modulatio | on) | OEM / Service | x | х | | | | | | Parame | eter 544 | | | | | | |-----|----------------------|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------|---|---|---| | | | | Modulation 32s | Modulation 48s | Modulation 64s | Modulation 80s | | | | | | 544 | Actuator | Actuating speed parameter 613 | Ma | ax. delta betwee | en the curve poi | nts | OEM / Service | x | x | х | | | Actuator
(<= 5Nm) | 5s / 90° | 31° | 46° | 62° | 77° | | | | | | | Actuator SQM33.7 | 17s / 90° | 9°
(1) | 13° | 18° | 22° | | | | | ⁽¹⁾ in this case the max. position of 90° can't be reached | 545 | Percentuale minima di carico per modulazione (valore fabbrica = n.d range impostazione:20%-100%) | Lower load limit (default value = n.d range:20%-100%) | OEM / Service | х | х | х | |-----|--|---|---------------|---|---|---| | 546 | Percentuale massima di carico per modula-
zione (valore fabbrica = n.d range imposta-
zione:20%-100%) | Higher load limite (default value = n.d range:20%-100%) | OEM / Service | x | x | х | | 565 | Combustibile 1 - Percentuale minima di carico per modulazione (valore fabbrica = n.d range impostazione:20%-100%) | Fuel 1
Lower load limit (default value = n.d range:20%-100%) | OEM / Service | | х | | | 566 | Combustibile 1 - Percentuale massima di carico per modulazione (valore fabbrica = n.d range impostazione:20%-100%) | Fuel 1 Higher load limite (default value = n.d range:20%-100%) | OEM / Service | | х | | | Param. | Descrizione | Description | Password | LMV20
LMV27 | LMV26 | LMV37 | |--------|---|--|---------------|----------------|-------|-------| | 601 | Impostazione punto di riferimento Indice 0 = combustibile Indice 1 = aria 0 = chiuso (<0°) 1 = aperto (>90°) | Selection of reference point Index 0 = fuel Index 1 = air 0 = closed (<0°) 1 = open (>90°) | OEM | x | х | х | | 602 | Direzione rotazione del servocomando Indice 0 = combustibile Indice 1 = aria 0 = antiorario 1 = orario VEDI MESSAGGIO DI "ATTENZIONE" RIPORTATO SOTTO. | Actuator's direction of rotation Index 0 = fuel Index 1 = air 0 = counterclockwise 1 = clockwise SEE "WARNING" MESSAGE QUOTED BELOW. | OEM | x | x | х | | 606 | Limite tolleranza per monitoraggio posizione (0.1°) Indice 0 = combustibile Indice 1 = aria | Tolerance limit of position monitoring (0.1°) Index 0 = fuel Index 1 = air | OEM / Service | x | x | x | | 608 | Combustibile 1 - Impostazione punto di riferimento Indice 0 = combustibile Indice 1 = aria 0 = chiuso (<0°) 1 = aperto (>90°) | Fuel 1 : Selection of reference point Index 0 = fuel Index 1 =
air 0 = closed (<0°) 1 = open (>90°) | OEM | | х | | | 609 | Combustibile 1 - Direzione rotazione del servocomando Indice 0 = combustibile Indice 1 = aria 0 = antiorario 1 = orario VEDI MESSAGGIO DI "ATTENZIONE" RIPORTATO SOTTO. | Fuel 1: Actuator's direction of rotation Index 0 = fuel Index 1 = air 0 = counterclockwise 1 = clockwise SEE "WARNING" MESSAGE QUOTED BELOW. | OEM | | x | | | 610 | Combustibile 1 - Limite tolleranza per monitoraggio posizione (0.1°) Indice 0 = combustibile Indice 1 = aria | Fuel 1 : Tolerance limit of position monitoring (0.1°) Index 0 = fuel Index 1 = air | OEM / Service | | x | | | | 611 | Tipo di riferimento dei servocomandi index 0 = fuel (default = 0 (riferimento standard) index 1 = air (default = 0 (riferimento standard) 0 = standard 1 = fermo entro il raggio utile 2 = fermi interni (SQN1) 3 = entrambi | Type of referencing Index 0 = fuel Index 1 = air 0 = standard 1 = stop within usable range 2 = internal stop (SQN1) 3 = both | OEM | x | x | x | |----|-----|--|--|-----|---|---|---| | 20 | 612 | Combustibile 1 - Tipo di riferimento del servo- comando combustibile 0 = standard 1 = fermo entro il raggio utile 2 = fermi interni (SQN1) 3 = entrambi | Fuel 1: Type of reference for fuel actuator 0 = standard 1 = range stop in the usable range 2 = internal range stop (SQN1) 3 = both | OEM | | X | | | | 613 | Tipo di servocomando Indice 0 = combustibile Indice 1 = aria 0 = 5s / 90° (1Nm, 1,2Nm, 3Nm) 1 = 10s / 90° (6Nm) 2 = 17s / 90° (10Nm) | Type of actuator Index 0 = fuel Index 1 = air 0 = 5 s / 90° (1Nm, 1,2Nm, 3Nm) 1 = 10 s / 90° (6Nm) 2 = 17 s / 90° (10Nm) | OEM | х | х | х | | | 614 | Combustibile 1 :Tipo di servocomando Indice 0 = combustibile Indice 1 = aria 0 = 5s / 90° (1Nm, 1,2Nm, 3Nm) 1 = 10s / 90° (6Nm) 2 = 17s / 90° (10Nm) | Fuel 1 : Type of actuator Index 0 = fuel Index 1 = air 0 = 5 s / 90° (1Nm, 1,2Nm, 3Nm) 1 = 10 s / 90° (6Nm) 2 = 17 s / 90° (10Nm) | OEM | | x | | | | 641 | Attivazione procedura di standardizzazione inverter (riferirsi al codice errore 82) 0 = standardizzazione disattivata 1 = standardizzaione attivata | Control of speed standardization of VSD Error diagnostics of negative values (refer to error code 82)0 = no speed standardization 1 = speed standardization active | | | х | х | | | (valore fabbrica = 0) | Configuration of analog output (default value = 0) 0 = DC 010 V 1 = DC 210 V 2 = DC 0/210 V | OEM / Service | LMV27 | x | х | |--|-----------------------|--|---------------|-------|---|---| |--|-----------------------|--|---------------|-------|---|---| **ATTENTION:** as for SQM3x actuators, set the direction according to the acutator function. As far as SQN1x actuators, set **always** the counterclockwise direction, independently from the model chosen for the specific function. # Block 700: Error history | Param. | Descrizione | Description | Password | |--------|---|---|----------------| | 701 | Storico errori: 701 - 725.01.codice | Error history: 701 - 725.01.code | Service / Info | | 0 | Storico errori: 701 - 725.02.codice diagnostico | 1 | Service / Info | | 0 | Storico errori: 701 - 725.03.classe errore | Error history: 701 - 725.03.error class | Service / Info | | 0 | Storico errori: 701 - 725.04.fase | Error history: 701 - 725.04.phase | Service / Info | | | | Error history: 701 - 725.05.startup counter | Service / Info | | 725 | Storico errori: 701 - 725.06.carico | Error history: 701 - 725.06.load | Service / Info | ## Block 900: Process data | Param. | Descrizione | Description | Password | |--------|---|--|-----------------| | | , | Current output (default value = 0% - range = | | | 903 | impostazione = 0-100%) | 0-100%) | Service / Info | | | Indice 0 = combustibile | Index 0 = fuel | Cervice / Illio | | | Indice 1 = aria | Index 1 = air | | | 922 | Posizione incrementale servocomandi (valore fabbrica = 0% - range impostazione = -50% - 150%) | Incremental position of actuators (default value = 0% - range = -50% - 150%) | Service / Info | | J22 | Indice 0 = combustibile | Index 0 = fuel | Service / IIIIO | | | Indice 1 = aria | Index 1 = air | | | 935 | Giri motore assoluti | Absolute speed | OEM / Service | | 936 | Giri motore in fase standardizzazione | Standardized speed | Service / Info | | 942 | Sorgente potenza attiva | Active load source | OEM / Service | | | Solo con LMV26: | Actual fuel | | | 945 | Combustibile attuale | 0 = fuel 0 | Service / Info | | 343 | 0 = combustibile 0 | 1 = fuel 1 | Service / IIIIo | | | 1 = combustibile 1 | | | | 947 | Risultato interrogazione contatti (codifica bit) | Result of contact sensing (bit-coded) | Service / Info | | 950 | Stato relè (codifica bit) | Required relay state (bit-coded) | Service / Info | | | Intensità di fiamma (0% ÷ 100%); | Intensity of flame (range = 0% - 100%) | | | 954 | minima corrente 30% = 4µA; | minimum current 30% = 4µA; | Service / Info | | 954 | massima corrente100% = 16µA; | maximum current100% = 16µA; | Service / Inio | | | massima corrente ammissibile = 40µA. | maximum current possible = 40µA. | | | 961 | Stato moduli esterni e display | Status of external modules and display | Service / Info | | 981 | Errore memoria: codice | Error memory: code | Service / Info | | 982 | Errore memoria: codice diagnostica | Error memory: diagnostic code | Service / Info | | 992 | Flag di errore | Error Flags | OEM / Service | #### Actuators references An incremental transducer is used to ensure position feedback. Referencing of the actuators must be performed after power-on. In addition, at the end of each shutdown in phase 10, the actuators are referenced to ensure that individual stepping errors, which could lead to shutdown, do not accumulate. If a position error occurs, the system switches to the safety phase (phase 01), enabling the actuators with detected position errors to be referenced. During the following phase 10, the only actuators that are referenced are those that were not referenced before in the safety phase (phase 01). The position of the reference point can be selected depending on the type of burner design, either the CLOSED position (<0°) or the OPEN position (>90°). | Param. | Descrizione | Description | Password | |--------|-----------------------------------|------------------------------|----------| | | Impostazione punto di riferimento | Selection of reference point | | | | Indice 0 = combustibile | Index 0 = fuel | | | 601 | Indice 1 = aria | Index 1 = air | OEM | | | 0 = chiuso (<0°) | 0 = closed (<0°) | | | | 1 = aperto (>90°) | 1 = open (>90°) | | If the acutators position is exchanged (error code: 85), the burner will lockout and will try to adjust for three times, then it will lock out. #### Gas proving system Valve proving is only active when firing on gas. This is a leakage test designed to detect leaking gas valves and, if necessary, to prevent the valves from opening or ignition from being switched on. Lockout is initiated. When performing valve proving, the gas valve on the burner side is opened first to bring the test space to atmospheric pressure. Then, the valve is closed whereupon the pressure in the test space must not exceed a certain level, measured by the gas leakage pressure switch (PGCP). Then, the gas valve on the mains side is opened to fill the gas pipe. When the valve is closed again, the gas pressure must not drop below a certain level. Valve proving can be parameterized to take place on startup, shutdown, or on both phases. ## Air-fuel curve points There are 10 air-fuel curve points: T P0 = ignition position. Only for ignition; after the ignition, the burner works between Point P1 (low flame) and point P9 (high flame) without going back to P0. P0 can be set everywhere irrespective of all the other points. #### COMMISSIONING THE BURNER The LMV2x complete programming must be performed on units that has never been set before or reset units (e.g. spare parts). The programming procedure is performed by setting the following main parameters: - 1 if LMV.. is a spare part, insert burner ID (parameter 113) at least 4 digit. - 2 type of fuel train (parameter "201") - 3 air/fuel ratio curvepoints (Block "400") - 4 maximum load percentage (parameter "546") - 5 minimum load percentage (parameter "**545**") CAUTION: if an error message as "Loc.." appears when the unit is turned to on for the first time, press ENTER (InFo) until the "Reset" message apperas. After few seconds, the message "OffUpr" will be displayed. This message shows that the unit has not been programmed before or that the operating mode (fuel train) is not set yet or that the unit has not been completely programmed. Pree keys **F** (Fuel) and **A** (Air) at the same time unit the display shows **code** and next it will show 7 bars the first on the left is flashing. If the display shows "Off", it means that the unit already set, then see the instructions on chapter "Adjsuting the burner with LMV2x already programmed"). At the first LMV startup, the AZL display will show It means that the unit was never set or that no mode was chisen or that some parameters have to be set furthert. Push F (fuel)
and A (Air) together untilthe display shows **code** and then a 7 digit dashed line blinking on the left. Press the "+" key until the first character of the password (the default password is 9876), then press **ENTER (InFo)**, the character now turn to a bar while the second bar starts flashing. Press "+" until the second character is entered, then press **ENTER (InFo)**. Repeat the procedure until the last character is set, then press **ENTER (InFo)**, then **ENTER** again until the message **PArA** appears: then the first parameters block ("400") will be shown: Press ENTER (InFo) again, to gain access to programming the operating mode (fuel train): In the example, set configuration **1** = direct gas ignition (G mod). Other possibilities are below listed: the types of fuel trains are the following: | Param. | Descrizione | Description | Password | |--------|--|--|---------------| | 201 | Modalità funzionamento bruciatore (rampa comb., mod. / multistadio, servocom., ecc.) _= non definito (cancellazione curve)= 1 = accensione diretta a gas (G mod) 2 = accensione tramite pilota gas con attacco tra le due elettrovalvole EV1/EV2 gas (Gp1 mod) 3 = accens. tramite pilota gas con attacco a monte dell'elettrov. EV1 del gas (Gp2 mod) 4 = accensione a gasolio - modul. (Lo mod) 5 = accens. a gasolio - bistadio (Lo 2 stage) 6 = accens. a gasolio - tristadio (Lo 3 stage) | the two gas solenodi valves EV1/EV2 (Gp1 | OEM / Service | In the example the Gmod gas train has been set (Configuration "1"). Choose the fuel train by pressing ENTER, then press "+" / "-". Press ENTER to confirm: number "1" will appear on the right side of the display. Press "+" to show the first point to be set P0. Press **F** and "+" to increase the opening angle of the fuel actuator "**0F**" until the requested value is reached (for example 12°÷15°, see below) for the ignition point; or press **F** and "-" to decrease the angle: To set the air damper opening angle "0A" in the ignition point (10° for example - see below), press "A" and "+" "A" and "-" at the same time: ## LMV37: Now the air and fuel quantities are set at the ignition point P0: By pressing "+", point P9 can be programmed to set the air and fuel values at the maximum output go on as described above to the the opening angles of the air actuator (A) and fuel actuator (F): **CAUTION:** at the first burner adjustment, it is recommended to set the maximum output P9 at the same value (or little higher) of the ignition point, in order to safely reach point P9 next (see next paragraph). By pressing "+" the display will show: The burner is ready to startup. Now it is possible to re-set the curve points while the burner is operating ("warm setting") by pressing the ENTER (InFo) or while the burner is in stand-by mode ("cold setting") by pressing ENTEF. ### Warm setting - Once pressed button "enter" and the chain thermostats open (X5-03 terminals), the LMV.. show Ph12. Then close the chain termostat and the unit performs the prepurge cycle (see "Phases List") and stops at the ignition point P0 without ignition anyway. - 2 By pressing "+", the burners lights abd the air/fuel ratio can be properly set in presence of flame. - 3 By pressing "+" again, the next point P1 is shown (eqaul to P0 as the unit automatically set P0=P1); - 4 By pressing "+" again, the "Calc" message will be displayed: the unit is processing the sir/fuel ratio curvepoints until point P9, previuosly set. Once the processing is performed the calculated point P2 is shown. By pressing "+" again, the "Calc" message will be displayed: the unit is processing the sir/fuel ratio curvepoints until point P9, previuosly set. Once the processing is performed the calculated point P2 is shown. - 5 By pressing "+", it is possible to go through the processed curve until point P9 is reached. Note: if the point doesn't blink, servomotors are still running. 6 n order to set P9 with the gas flow rate according to the generator needs, follow this procedure: Note: the purpose is to fully open the gas throttle and later on to adjust the gas flow rate through the gas pressure governor. - Operate smoothly opening by just a few degrees the air damper and later on increasing the gas throttle opening it by a few degrees. Keep monitoring the flue through the flue analyser. Keep the air excess inside normal figures (from 3% to 7% residual O2) operating by means for the air damper servomotor; - Keep increasing the air damper opening and then the gas throttle, as done in the sequence above, remebering to get the full firing rate with the gas throttle fully open (or the oil pressure regulator at its maximum pressure position). See example below: - If, while opening the gas throttle, the gas flow rate was too high, reduce it only through the gas governor and keep opening the throttle until the 60÷70° position is got. - If the gas train is equipped with a governor and a valve with an adjustable gas flow rate, fully open also this last valve, smoothly! The gas flow rate is always set by means of the governor. - 7 As soon as all the devices are fully open, set the gas flow rate through the governor. - 8 Set the air damper position in order to get the reccomended air excess (3÷4.8% O2 on gas and 2.9÷4.9 % on oil). Note1: on high flame, if the gas flow rate is changed by means of the governor, all the other points below high flame must be checked again. 9 After having set the high flame point P9, keep "-" pressed for some seconds unitl "Calc" is displayed in order to have the LMV recalculating all the points: Fuel Air - 10 the unit will automatically reach point P8 processed: check the combustion values in this point and, if necessary, change it. - 11 Press "-" to go down to the lower points and check the combustion values, change the points if necessary. Note: if in an intermediate point (for example P5), the change of the actuators position is important according to the processed point P5, keep pressing "-" unitl "Calc" is displayed. The curve will be processed again downwards point P1. - 12 press "-" to go through the lower points and check the combustion values, if necessary change the points as described above. - 13 By pressing ESC, at the end of the points adjusments, the parameter "**546**" (setting the maximum load) will be displayed; press ENTER (InFo), then "+" until 100%, then press ENTER (InFo) again, ESC and then "+". 14 The parameter "**545**" (setting the minimum load) is displayed: press ENTER (InFo), then "+" until 20%. Press ENTER, then press ESC for three times. The message "oP" will be displayed as well as the load percentage at the burner is working on. he hyphen related to the symbol "P" (highlited in the picture) will be off to show that the unit exited the programmig mode. The burner will then work automatically, following the curve set. .Note1: if the curvepoints settings is quit before end (by pressing ESC or for a faulty shutdown), the message "OFF UPr" (Start prevention) will be diplayed until all the curvepoints will be set. **Note2:** if the gas flow rate at high flame point (maximum load) is changed by means of the pressure stabiliser, all the curvepoints must be checked by going through the curve downwards and resetting them if necessary. Note3: if the point does not flash, it means that the actuators have not reached the set position yet. Note4: if an error occurs causing a safety shutdwon during the processing of the curve, the processing itself will be interrupted. ## **Cold setting** The "cold setting" (without flame) can be performed only when all the curve points values are known (for instance, in case of replacement). When the burner is off, if you modify one curve set point, when the burner restarts the AZL2x shows OFF UPr (OFF UPr0 or OFF UPr1 for LMV26). The LMV.. then, requires a new "warm" startup (see procedure paragraph "Warm Setting") by checking again all points of curve from P0 to P9. #### **BURNER STARTUP WITH LMV2x ALREADY PROGRAMMED** Once the LMV turns on, the AZL display will show The burners is basically factory set. The air/fuel ratio curve is set with the maximum output point P9 a little higher or equal to P0. To adjust the burner on the plant site, adjust the maximum output point to the flow rate values really requested. Then go through the curve-points, by pressing "+" several times to reach point P9: then adjust the air actuator position (for the air damper) and the fuel acttuator (for the butterfly valve, in case of gas or the oil pressure governor incase of oil), by adjusting the fuel flow rate by means of the gas pressure stabiliser (for gas) or the oil pressure governor (for oil), checking the combustion valeus contemporarly. Once the burner is adjusted at the maximum output, press "-" for more than 5 seconds to process the curve downwards. The curve is then a straight line: go on checking the combustion values point by point; change them if necessary and in case linearise the curve again. Before starting the burner up, press F and A at the same time enter the password following the procedure on chapter "Programming LMV2x". Press ENTER until the display will show: Press ENTER again: it will show press ENTER (InFo) finfo : the display will show phase 12. Ph12: *Standby* phase (stationary) Ph12: *Standby* phase (stationary) By closing the thermostatic series, the burner startup cycle will take place: Ph22: Fan ramp up phase (fan motor = ON, safety shutoff valve = ON) Ph24: Traveling to
prepurge position phase Ph30: Prepurge phase Ph36: Traveling to ignition position phase Ph38: Preignition phase Ph40: 1st safety time phase (ignition transformer ON) Ph42: 1st safety time phase (ignition transformer OFF), preignition time OFF Ph44: Interval1 The startup sequence stops at phase 44. The burners is lit and is in "P1" position (low flame point): Set the air/fuel ratio curvepoints as described on chapter "Programming the LMV2x" Note: the other phases are Ph60 = operation (OP= in modulation) Ph62 = travelling to shutdown Ph70 = off but in prepurge after the burntime Ph72 = travelling to postpurging Ph74 = postpurge (countdown is displayed) Press ESC • the parameter "546" (Setting the maximum load) is displayed Then press to exit the programming mode. The display will show: Press for a second time: the display will show the load percentage the burner is working at. When the generator reaches the programmed set-point, the burner will be in stand-by: the display will show #### Reset / manual lockout The system can be manually locked by simultaneously pressing the **ENTER (InFo)** button and **any other button** on the AZL2.... This function allows the user to stop the system from the operating level should an emergency occur. When making a reset, the following actions are carried out: - Alarm relay and the fault display are off - the lockout position is cancelled - the unit performs a reset, then it switches to stand-by If the unit is in the lockout position, a reset can be made by pressing the **InFo** button for 1...3 seconds. The function is available only when the unit is in the lockout position. Longer or shorter pushes on the button do not produce a reset so that the system maintains the lockout position. | Codice errore / Error code | Codice diagnostico / Diagnostic code | Descrizione / Meaning | |----------------------------|--------------------------------------|---------------------------| | 167 | 2 | / Manual lockout via AZL2 | ### Timeout for menu operation The time for automatically leaving the parameter setting level can be adjusted between 10 and 120 minutes, using the parameter 127 (Timeout for menu operation). If, during that period of time, there is no operation via the AZL2..., the parameter setting level is quit and the password level reset to *Info / Service*. Caution! In addition, this timeout or interruption of communication between the LMV2.. and the AZL2... during the time the curves are set leads to lockout! | Codice erroreC Error code | Codice diagnostico Diagnostic code | DescrizioneMeaning | |---------------------------|------------------------------------|--------------------| | 167 | 8 | Manual locking | ## Entering the Parameter levels By means of a proper use of the keys, it is possible to enter the various level parameters, as shown in the following flow chart: The burner and consequently the LMV2x.. are factory set; the air and fuel curves as set as well. #### Info level To enter the Info level, proceed as follows: 1 in any menu position, press keys + and - at the same time, then the program will start again: the display will show **OFF**. 2 , until the display will show InFo, Press the enter (InFo) key - then il will show the first code (167) flashing, on the right side it will show the data entered. By pressing + or it is possible to scroll (up or down) the parameter list. - 4 If a dot-line is shown on the right, there is no enough room for complete visualisation: press **enter** again the data will be completely shown for 1 to 3 seconds. By pressing **enter** or **+** and- at the same time, the system will exit the parameter visualisation and go back to the flashing number. The **Info** level shows some basic parameters as: | Parameter | Description | | |-----------|------------------------------------|--| | 167 | Cubic meters of fule (resettable) | | | 162 | Operating hours (resettable) | | | 163 | Device operating hours | | | 164 | Burners start-ups (resettable) | | | 166 | Total number of start-ups | | | 113 | Burner number (i.e. serial number) | | | 107 | Software version | | | 102 | Software date | | | 103 | Device serial number | | | 104 | Customer code | | | 105 | Version | | | 143 | Free | | 5 Example: choose parameter 102 to show the date the display shows parameter 102 flashing on the left and characters ._._ on the right. - 6 press InFo for 1-3 seconds: the date will appear - 7 press InFo to go back to parameter "102" - by pressing + / -, it is possible to scroll up/down the parameter list (see table above), or, by pressing ESC or InFo for more seconds, the display will show - 9 Once the last parameter is accessed (143) by pressing +, the **End** message will flash. 10 Press InFo for more than three seconds or for more than three seconds orto return to the normal display. If a message like the one below is shown during operation, it means that the burner is locked out and the Errore code is shown (in the example "error code:4"); this message is alternating with another message Diagnostic code (in the example "diagnostic code:3"). Record the codes and find out the fault in the Error table To perform the reset, press InFo for one second: The unit displays an event which does not lead to shutdown. The display shows current error code **c**: alternating with diagnostic code **d**: Press **InFo** to return to the display of phases. Example: Error code 111 / diagnostic code 0 To reset, press InFo for a second. Record the codes and check the Error List to find the type of faults. ### Service level To enter the Service mode, press InFo until the display will show: The service level shows all the information about flame intensity, actuators position, number and lock codes: | Parameter | Description | |--|--| | 954 | Flame intensity | | % output, if set = automatic operation | | | 922 | Actuators position, 00=combustibile; 01= aria | | 161 | Lock-outs number | | 701725 | Lock-outs History (see chapter 23 in the LMV2x manual) | - 1 the first parameter will be "954": the percentage of flame is shown on the right. By pressinf + or it is possible to scroll up/down the parameter list. - 2 Once the last parameter is accessed (143) by pressing + , the **End** message will blink. 3 Press InFo for more than three seconds or for more than three seconds orto return to the normal display. # PHASES LIST | Fase /Phase | Funzione | Function | |-------------|---|---| | Ph00 | Fase blocco | Lockout phase | | Ph01 | Fase di sicurezza | Safety phase | | Ph10 | t10 = tempo raggiungimento posizione riposo | t10 = home run | | Ph12 | Pausa | Standby (stationary) | | Ph22 | t22 = tempo di salita ventilatore (motore ventilatore = ON, valvola intercettazione di sicurezza = ON) | t22 = fan ramp up time (fan motor = ON, safety shutoff valve = ON) | | Ph24 | Verso posizione preventilazione | Traveling to the prepurge position | | Ph30 | t1 = tempo preventilazione | t1 = prepurge time | | Ph36 | Verso posizione accensione | Traveling to the ignition position | | Ph38 | t3 = tempo preaccensione | t3 = preignition time | | Ph40 | TSA1 = primo tempo sicurezza (trasformatore accensione ON) | TSA1= 1st safety time (ignition transformer ON) | | Ph42 | TSA1 = primo tempo sicurezza (trasformatore accensione OFF) | TSA1 = 1st safety time (ignition transformer OFF), t42 = preignition time OFF | | Ph44 | t44 = intervallo 1 | t44 = interval 1 | | Ph50 | TSA2 = secondo tempo sicurezza | TSA2 = 2nd safety time | | Ph52 | t52 = intervallo 2 | t52 = interval 2 | | Ph60 | Funzionamento 1 (stazionario) | Operation 1 (stationary) | | Ph62 | t62 = massimo tempo bassa fiamma (funzionamento 2, in preparazione per spegnimento, verso bassa fiamma) | t62 = max. time low-fire (operation 2, preparing for shutdown, traveling to low-fire) | | Ph70 | t13 = tempo postcombustione | t13 = afterburn time | | Ph72 | Verso posizione postcombustione | Traveling to the postpurge position | | Ph74 | t8 = tempo postventilazione | t8 = postpurge time | | Ph80 | t80 = tempo evacuazione controllo tenuta valvole | t80 = valve proving test evacuation time | | Ph81 | t81 = tempo perdita pressione atmosferica, prova atmosferica | t81 = leakage time test time atmospheric pressure, atmospheric test | | Ph82 | t82 = test perdita, test riempimento | t82 = leakage test filling test, filling | | Ph83 | t83 = tempo perdita pressione gas, test pressione | t83 = leakage test time gas pressure, pressure test | | Ph90 | Tempo attesa "mancanza gas" | Gas shortage waiting time | ### **BACKUP PARAMETER WITH AZL2x** On the AZL2x you can save the configuration to download on another appliance LMV. To do this: access up, press F and A at the same time enter the password following the procedure on chapter "Programming LMV2x". Press ENTER until the display will show: with the button go to the group **000** of the parameters and press ;with the buttons + and - go to **050** parameter Press + to select parameter 050 Display: Parameter **050.** flashes, index **00:** and value **0** do not. the disply show press again with the button + select 1 and start the backup process by pressing After about 5 seconds the backup process ends and the display shows It is recommended that you perform a backup procedure whenever you change the parameters of the LMV for having a copy in AZL2x! #### RESTORE PARAMETER FROM AZL2x TO LMV... To copy the previously saved configuration on AZL2x proceed as follows: access up, press $\, \mathbf{F} \,$ and $\, \mathbf{A} \,$ at the same time enter the password following the procedure on chapter "Programming LMV2x". Press ENTER until the display will show: To copy the configuration from AZL2x to LMV. It is important that the type of LMV is the same (for example
LMV20 with LMV20, etc.) and that 113 "Burner ID" of the burner is the same value that is saved in the configuration you want to copy. With the buttons go to the group **100** of the parameters, press на and always with the buttons + and - go to 113 parameter "Burner ID", press and verify (and/or change with buttons by pressing enter to confirm) iWith the buttons go to the group 000 of the parameters, press end select the 050 parameter Press + to select parameter 050 Display: Parameter ${\bf 050.}$ flashes, index ${\bf 00:}$ and value ${\bf 0}$ do not. the disply show with the button the display shows press again with the button + select 1 and start the restore process by pressing After about 5 seconds the restore process ends and the display shows Now, LMV has the same configuration that was stored on AZL2x. | | C | | |--|---|---| | | | = | | | | | | | | | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |------------|-----------------|---|--| | no
Comm | | No communication between LMV26 basic unit and AZL2 | Check wiring for line interruption/loose contact | | 2 | # | No flame at the end of safety time (TSA) | | | | 1 | No flame at the end of safety time 1 (TSA1) | | | | 2 | No flame at the end of safety time 2 (TSA2) | | | 3 | # | Air pressure failure | | | | 0 | Air pressure off | | | | 1 | Air pressure on | | | | 4 | Air pressure on – prevention of startup | | | | 20 | Air pressure, combustion pressure – start prevention | | | | 68 | Air pressure, POC – start prevention | | | | 84 | Air pressure, combustion pressure, POC – start preven-
tion | | | 4 | # | Extraneous light | | | | 0 | Extraneous light during startup | | | | 1 | Extraneous light during shutdown | | | | 2 | Extraneous light during startup – prevention of startup | | | | 6 | Extraneous light during startup, air pressure – start pre-
vention | | | | 18 | Extraneous light during startup, combustion pressure – start prevention | | | | 24 | Extraneous light during startup, air pressure, combus-
tion pressure – start prevention | | | | 66 | Extraneous light during startup, POC – start prevention | | | | 70 | Extraneous light during startup, air pressure, POC – start prevention | | | | 82 | Extraneous light during startup, combustion pressure,
POC – start prevention | | | | 86 | Extraneous light during startup, air pressure, combus-
tion pressure, POC – start prevention | | | 7 | # | Loss of flame | | | | 0 | Loss of flame | | | | 3255 | Loss of flame due to TÜV test (loss-of-flame test) | Diagnostics corresponds to the period of time from shutdown of fuel valves to the detection of loss of flame (resolution $0.2 \text{ s} \rightarrow \text{Value } 5 = 1 \text{ s}$) | | (D | |----| | Ζ. | | _ | | F | | | | |-------|-----------------|---|--| | Error | Diagnostic code | Meaning for the LMV20 system | Remedy | | 12 | # | Valvo proving | | | 12 | # | Valve proving | Mills and a service via VE 04 (see service with the sein) | | | | | With valve proving via X5-01 (gas pressure switch-min) | | | 0 | Fuel valve 1 (V1) leaking | - Check if valve on the burner side is leaking | | | | (fuel valve 2 with valve proving via X5-01) | - Check if pressure switch for valve proving is closed, if gas pressure exist | | | | | - Check wiring for short-circuit | | | | Fuel valve 2 (V2) leaking | With valve proving via X5-01 (gas pressure switch-min) | | | 1 | (fuel valve 1 with valve proving via X5-01) | - Check if valve on the gas side is leaking | | | | (Idea valve) with valve proving via Xe o i) | - Check wiring for short-circuit | | | 2 | Valve proving not possible | Valve proving activated, but pressure switch-min selected as input function for X9-04 (check | | | 2 | valve proving not possible | parameters 238 and 241) | | | 3 | Valve proving not possible | Valve proving activated, but no input assigned (check parameters 236 and 237) | | | 4 | Valve proving not possible | Valve proving activated, but 2 inputs assigned (set parameter 237 to pressure switch-max or POC) | | | 5 | Valve proving not possible | Valve proving activated, but 2 inputs assigned (check parameters 236 and 237) | | | | | Check to see if the valve on the gas side is leaking | | | 81 | V1 leaking | Check wiring to see if there is an open-circuit | | | | | Check to see if the valve on the burner side is leaking | | | 83 | V2 leaking | Check to see if the pressure switch for the leakage test is closed when gas pressure is present | | | | | Check wiring for short-circuit | | 14 | # | POC | | | | 0 | POC open | Check to see if the valve's closing contact is closed | | | _ | | Check wiring | | | 1 | POC close | Check to see if the valve's closing contact opens when valve is controlled | | | | | Check wiring to see if there is a line interruption. | | | 64 | POC open - start prevention | Check to see if the valve's closing contact is closed | | | | | Check to see if pressure switch has closed with no combustion pressure present | | 19 | 80 | Combustion pressure, POC – start prevention | Check wiring for short-circuit | | 20 | # | Pressure switch-min (Pmin) | | | | 0 | No minimum gas /oil pressure | Check wiring for open-circuit | | | 1 | Gas shortage – start prevention | Check wiring for open-circuit | | 21 | # | Pressure switch-max / POC | | | | | Pressure switch-max: Max. gas / oil pressure exceeded | Check wiring to see if there is a line interruption. | | | 0 | POC: POC open (software version ≤ V02.00) | POC: Check to see if the valve's closing contact is closed. | | | I . | . So So opon (contrare relation 2 roz.co) | . Co. Should be seen the faire a crowing contact to bloods. | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |-------------|-----------------|--|--| | 22
OFF S | # | Safety loop / burner flange | | | | 0 | Safety loop / burner flange open | | | | 1 | Safety loop / burner flange open - prevention of startup | | | | 3 | Safety loop/burner flange, extraneous light – start pre-
vention | | | | 5 | Safety loop/burner flange, air pressure – start preven-
tion | | | | 17 | Safety loop/burner flange, combustion pressure – start prevention | | | | 19 | Safety loop/burner flange, extraneous light, combustion
pressure – start prevention | | | | 21 | Safety loop/burner flange, air pressure, combustion
pressure – start prevention | | | | 23 | Safety loop/burner flange, extraneous light, air pressure, combustion pressure – start prevention | | | | 65 | Safety loop/burner flange, POC – start prevention | | | | 67 | Safety loop/burner flange, extraneous light, POC – start prevention | | | | 69 | Safety loop/burner flange, air pressure, POC – start prevention | | | | 71 | Safety loop/burner flange, extraneous light, air pressure, POC – start prevention | | | | 81 | Safety loop/burner flange, combustion pressure, POC – start prevention | | | | 83 | Safety loop/burner flange, extraneous light, combustion pressure, POC – start prevention | | | | 85 | Safety loop/burner flange, air pressure, combustion
pressure, POC – start prevention | | | | 87 | Safety loop/burner flange, extraneous light, air pressure, combustion pressure, POC – start prevention | | | 50 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 51 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 55 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 56 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 57 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | , | |---| |) | | | | Error | | | | |----------------|-----------------|--|--| | code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | | 58 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 61 Fuel
Chg | # | Fuel changeover | | | Fuel
Chg | 0 | Fuel 0 | No error - change to Fuel 0 | | Fuel
Chg | 1 | Fuel 1 | No error - change to Fuel 1 | | 62 Fuel
Err | # | Invalid fuel signals / fuel information | | | Fuel Err | 0 | Invalid fuel selection (Fuel 0 + 1 = 0) | Check wiring to see if there is an open-circuit Note Curves cannot be set. | | Fuel Err | 1 | Different fuel selection between the μCs | Make a reset; if error occurs repeatedly, replace the unit | | Fuel Err | 2 | Different fuel signals between the μCs | Make a reset; if error occurs repeatedly, replace the unit | | Fuel Err | 3 | Invalid fuel selection (Fuel 0 + 1 = 1) | Check wiring for short-circuit Note Curves cannot be set. LMV26: Optional press reset button >3 seconds. | | 65 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 66 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 67 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | 70 | # | Internal error fuel-air ratio control: Position calculation modulating | | | | 23 | Output invalid | No valid output | | | 26 | Curvepoints undefined | Adjust the curvepoints for all actuators | | 71 | # | Special position undefined | | | | 0 | Home position | Parameterize the home position for all actuators used | | | 1 | Prepurge
position | Parameterize the prepurge position for all actuators used | | | 2 | Postpurge position | Parameterize the postpurge position for all actuators used | | | 3 | Ignition position | Parameterize the ignition position for all actuators used | | 72 | # | Internal error fuel-air ratio control | Make a reset; if error occurs repeatedly, replace the unit | | 73 | # | Internal error fuel-air ratio control: Position calculation multistep | | | , | 23 | Output invalid | No valid output | | | 26 | Curvepoints undefined | Adjust the curvepoints for all actuators | | 54 | | |----|--| | | | | | | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |-------|-----------------|--|---| | 75 | # | Internal error fuel-air ratio control: Data clocking check | | | | 1 | Current output different | | | | 2 | Target output different | | | | 4 | Target positions different | | | | 16 | Different positions reached | Can be caused by different standardized speeds (e.g. after restore of data set) when the VSD is activated → standardize again and check adjustment of the fuel-air ratio control system | | 76 | # | Internal error fuel-air ratio control | Make a reset; if error occurs repeatedly, replace the unit | | 80 | # | Control range limitation of VSD | Basic unit could not correct the difference in speed and reached a control range limit. 1. Basic unit is not standardized for this motor → repeat standardization. Caution! Settings of fuel-air ratio control must be checked. 2. Ramp time settings of the VSD are not shorter than those of the basic unit (parameters 522, 523). 3. Characteristic of the VSD is not linear. Configuration of the voltage input at the VSD must accord with that of the basic unit (parameter 645). 4. VSD does not follow quickly enough the changes of the basic unit. Check settings of the VSD (input filter, slippage compensation, hiding different speeds) | | | 1 | Control range limitation at the bottom | VSD speed was too high | | | 2 | Control range limitation at the top | VSD speed was too low | | 81 | 1 | Interrupt limitation speed input | Too much electromagnetic interference on the sensor line → improve EMC | | C | J | |---|---| | | | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |-------|-----------------|---|---| | 82 | # | Error during VSD's speed standardization | | | | 1 | Timeout of standardization (VSD ramp down time too | Timeout at the end of standardization during ramp down of the VSD | | | 1 | long) | → ramp time settings of the VSD are not shorter than those of the basic unit (parameter: 523) | | | 2 | Storage of standardized speed not successful | Error during storage of the standardized speed | | | 2 | Storage or standardized speed not successful | → lock the basic unit, then reset it and repeat the standardization | | | | | Basic unit receives no pulses from the speed sensor: | | | 3 | Line interruption speed sensor | 1. Motor does not turn. | | | 3 | Line interruption speed sensor | 2. Speed sensor is not connected. | | | | | Speed sensor is not activated by the sensor disk (check distance) | | | | | Motor has not reached a stable speed after ramp up. | | | | | Ramp time settings of the VSD are not shorter than those of the basic unit (parameters 522,
523). | | | | Speed variation / VSD ramp up time too long / speed | 2. Characteristic of the VSD is not linear. Configuration of the voltage input at the VSD must | | | 4 | below minimum limit for standardization | accord with that of the basic unit (parameter 645). | | | | | 3. VSD does not follow quickly enough the changes of the basic unit. Check settings of the VSD | | | | | (input filter, slippage compensation, hiding different speeds) | | | | | 4. Speed of VSD lies below the minimum for standardization (650 1/min) | | | | | Motor's direction of rotation is wrong. | | | | | Motor turns indeed in the wrong direction | | | 5 | Wrong direction of rotation | → change parameterization of the direction of rotation or interchange 2 live conductors. | | | | | Sensor disk is fitted the wrong way | | | | | → turn the sensor disk. | | | | | The required pulse pattern (60°, 120°, 180°) has not been correctly identified. | | | | | Speed sensor does not detect all tappets of the sensor disk | | | | | → check distance | | | 6 | Unplausible sensor signals | 2. As the motor turns, other metal parts are detected also, in addition to the tappets → improve | | | | | mounting. | | | | | 3. Electromagnetic interference on the sensor lines | | - | | | → check cable routing, improve EMC | | | 7 | Invalid standardized speed | The standardized speed measured does not lie in the permissible range | | | | | → motor turns too slowly or too fast | | | | | The speeds of microcomputer 1 and 2 deviated too much. This can be caused by wrong standard- | | | 15 | Speed deviation μC1 + μC2 | ized speeds (e.g. after restoring a data set to a new unit) | | | | | → repeat standardization and check the fuel-air ratio | | Error
code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |---------------|-----------------|---|---| | | 20 | Wrong phase of phase manager | Standardization was made in a wrong phase. Permitted are only phases ≤12 → controller OFF, start standardization again | | | 21 | Safety loop / burner flange open | Safety loop or burner flange is open → repeat standardization with safety loop closed | | | 22 | Air actuator not referenced | Air actuator has not been referenced or has lost its referencing. 1. Check if the reference position can be approached. 2. Check if actuators have been mixed up. 3. If error only occurs after the start of standardization, the actuator might be overloaded and cannot reach its destination. | | | 23 | VSD deactivated | Standardization was started with VSD deactivated → activate the VSD and repeat standardization | | | 24 | No valid operating mode | Standardization was started without valid operating mode → activate valid operating mode and repeat standardization | | | 25 | Pneumatic air-fuel ratio control | Standardization was started with pneumatic air-fuel ratio control → standardization with pneumatic air-fuel ratio control not possible | | | 128 | Running command with no preceding standardization | VSD is controlled but not standardized → make standardization | | | 255 | No standardized speed available | Motor turns but is not standardized → make standardization | | • | | |---|----| | • | , | | | ١. | | | п | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |-------|-----------------------|---|---| | 83 | # | Speed error VSD | Required speed has not been reached | | | Bit 0
Valency 1 | Lower control range limitation of control | Speed has not been reached because control range limitation has become active → for measures, refer to error code 80 | | | Bit 1
Valency 23 | Upper control range limitation of control | Speed has not been reached because control range limitation has become active → for measures, refer to error code 80 | | | Bit 2
Valency 47 | Interruption via disturbance pulses | Speed has not been reached due to too much electromagnetic interference on the sensor line → for measures, refer to error code 81 | | | Bit 3
Valency ≥ 8 | Curve too steep in terms of ramp speed | Speed has not been reached because detected curve slope was too steep. 1. With a LMV26 ramp of 20 s, the curve's slope may be a maximum of 10% speed change between 2 curvepoints in modulating mode. With a LMV26 ramp of 10 s, the curve's slope may be a maximum of 20% speed change between 2 curvepoints in modulating mode. With a LMV26 ramp of 5 s, the curve's slope may be a maximum of 40% speed change between 2 curvepoints in modulating mode. → Between the ignition point (P0) and the low-fire point (P1), the speed change in modulating mode may be a maximum of 40%, independent of the LMV26 ramp. 2. The setting of the VSD ramp must be about 20% faster than the ramps in the basic unit (parameters 522, 523). | | | Bit
4
Valency ≥ 16 | Interruption of speed signal | No speed detected in spite of control. 1. Check if the motor turns. 2. Check if the speed sensor delivers a signal (LED / check distance from the sensor disk). 3. Check wiring of the VSD. | | | Bit 5
Valency ≥ 32 | Quick shutdown due to excessive speed deviation | Speed deviation was for about 1 s >10% outside the anticipated range. 1. Check ramp times of the LMV26 and VSD. 2. Check wiring of the VSD. | | | | n | |---|---|---| | (| Ď | o | | | _ | • | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |------------|------------------------|--|---| | code
84 | # | Curve slope actuators | 1100-000 | | 04 | Bit 0
Valency 1 | VSD: Curve too steep in terms of ramp speed | The curve's slope may be a maximum of 10% speed change between 2 curvepoints in modulating operation, with a LMV26 ramp of 20 seconds The curve's slope may be a maximum of 20% speed change between 2 curvepoints in modulating operation, with a LMV26 ramp of 10 seconds The curve's slope may be a maximum of 40% speed change between 2 curvepoints in modulating operation, with a LMV26 ramp of 5 seconds → Between the ignition point (P0) and the low-fire point (P1), the speed change in modulating mode may be a maximum of 40%, independent of the LMV26 ramp. Setting of the VSD ramp must be about 20% shorter than the ramps in the basic unit (parameters 522 and 523) | | | Bit 1
Valency 23 | Fuel actuator: Curve too steep in terms of ramp rate | The slope of the curve may be a maximum position change of 31° between 2 curvepoints in modulating mode | | | Bit 2
Valency 47 | Air actuator: Curve too steep in terms of ramp rate | The slope of the curve may be a maximum position change of 31° between 2 curvepoints in modulating mode | | 85 | # | Referencing error ones actuators | | | | 0 | Referencing error of fuel actuator | Referencing of fuel actuator not successful. Reference point could not be reached. 1. Check to see if actuators have been mixed up. 2. Check to see if actuator is locked or overloaded. | | | 1 | Referencing error of air actuator | Referencing of fuel actuator not successful Reference point could not be reached. 1. Check to see if actuators have been mixed up. 2. Check to see if actuator is locked or overloaded. | | | Bit 7
Valency ≥ 128 | Referencing error due to parameter change | Parameterization of an actuator (e.g. the reference position) has been changed. To trigger new referencing, this error is set | | 86 | # | Error fuel actuator | | | | 0 | Position error | Target position could not be reached within the required tolerance band → check to see if actuator is locked or overloaded | | | Bit 0
Valency 1 | Line interruption | Line interruption detected at actuator's terminals → check wiring (voltage X54 across pin 5 or 6 and pin 2 >0.5 V) | | | Bit 3
Valency ≥8 | Curve too steep in terms of ramp rate | The slope of the curve may be a maximum position change of 31° between 2 curvepoints in modulating mode | | | Bit 4
Valency ≥ 16 | Step deviation in comparison with last referencing | Actuator was overloaded or mechanically twisted. 1. Check to see if the actuator is blocked somewhere along its working range. 2. Check to see if the torque is sufficient for the application. | | C | 7 | |---|---| | C | | | | _ | | Error code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |------------|--|--|--| | 87 | # | Error air actuator | | | | o | Position error | Target position could not be reached within the required tolerance band → check to see if actuator is locked or overloaded | | | Bit 0
Valency 1 | Line interruption | Line interruption detected at actuator's terminals → check wiring (voltage X53 across pin 5 or 6 and pin 2 > 0.5 V) | | | Bit 3
Valency ≥ 8 | Curve too steep in terms of ramp rate | The slope of the curve may be a maximum position change of 31° between 2 curvepoints in modulating mode | | | Bit 4
Valency ≥ 16 | Sectional deviation in comparison with last referencing | Actuator was overloaded or mechanically twisted. 1. Check to see if the actuator is blocked somewhere along its working range. 2. Check to see if the torque is sufficient for the application. | | 90 | # | Internal error basic unit | | | 91 | # | Internal error basic unit | | | 93 | # | Error flame signal acquisition | | | | 3 | Short-circuit of sensor | Short-circuit at QRB 1. Check wiring. 2. Flame detector possibly fault. | | 95 | # | Error relay supervision | | | | 3 Ignition transformer
4 Fuel valve 1
5 Fuel valve 2
6 Fuel valve 3 | External power supply NO contact | Check wiring | | 96 | # | Error relay supervision | | | | 3 Ignition transformer
4 Fuel valve 1
5 Fuel valve 2
6 Fuel valve 3 | Relay contacts have welded | Test the contacts: 1. Unit connected to power: Fan output must be dead. 2. Disconnect power: Disconnect fan. No resistive connection between fan output and neutral conductor allowed. If one of the 2 tests fails, release the unit since contact have definitively welded and safety can no longer be ensured. | | 97 | # | Error relay supervision | | | | 0 | Safety relay contacts have welded or external power supply fed to safety relay | Test the contacts: 1. Unit connected to power: Fan output must be dead. 2. Disconnect power: Disconnect fan. No resistive connection between fan output and neutral conductor allowed. If one of the 2 tests fails, release the unit since contacts have definitively welded and safety can no longer be ensured. | | ω | |----------| | ~ | | \sim | | | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |------------|---|--|---| | code
98 | # | Error relay supervision | | | | 2 Safety valve 3 Ignition transformer 4 Fuel valve 1 5 Fuel valve 2 6 Fuel valve 3 | Relay does not pull in | Make a reset; if error occurs repeatedly, replace the unit | | 99 | # | Internal error relay control | Make a reset; if error occurs repeatedly, replace the unit | | | 3 | Internal error relay control | Make a reset. If error occurs repeatedly, replace the unit Software version V03.10: If error C:99 D:3 occurs during standardization of the VSD, deactivate temporarily function Alarm in case of start prevention (parameter number 210 = 0, when using a release contact) or interrupt the
controller-ON signal | | 100 | # | Internal error relay control | Make a reset; if error occurs repeatedly, replace the unit | | 105 | # | Internal error contact sampling | 160 - 1510 | | | 0 Pressure switch-min 1 Pressure switch-max / POC 2 Fuel selection 0 / Reset 3 Air pressure 4 Load controller open 5 Load controller on / off 6 Load controller close 7 Safety loop / Burner flange 8 Safety valve 9 Ignition transformer 10 Fuel valve 1 11 Fuel valve 2 12 Fuel valve 3 13 Fuel selection 1 / Reset | Stuck-At failure | Can be caused by capacitive loads or supply of DC voltage to the mains voltage inputs. The diagnostic code indicates the input where the problem occurred | | 106 | # | Internal error contact request | Make a reset; if error occurs repeatedly, replace the unit | | 107 | # | Internal error contact request | Make a reset; if error occurs repeatedly, replace the unit | | 108 | # | Internal error contact request | Make a reset; if error occurs repeatedly, replace the unit | | 110 | # | Internal error voltage monitor test | Make a reset; if error occurs repeatedly, replace the unit | | 111 | # | Power failure | Mains voltage to low Exchange ratio diagnostics code → voltage value (230 V: 1.683) | | 112 | 0 | Mains voltage recovery | Error code for triggering a reset on power restoration (no error) | | 113 | # | Internal error mains voltage supervision | Make a reset; if error occurs repeatedly, replace the unit | | 115 | # | Internal error system counter | | | 116 | 0 | Designed life time exceeded (250'000 startups) | Warning threshold has been reached. The unit should be replaced | | Error
code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | |---------------|-----------------|--|--| | 117 | 0 | Life time exceeded Operation no longer allowed | Switch-off threshold has been reached | | 120 | 0 | Interrupt limitation fuel meter input | Too many disturbance pulses at the fuel meters input → Improve EMC | | 121 | # | Internal error EEPROM access | Make a reset, repeat last parameterization / check. Restore the parameter set, if error occurs re-
peatedly, replace the unit | | 122 | # | Internal error EEPROM access | Make a reset, repeat last parameterization / check. Restore the parameter set, if error occurs re-
peatedly, replace the unit | | 123 | # | Internal error EEPROM access | Make a reset, repeat last parameterization / check. Restore the parameter set, if error occurs repeatedly, replace the unit | | 124 | # | Internal error EEPROM access | Make a reset, repeat last parameterization / check. Restore the parameter set, if error occurs repeatedly, replace the unit | | 125 | # | Internal error EEPROM read access | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 126 | # | Internal error EEPROM write access | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 127 | # | Internal error EEPROM access | Make a reset, repeat last parameterization / check. Restore the parameter set, if error occurs re-
peatedly, replace the unit | | 128 | 0 | Internal error EEPROM access - synchronization during initialization | Make a reset; if error occurs repeatedly, replace the unit | | 129 | # | Internal error EEPROM access – command synchronization | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 130 | # | Internal error EEPROM access - timeout | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 131 | # | Internal error EEPROM access - page on abort | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 132 | # | Internal error EEPROM register initialization | Make a reset; if error occurs repeatedly, replace the unit | | 133 | # | Internal error EEPROM access – Request synchronization | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 134 | # | Internal error EEPROM access – Request synchronization | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 135 | # | Internal error EEPROM access – Request synchronization | Make a reset, repeat last parameterization / check. If error occurs repeatedly, replace the unit | | 136 | 1 | Restore started | Restore of a backup has been started (no error) | | | 211 10 | |----|-----------| | | 242 (-14) | | | 243 (-13) | | | 244 (-12) | | | 245 (-11) | | | 246 (-10) | | | 247 (-9) | | | 248 (-8) | | | 249 (-7) | | | 250 (-6) | | | 251 (-5) | | 12 | 0504.0 | | Error | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | | |-------|--|--|---|--| | 137 | # Internal error – backup / restore | | | | | | 239 (-17) Backup – storage of backup in AZL2 faulty Reset a | | Restore successful, but backup data record is smaller than in the current system | | | | | | Reset and repeat backup | | | | | | No backup stored in AZL2 | | | | 241 (-15) | Restore – abortion due to unsuitable product no. (ASN) | Backup has an unsuitable product no. (ASN) and must not be restored | | | | 242 (-14) | Backup – backup made is inconsistent | Backup is faulty and cannot be transferred back | | | | 243 (-13) | Backup – data comparison between μCs faulty | Reset and repeat backup | | | | 244 (-12) | Backup data are incompatible | Backup data are incompatible with the current software version, restore not possible | | | | 245 (-11) | Access error to parameter Restore_Complete | Reset and repeat backup | | | | 246 (-10) | Restore – timeout when storing in EEPROM | Reset and repeat backup | | | | 247 (-9) | Data received are inconsistent | Backup data record invalid, restore not possible | | | | 249 (-7) Restore – abortion due to unsuitable burner identification Back | | Reset and repeat backup | | | | | | Backup has an unsuitable burner identification and must not be transferred to the unit | | | | | | Backup data record invalid, restore not possible | | | | 251 (-5) | Backup – burner identification is not defined | Define burner identification and repeat backup | | | | 252 (-4) | After restore, pages still on ABORT | Reset and repeat backup | | | | 253 (-3) | Restore cannot at present be made | Reset and repeat backup | | | | 254 (-2) | Abortion due to transmission error | Reset and repeat backup | | | | 255 (-1) Abortion due to timeout during backup / restore | | Make a reset, check the connections and repeat backup / restore In case of repeated backup timeout, the AZL2 does not yet support backup functionality | | | 146 | # | Timeout building automation interface | Refer to Modbus User Documentation (A7541) | | | | 1 | Modbus timeout | | | | | 2 | reserved | | | | 63 | | |----|--| | ω | | | Error
code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | | | |---------------|---|---|---|--|--| | 150 | # | TÜV test | | | | | | 1 (-1) | Invalid phase | TÜV test may only be started in phase 60 (operation) | | | | | | TÜV test default output too low | TÜV test default output must not be smaller than the lower output limit | | | | | 3 (-3) TÜV test default output too high | |
TÜV test default output must not be greater than the upper output limit | | | | | 4 (-4) | Manual interruption | No error: Manual abortion of TÜV test by user | | | | | 5 (-5) | TÜV test timeout | No loss of flame after shutdown of fuel valves 1. Check to see if there is extraneous light 2. Check wiring to see if there is a short-circuit 3. Check to see if valve is leaking | | | | 165 | # | Internal error | | | | | 166 | 0 | Internal error watchdog reset | | | | | 167 | # | Manual locking | Unit has been manually locked (no error) | | | | | 1 | Manual locking by contact | | | | | | 2 | Manual locking by AZL2 | | | | | | 3 | Manual locking by PC tool | | | | | | 8 Manual locking by the AZL2 Timeout / communication breakdow | | During a curve adjustment via the AZL2, the timeout for menu operation has elapsed (setting via parameter 127), or communication between the LMV26 and the AZL2 has broken down | | | | | 9 | Manual locking by the PC tool Communication breakdown | During a curve adjustment via the ACS410, communication between the LMV26 and the ACS410 was interrupted for more than 30 seconds | | | | | 33 | Manual locking by the PC tool Test of lockout | PC tool made a reset attempt with an error-free system | | | | 168 | # | Internal error management | Make a reset; if error occurs repeatedly, replace the unit | | | | 169 | # | Internal error management | Make a reset; if error occurs repeatedly, replace the unit | | | | 170 | # | Internal error management | Make a reset; if error occurs repeatedly, replace the unit | | | | 171 | # | Internal error management | Make a reset; if error occurs repeatedly, replace the unit | | | | 200 OFF | # | System error-free | No error | | | | Error
code | Diagnostic code | Meaning for the LMV2x/3x system | Remedy | | | |-----------------------------|-----------------------------------|--|---|--|--| | 201 OFF UPr0 or
OFF UPr1 | # | Prevention of startup | Start prevention due to unparameterized unit Go to error history, entry 702, for initial cause of the error with shutdown in connection with the first curve settings | | | | | Bit 0
Valency 1 | No operating mode selected | | | | | | Bit 1
Valency 23 | No fuel train defined | | | | | | Bit 2
Valency 47 | No curves defined | | | | | | Bit 3
Valency 815 | Standardized speed undefined | | | | | | Bit 4
Valency 1631 | Backup / restore was not possible | | | | | 202 | # | Internal error operating mode selection | Redefine the operating mode (parameter 201) | | | | 203 | # Internal error | | Redefine the operating mode (parameter 201). Make a reset; if error occurs repeatedly, replace the unit | | | | 204 | | | Program stop is active (no error) | | | | 205 | # Internal error | | Make a reset; if error occurs repeatedly, replace the unit | | | | 206 | Inadmissible combination of units | | | | | | 207 | # | Version compatibility basic unit – AZL2 | | | | | | 0 | Basic unit version too old | | | | | | 1 | AZL2 version too old | | | | | 208 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | | | 209 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | | | 210 | 0 | Selected operating mode is not released for the basic unit | Select a released operating mode for the basic unit | | | | 240 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | | | 245 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | | | 250 | # | Internal error | Make a reset; if error occurs repeatedly, replace the unit | | | ### **WIRING DIAGRAM** # Wiring connection for LMV20 # Wiring variants for LMV27 # ConnectorX75 - 2 Fuel meter input - 1 Supply fuel meter # ConnectorX5-02 # Wiring variants for LMV26 ## ConnectorX08-04 / X09-04 - 2 Fuel 0 - 1 Fuel1 ## ConnectorX75 - 2 Fuel meter input - 1 Supply fuel meter ### ConnectorX64 - 5 -Power supply speed sensor - 4 -Speed sensor input - 3 PWM (Pulse Width Modulation) speed output - 2 GND (signal reference) - 1 -Controller input (4÷20mA) # ConnectorX74 - 5 -Supply - 4 -Feedback signal - 3 PWM (Pulse Width Modulation) speed output - 2 GND (signal reference) - 1 -External supply 24V DC # Wiring variants for LMV37 # ConnectorX75 - 2 Fuel meter input - 1 Supply fuel meter ### ConnectorX5-02 ## ConnectorX64 - 5 -Power supply speed sensor - 4 -Speed sensor input - 3 PWM (Pulse Width Modulation) speed output - 2 GND (signal reference) - 1 -Controller input (4÷20mA) ## ConnectorX74 - 5 -Supply - 4 -Feedback signal - 3 PWM (Pulse Width Modulation) speed output - 2 GND (signal reference) - 1 -External supply 24V DC C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: Specifications and and data subject to change. Errors and omissions excepted. # USER MANUAL OF MULTI-THERMOSTAT MCX06C MCX06C is a multi-thermostat with four 100k NTC inputs. It can control up to 4 temperatures showing them (not more than 2 at the same time) on a couple of displays. It is used to check and adjust oil heater temperatures. ### **User interface:** Device: #### Note: In normal operation, the display A shows the oil tank resistor temperature (probe Pb1). In normal operation, the display B shows the oil output temperature (probe Pb3). ### Connections from terminal side: ### **Probe connection:** input Al1 = probe Pb1 = set-point "tr" = oil heater temperature probe; input Al2 = probe Pb2 = set-point "tCl" = plant consent temperature probe (when installed); input Al3 = probe Pb3 = set-point "OlL" = oil heater output temperature probe (PID regulation); input **AI4** = probe **Pb4** = set-point "**tcn**" = oil heater consent temperature probe. ### Menu: To enter the menu below, keep pushing **ENTER** for more than 3 s. | Menu code | Sub-menu code | Function | Notes | | |-----------|---------------|------------------------|---|--| | Prb | | Probes values | You can see in sequence the 4 probe values (UP and DOWN keys): the probe code is on display A (Pb1,, Pb4) and the probe value is on display B (not fitted or out of work probes show ""). | | | Log | | Login | It defines the access level to menu and parameters (password) | | | | PAS | Password | Password input | | | Par | | Parameters menu | Access to parameters (you have to login first) | | | | CnF | Configuration menu | Parameter configuration | | | | rEG | Regulation menu | Set to set-point, probe, thresholds etc. | | | ALA | | Alarm menu | Access to alarm management | | | | Act | Active alarms | Show the active alarms | | | | rES | Reset alarms & Warning | Reset of the manual reset alarms and warning | | | Loc | | Lock/Unlock functions | Not used | | | InF | rEL | Software version | Installed software version | | | tUN | | Autotuning | Activation On, deactivation ESC PID parameter autotuning | | # Alarms & Warning: When the red triangle on the top left lights, one or more alarms are activated. When the red key on the left lights, the output N05-C5 is active and the relay **KTRS** switches the resistors OFF. Check the reason, correct the failure and, as soon as the temperature is lower than **trS**, reset it through **ALA/rES**. In order to show active alarms and warnings, select the relevant menu through **ALA/Act**.and, using the **UP** and **DOWN** buttons, scroll the lines. In order to perform the manual reset, select ALA/rES. | Code | Description | Sourse | Active simbol | Reset type | |------|----------------------------------|-----------------------|---------------|------------| | trS | High temperature resistors alarm | probe Pb4 > value trS | red key | Manual | | EP1 | Probe Pb1 fault | Probe Pb1 fault | red triangle | Automatic | | EP2 | Probe Pb2 fault | Probe Pb2 fault | red triangle | Automatic | | EP3 | Probe Pb3 fault | Probe Pb3 fault | red triangle | Automatic | | EP4 | Probe Pb4 fault | Probe Pb4 fault | red triangle | Automatic | ## Set point adjustment: All the parameters inside the Par menu are locked by a password. The user can modify only set points (menu **rEG**), without using any passwords. The oil viscosity at the nozzle, should be about 1,5%, which guarantees correct and safe functioning of the burner. The temperature values in the table, guarantee the respect of that parameter and are valid when the pre heating tank is installed on the burner. For different configurations, please refer to the chapter "Recommendations to design heavy oil feeding plants" in the burner manual. Here below recommended set points: | Menu path | | Oil viscosity at 50 °C according to the letter show n in the burner model | | | | | | | |-----------|-----|---|---|-----------------------|-----------|-----------------------|------------------------|-------------------------| | | | | | P N E D H | | | | Н | | | | | | 89 cSt | < 50 cSt | > 50 cSt
< 110 cSt | > 110 cSt
< 400 cSt | > 400 cSt
< 4000 cSt | | | | | | 12 E | < 7℃ | > 7 €
< 15 € | > 15 ℃
< 50 ℃ | > 50 °E
< 530 °E | | Par | | | | | | | | | | rEG | Pb1 | tr | Oil heater temperature probe | parameter not visible | | | | | | | Pb2 | tCl | Plant consent temperature probe (when installed) | 20 ℃ | 70 ℃ | 70 ℃ | 70 ℃ | | | | Pb3 | Oil | oil heater output
temperature probe (PID
regulation); | 60-70 ℃ | 110-120 ℃ | 120-130 ℃ | 130-140 ℃ | 140-150° C | | | | SP0 | Set-point oil heater with oil pump stopped (stand-by) | 45 ℃
| 120 ℃ | 130 ℃ | 140 ℃ | 150 ℃ | | | Pb4 | tcn | Oil heater consent temperature probe | 40 ℃ | 100 ℃ | 100 ℃ | 110 ℃ | 120 ℃ | | | | trS | Safety temperature tank resistors (manual reset) | 120 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | 190-200 ℃ | The above temperature values are suggested and refer to a plant designed according to the prescriptions in the burner user manual. The suggested values can change in reference to the fuel oil specifications.