

HR75A

Gas - light oil burners

MANUAL OF INSTALLATION - USE - MAINTENANCE

BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ

DANGERS, WARNINGS AND NOTES OF CAUTION

THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER.

INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE.

THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT.

CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE.

1) GENERAL INTRODUCTION

- The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel.
- Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer.
- Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Remove all packaging material and inspect the equipment for integrity.

In case of any doubt, do not use the unit - contact the supplier.

The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful.

- Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided.
- Make sure that inlet or exhaust grilles are unobstructed.
- In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action.

Contact qualified personnel only.

Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts and accessories.

Failure to comply with the above instructions is likely to impair the unit's safety.

To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions.

- When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless.
- In case the equipment is to be sold or transferred to another user, or
 in case the original user should move and leave the unit behind,
 make sure that these instructions accompany the equipment at all
 times so that they can be consulted by the new owner and/or the
 installer
- This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous.

The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things:

- Failure to comply with one of the WARNINGS in this chapter
- Incorrect handling, installation, adjustment or maintenance $\,$ of the burner $\,$
- Incorrect use of the burner or incorrect use of its parts or optional supply

2) SPECIAL INSTRUCTIONS FOR BURNERS

- The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion.
- Only burners designed according to the regulations in force should be used.
- This burner should be employed exclusively for the use for which it was designed.

- Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel).
- Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped.

When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations:

- a Remove the power supply by disconnecting the power cord from the mains.
- b) Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles.

Special warnings

- Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox.
- Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations:
- a set the burner fuel flow rate depending on the heat input of the appliance;
- b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force;
- c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force;
- d make sure that control and safety devices are operating properly;
- make sure that exhaust ducts intended to discharge the products of combustion are operating properly;
- f on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened;
- g make sure that a copy of the burner use and maintenance instructions is available in the boiler room.
- In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further.
- The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force.

3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED

3a) ELECTRICAL CONNECTION

- For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations.
- It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment.
- Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit
- No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains.
- An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations.
- The use of any power-operated component implies observance of a few basic rules, for example:
- do not touch the unit with wet or damp parts of the body and/or with bare feet:
- do not pull electric cables;

- do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so;
- do not allow children or inexperienced persons to use equipment;
- The unit input cable shall not be replaced by the user.

In case of damage to the cable, switch off the unit and contact qualified personnel to replace.

When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off.

3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL

- The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable.
- Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation.
- Before the burner is commissioned, qualified personnel should inspect the following:
- a the fuel supply system, for proper sealing;
- b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner;
- c the burner firing system, to make sure that it is supplied for the designed fuel type;
- d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate;
- e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force.
- When the burner is to remain idle for some time, the fuel supply tap or taps should be closed.

SPECIAL INSTRUCTIONS FOR USING GAS

Have qualified personnel inspect the installation to ensure that:

- a the gas delivery line and train are in compliance with the regulations and provisions in force;
- b all gas connections are tight;
- the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion.
- Do not use gas pipes to earth electrical equipment.
- Never leave the burner connected when not in use. Always shut the gas valve off.
- In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off.

Precautions if you can smell gas

- do not operate electric switches, the telephone, or any other item likely to generate sparks;
- b immediately open doors and windows to create an air flow to purge the room:
- c close the gas valves;
- d contact qualified personnel.
- Do not obstruct the ventilation openings of the room where gas appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures.

DIRECTIVES AND STANDARDS

Gas burners

European directives

- -2009/142/EC (Gas Directive)
- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 676 (Automatic forced draught burners for gaseous fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances):
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

Light oil burners

European directives

- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 267-2011(Automatic forced draught burners for liquid fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

National Standard

-UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods)

Heavy oil burners

European Directives

- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 267(Automatic forced draught burners for liquid fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

Norme nazionali / National Standard

-UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods.

Gas - Light oil burners

European Directives

- -2009/142/EC (Gas Directive)
- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 676 (Automatic forced draught burners for gaseous fuels)
- -UNI EN 267(Automatic forced draught burners for liquid fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)

- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances):
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

Norme nazionali / National Standard

-UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods.

Gas - Heavy oil burners,

European directives:

- -2009/142/EC (Gas Directive)
- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -UNI EN 676 (Automatic forced draught burners for gaseous fuels)
- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances);
- -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections).
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);

National Standard

- UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods.

Industrial burners

European directives

- -2009/142/EC (Gas Directive)
- -2014/35/UE (Low Tension Directive)
- -2014/30/UE (Electromagnetic compatibility Directive)
- -2006/42/EC (Machinery Directive)

Harmonized standards

- -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus)
- -EN 746-2 (Industrial thermoprocessing equipment Part 2: Safety requirements for combustion and fuel handling systems)
- -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction);
- -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.)
- -EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements)

Burner data plate

For the following information, please refer to the data plate:

- burner type and burner model: must be reported in any communication with the supplier
- burner ID (serial number): must be reported in any communication with the supplier
- date of production (year and month)
- information about fuel type and network pressure

ype	
/lodel	
'ear	-
S.Number	
Output	
Oil Flow	
uel	
Category	
Sas Pressure	
/iscosity	
I.Supply	
I.Consump.	
an Motor	-
Protection	
Drwaing n°	
P.I.N.	

SYMBOLS USED

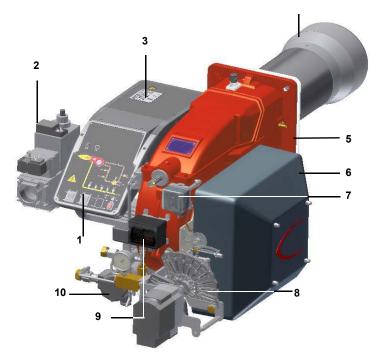
WARNING!

Failure to observe the warning may result in irreparable damage to the unit or damage to the environment

DAN

DANGER!

Failure to observe the warning may result in serious injuries or death.


WARNING!

Failure to observe the warning may result in electric shock with lethal consequences

Figures, illustrations and images used in this manual may differ in appearance from the actual product.

PART I: SPECIFICATIONS

BURNERS FEATURES

Note: the figure is indicative only.

- 1 Control panel with startup switch
- 2 Gas valves group
- B Electrical panel
- 4 Blast tube + Combustion head
- Flange
- Silencer
- ' Air pressure switch
- 8 Adjusting cam (progressive/fully modulating burners only)
- 9 Oil pressure switch
- 10 Pump

Fig. 1

Gas operation: the gas coming from the supply line, passes through the valves group provided with filter and stabiliser. This one forces the pressure in the utilisation limits. The electric actuator, that moves proportionally the air damper and the gas butterfly valve, uses an adjusting cam with variable shape. This one allows the optimisation of the gas flue values, as to get an efficient combustion. The combustion head positioning determines the burner's output. The combustion head determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber). The control panel, placed on the burner's front side, shows each operating stage.

Light oil operation: the fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame.

In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle.

The pump main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure regulators: one for the high and one for low pressure (in double-stage systems with one nozzle).

The adjustable combustion head can improve the burner performance. The combustion head determines the energetic quality and the geometry of the flame. Fuel and comburent are routed into separated ways as far as the zone of flame generation (combustion chamber).

The control panel, placed on the burner front side, shows each operating stage.

Burner model identification

Burners are identified by burner type and model. Burner model identification is described as follows.

Type	HR75A	Model	MG.	MD.	S.	*.	A.	1.	40.
	(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)

1	BURNER TYPE	HR75A
2	FUEL	M - Natural gas L - LPG
		G - Light oil B - Biogas
3	OPERATION (Available versions)	PR - Progressive MD - Fully modulating AB - Double stage
4	BLAST TUBE	S - Standard
5	DESTINATION COUNTRY	* - see data plate
6	BURNER VERSION	A - Standard Y - SpecialeSpecial
7	EQUIPMENT	1 = 2 gas valves + gas proving system 8 = 2 gas valves + gas proving system + maximum gas pressure switch
8	GAS CONNECTION	40 = Rp1 _{1/2} 50 = Rp2 65 = DN65 80 = DN80

Fuel

The burner technical specifications, described in this manual, refer to natural gas (calorific net value Hi = 9.45 kWh/Stm³, density ρ = 0.717 Kg/Stm³) and LPG (calorific net value Hi = 26.79 kWh/Stm³, density ρ = 2.151 Kg/Stm³). For different fuel such as town gas and biogas, multiply the values of flow and pressure by th corrective factors shown in the table below.

Fuel	Hi (KWh/Stm ³)	ρ (kg/Stm³)	f _Q	f _p
Town gas	4.88	0.6023	1.936	3.3
Biogas	6.395	1.1472	1.478	3.5
LPG	26.79	2.151	0.353	0.4

For example, to obtain the flow and pressure values for the biogas:

$$Q_{biogas} = Q_{naturalGas} \cdot 1,478$$

$$p_{biogas} = p_{naturalGas} \cdot 3, 5$$

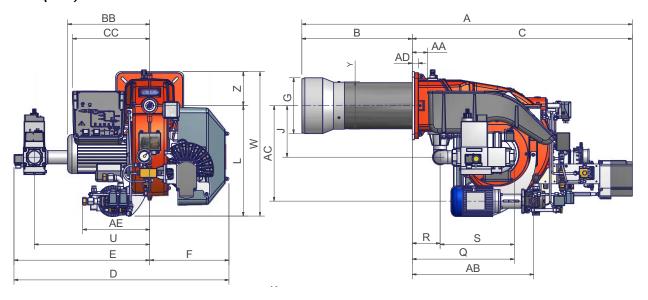
ATTENTION! The combustion head type and the settings depend on the fuel. The burner must be used only for its intended purpose specified in the burner data plate.

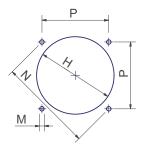
ATTENTION: the corrective factors in the above table depend on the gas composition, so on the calorifc value and the density of the gas. The above value can be taken only as reference.

Technical Specifications

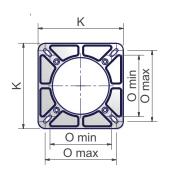
BURNER TYPE		HR75A MG	HR75A LG			
Output	min - max kW	320 - 2	2050			
Fuel		Natural gas - Light oil	L.P.G Light oil			
Category		(see next paragraph)	I _{3B/P}			
Gas rate	minmax. (Stm ³ /h)	34 - 217	11.9 - 77			
Gas pressure		(see No	ote 2)			
Power supply		400V 3N	~ 50Hz			
Total power consumption	kW	4.0	5			
Pump motor	kW	0.5	5			
Fan motor power consumption	kW	3				
Light oil rate	min max. kg/h	27-173				
Oil viscosity		2 - 7.4 cSt @ 40°C				
Oil density	kg/m ³	84	0			
Approximate weight	kg	15	0			
Protection		IP4	0			
Operation		Two stages - Progress	ve - Fully modulating			
Gas train 50 Connection	Ø Valves / Connections	50 / F	Rp 2			
Gas train 65	Ø Valves / Connections	65 / D	N65			
Gas train 80	Ø Valves / Connections	80 / D	N80			
Gas train 100	Ø Valves / Connections	100 / DN100				
Operating temperature	°C	-10 ÷ +50				
Storage Temperature	°C	-20 ÷	+60			
Working service*		Interm	itent			
noise level (sound power level)(**)	dBa, max	80				

Note1:	All gas flow rates are referred to Stm^3/h (1013 mbar absolute pressure, 15 °C temperature) and are valid for G20 gas (net calorific value $H_i = 34.02 \text{ MJ/Stm}^3$); for L.P.G. (net calorific value $H_i = 93.5 \text{ MJ/Stm}^3$)
Note2:	Maximum gas pressure = 360mbar (with Dungs MBDLE) = 500mbar (with Siemens VGD) Minimum gas pressure = see gas curves.
Note3:	Burners are suitable only for indoor operation with a maximum relative humidity of 80%

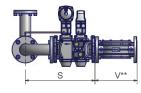

^(*) NOTE ON THE WORKING SERVICE: the control box automatically stops after 24h of continuous working. The control box immediately starts up, automatically.


Country and usefulness gas categories

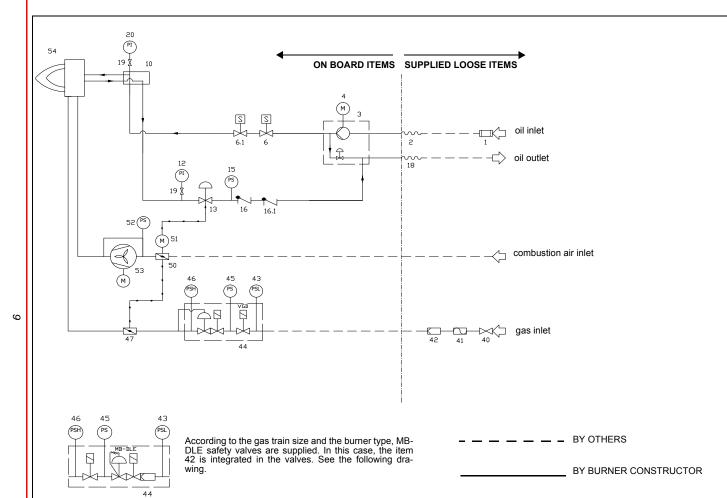
GAS CATEGORY												CC	DUNT	RY											
I _{2H}	АТ	ES	GR	SE	FI	ΙE	HU	IS	NO	CZ	DK	GB	IT	PT	CY	EE	LV	SI	MT	SK	BG	LT	RO	TR	СН
l _{2E}	LU	PL	1	1	1	1	-	-	-	-	-	-	-	-	1	-	ı	-	1	-	-	-	1	1	-
I _{2E(R)B}	BE	-	1	1	1	-	-	-	-	-	-	-	-	-	1	-	ı	-	-	-	-	-	-	1	-
(*) I _{2EK}	NL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I _{2ELL}	DE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
l _{2Er}	FR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-


^(*) Only for I_{2EK}: the appliance was configured for the appliance category K (I2K) and is suitable for the use of G and G+ distribution gases according to the specifications as included in the NTA 8837:2012 Annex D with a Wobbe index of 43.46 – 45.3 MJ/m3 (dry, 0 °C, upper value) or 41.23 – 42.98 (dry, 15 °C, upper value). This appliance can moreover be converted and/or be calibrated for the appliance category E (I2E). This therefore implies that the appliance "is suitable for G+ gas and H gas or is demonstrably suitable for G+ gas and can demonstrably be made suitable for H gas" within the meaning of the "Dutch Decree of 10 May 2016 regarding amendment of the Dutch Gas Appliances Decree and the Dutch Commodities (Administrative Fines) Act in connection with the changing composition of gas in the Netherlands as well as technical amendment of some other decrees.

Overall dimensions (mm)

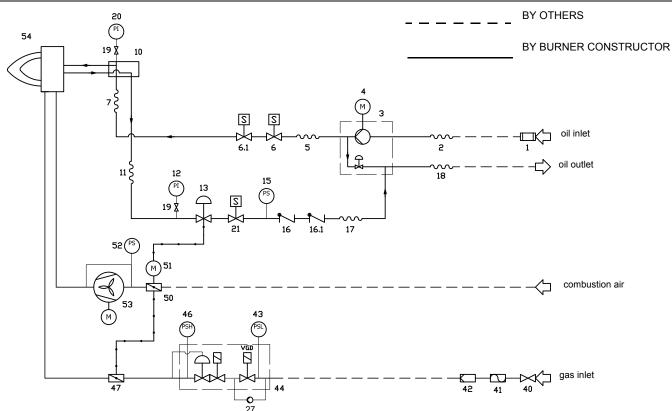

Boiler recommended drilling tem-

Burner flange


	*DN	A (AS)	AA	AB	AC	AD	ΑE	B (BS)	BB	С	CC	D	Е	F	G	Н	J	K	L	М	Omin	Omax	Р	Q	R	S	U	V(**)	W	Υ	Ζ
HR75A AB	1.50	1336	69	553	435	28	305	503	374	833	352	1061	700	361	254	270	235	300	503	M10	216	250	233	465	127	338	525	-	658	218	155
TR/SA AD	1.65	1336	69	553	435	28	305	503	374	833	352	1135	774	361	254	270	282	300	503	M10	216	250	233	535	127	408	565	292	658	218	155
	1.80	1336	69	553	435	28	305	503	374	833	352	1135	774	361	254	270	284	300	503	M10	216	250	233	555	127	428	565	310	658	218	155
HR75A PR/MD	1.50	1506	69	553	435	28	305	503	374	1002	352	979	618	361	254	270	235	300	503	M10	216	250	233	465	127	338	525	-	658	218	155
TR/5A PR/IVID	1.65	1506	69	553	435	28	305	503	374	1002	352	1051	690	361	254	270	282	300	503	M10	216	250	233	535	127	408	565	292	658	218	155
	1.80	1506	69	553	435	28	305	503	374	1002	352	1051	690	361	254	270	284	300	503	M10	216	250	233	555	127	428	565	310	658	218	155

*DN = gas valves size

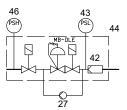
(**) According to the gas train size and the burner type, MB-DLE or VGD valves are supplied. The "V" measure, refers to the gas filter, for burners provided with Siemens VGD valves. MB-DLE valves have a built-in filter.


α

	LEGEND
POS	OIL TRAIN
1	Filter
2	Flexible hose
3	Pump and pressure governor
4	Electrical motor
5	Flexible hose
6	Solenoid valve
6.1	Solenoid valve
7	Flexible hose
10	Oil distributor
11	Flexible hose
12	Pressure gauge
13	Pressure governor
15	Pressure switch
16	One-way valve
16.1	One-way valve
17	Flexible hose
18	Flexible hose
19	Manual valve
20	Pressure gauge
	MAIN GAS TRAIN
40	Manual valve
41	Bellows unit
42	Filter
43	Pressure switch - PGMIN
44	Safety valve with built in gas governor
45	Proving system pressure switch - PGCP
46	Pressure switch - PGMAX
47	Butterfly valve
50	COMBUSTION AIR TRAIN
50	Air damper
51	Actuator
52	Pressure switch - PA
53	Draught fan with electromotor
54	Burner

Note: The following POS are optional: 19, 20, 40, 41, 46

10


Filter Flexible hose 3 Pump and pressure governor 4 Electrical motor 5 Flexible hose Solenoid valve 6 6.1 Solenoid valve Flexible hose Oil distributor 10 11 Flexible hose 12 Pressure gauge 13 Pressure governor 15 Pressure switch 16 One-way valve 16.1 One-way valve 17 Flexible hose 18 Flexible hose 19 Manual valve Pressure gauge 20 Solenoid valve MAIN GAS TRAIN 27 Proving system 40 Manual valve 41 Bellows unit 42 Filter Pressure switch - PGMIN 43 44 Safety valve with built in gas governor Pressure switch - PGMAX 46 47 Butterfly valve COMBUSTION AIR TRAIN 50 Air damper Actuator 52 Pressure switch - PA 53 Draught fan with electromotor 54 Burner

POS

OIL TRAIN

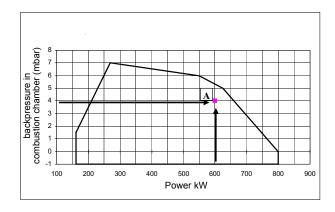
Note: The following POS are optional: 19, 20, 40, 41, 46

Note: The following POS are included only on certain types of burner: 5,7,11,17

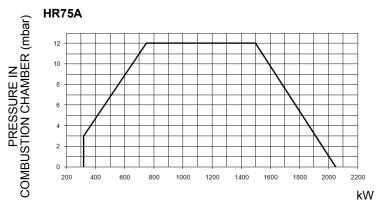
According to the gas train size and the burner type, MB-DLE safety valves are supplied. In this case, the item 42 is integrated in the valves. See the following drawing.

How to read the burner "Performance curve"

To check if the burner is suitable for the boiler to which it must be installed, the following parameters are needed:


- furnace input, in kW or kcal/h (kW = kcal/h / 860);
- backpressure (data are available on the boiler ID plate or in the user's manual).

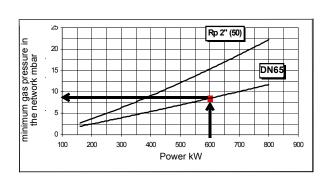
Example:


Furnace input: 600kW Backpressure: 4mbar

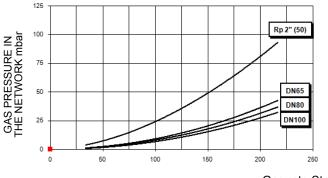
In the "Performance curve" diagram, draw a vertical line matching the furnace input value and an horizontal line matching the backpressure value. The burner is suitable if the intersection point A is inside the performance curve.

Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C.

Performance Curves


To get the input in kcal/h, multiply value in kW by 860.

Data are referred to standard conditions: atmospheric pressure at 1013mbar, ambient temperature at 15°C


NOTE: The performance curve is a diagram that represents the burner performance in the type approval phase or in the laboratory tests, but does not represent the regulation range of the machine. On this diagram the maximum output point is usually reached by adjusting the combustion head to its "MAX" position (see paragraph "Adjusting the combustion head"); the minimum output point is reached setting the combustion head to its "MIN" position. During the first ignition, the combustion head is set in order to find a compromise between the burner output and the generator specifications, that is why the minimum output may be different from the Performance curve minimum.

Checking the proper gas train size

To check the proper gas train size, it is necessary to the available gas pressure value upstream the burner's gas valve. Then subtract the backpressure. The result is called **pgas**. Draw a vertical line matching the furnace input value (600kW, in the example), quoted on the x-axis, as far as intercepiting the network pressure curve, according to the installed gas train (DN65, in the example). From the interception point, draw an horizontal line as far as matching, on the y-axis, the value of pressure necessary to get the requested furnace input. This value must be lower or equal to the **pgas** value, calculated before.

Pressure in the Network / gas flow rate curves(natural gas) HR75A M-..

Gas rate Stm3/h

Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis.

Pressure in the Network / gas flow rate curves(LPG) HR75A L-..

Rp 1"1/4 (32) Rp 1"½ (40) GAS PRESSURE IN THE NETWORK mbar Rp 2"(50) Gas rate Stm3/h

Caution: the gas rate value is quoted on the x-axis, the related network pressure is quoted on the y-axis (pressure value in the combustion chamber is not included). To know the minimum pressure at the gas train inlet, necessary to get the requested gas rate, add the pressure value in the combustion chamber to the value read on the y-axis.

Combustion head gas pressure curves depending on the flow rate

The curves referred to the gas pressure in the combustion head, depending on the gas flow rate, are referred to the burner properly adjusted (percentage of residual O_2 in the flues as shown in the "Recommended combustion values" table and CO in the standard limits). During this stage, the combustion head, the gas butterfly valve and the actuator are at the maximum opening. Refer to Fig. 4, showing the correct way to measure the gas pressure, considering the values of pressure in combustion chamber, surveyed by means of the pressure gauge or taken from the boiler's Technical specifications.

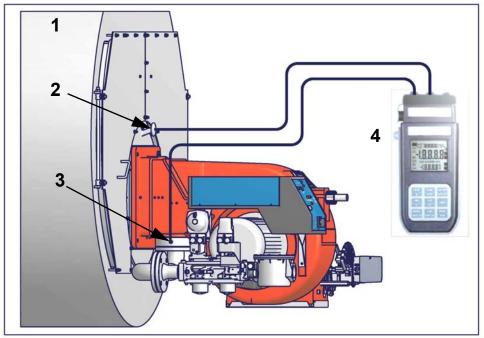


Fig. 4

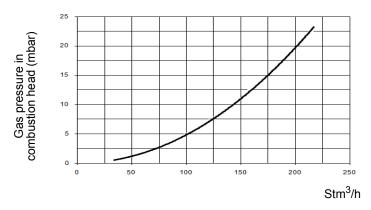
Note: the figure is indicative only.

Key

- 1 Generator
- 2 Pressure outlet on the combustion chamber
- 3 Gas pressure outlet on the butterfly valve
- 4 Differential pressure gauge

Measuring the gas pressure in the combustion head

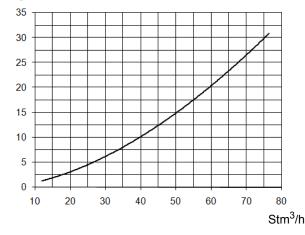
In order to measure the pressure in the combustion head, insert the pressure gauge probes: one into the combustion chamber's pressure outlet to get the pressure in the combustion chamber and the other one into the butterfly valve's pressure outlet of the burner. On the basis of the measured differential pressure, it is possible to get the maximum flow rate: in the pressure - rate curves (showed on the next paragraph), it is easy to find out the burner's output in Stm³/h (quoted on the x axis) from the pressure measured in the combustion head (quoted on the y axis). The data obtained must be considered when adjusting the gas flow rate.


ATTENTION: THE BURNED GAS RATE MUST BE READ AT THE GAS FLOW METER. WHEN IT IS NOT POSSIBLE, THE USER CAN REFERS TO THE PRESSURE-RATE CURVES AS GENERAL INFORMATION ONLY.

Pressure - rate in combustion head curves (natural gas)

Curves are referred to pressure = 0 mbar in the combustion chamber!

HR75A M-..


Pressure - rate in combustion head curves (LPG)

Curves are referred to pressure = 0mbar in the combustion chamber!

HR75A L-..

PART II: INSTALLATION

MOUNTING AND CONNECTING THE BURNER

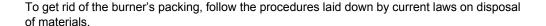
Transport and storage

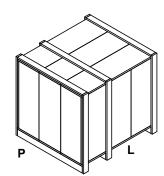
ATTENTION! The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. All handling operations must be carried out with appropriate resources and qualified personnel

ATTENTION: Use intact and correctly dimensioned hoisting equipment, conforms to the local regulations and health and safety regulations. Do not stand under lifted loads.

If the product must be stored, avoid humid and corrosive places. Observe the temperatures stated in the burner data table at the beginning of this manual.

Packing

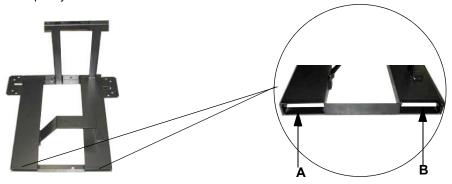

The burners are despatched in wooden crates whose dimensions are:


1672mm x 1072mm x 1016mm (L x P x H)

Packing cases of this type are affected by humidity and are not suitable for stacking.

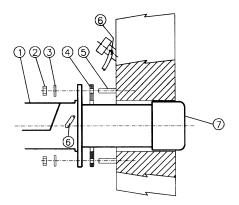
The following are placed in each packing case:

- burner with detached gas train;
- gasket or ceramic fibre plait (according to burner type) to be inserted between the burner and the boiler;
- envelope containing this manual and other documents.
- oil flexible hoses;


Н

Handling the burner

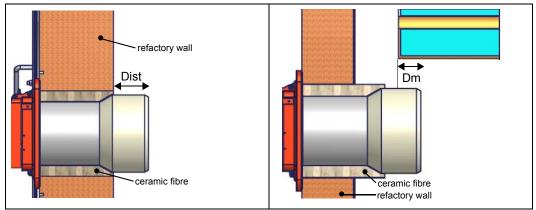
ATTENTION! The handling operations must be carried out by specialised and trained personnel. If these operations are not carried out correctly, the residual risk for the burner to overturn and fall down still persists. To move the burner, use means suitable to support its weight (see paragraph "Technical specifications"). The unpacked burner must be lifted and moved only by means of a fork lift truck.


The burner is mounted on a stirrup provided for handling the burner by means of a fork lift truck: the forks must be inserted into the A anb B ways. Remove the stirrup only once the burner is installed to the boiler.

Fitting the burner to the boiler

To install the burner into the boiler, proceed as follows:

- 1 make a hole on the closing door of the combustion chamber as described on paragraph "Overall dimensions")
- 2 place the burner to the boiler: lift it up and handle it according to the procedure described on paragraph "Handling the burner";
- 3 place the 4 stud bolts (5), according to the burner's drilling plate described on paragraph "Overall dimensions":
- 4 fasten the 4 stud bolts;
- 5 place the ceramic fibre plait on the burner flange;
- 6 install the burner into the boiler;
- 7 fix the burner to the stud bolts, by means of the fixing nuts, according to the next picture.
- 8 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement).


Keys

- 1 Burner
- 2 Fixing nut
- 3 Washer
- 4 Ceramic fibre plait
- 5 Stud bolt
- 7 Blast tube

Matching the burner to the boiler

The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the type of the blast tube. Verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube length follow the instructions of the boiler manufacturer. In absence of these consider the following:

- Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than **Dist** = 100 mm into the combustion chamber. (please see the picture below)
- Pressurised boilers with flame reversal: in this case the blast tube must penetrate Dm 50 ÷ 100 mm into combustion chamber in respect to the tube bundle plate.(please see the picture below)

The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer).

ATTENTION! Carefully seal the free space between blast tube and the refractory lining with ceramic fibre rope or other suitable means.

GAS TRAIN CONNECTIONS

Referring to the P&ID of the burner, execute the connection.

WARNING: BEFORE EXECUTING THE CONNECTIONS TO THE GAS PIPE NETWORK, BE SURE THAT THE MANUAL CUTOFF VALVES ARE CLOSED.

Assembling the gas train

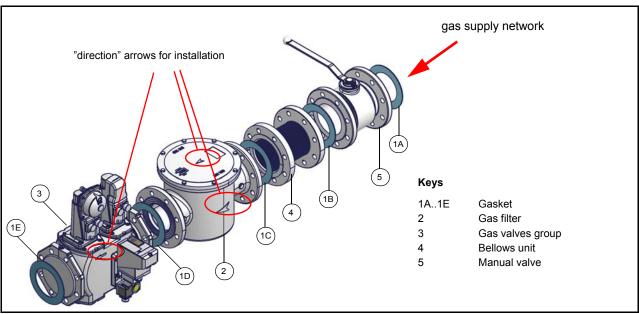


Fig. 5 - Example of gas train

To mount the gas train, proceed as follows:

- 1-a) in case of threaded joints: use proper seals according to the gas used;
- 1-b) in case of flanged joints: place a gasket (no. 1A..1E Fig. 5) between the elements
- 2) fasten all the items by means of screws, according to the diagrams showed, observing the mounting direction for each item;

NOTE: the bellows unit, the manual cutoff valve and the gaskets are not part of the standard supply.

ATTENTION: once the gas train is mounted according to the diagram on Fig. 5, the gas proving test mus be performed, according to the procedure set by the laws in force.

ATTENTION: it is recommended to mount filter and gas valves to avoid that extraneous material drops inside the valves, during maintenance and cleaning operation of the filters (both the filters outside the valves group and the ones built-in the gas valves).

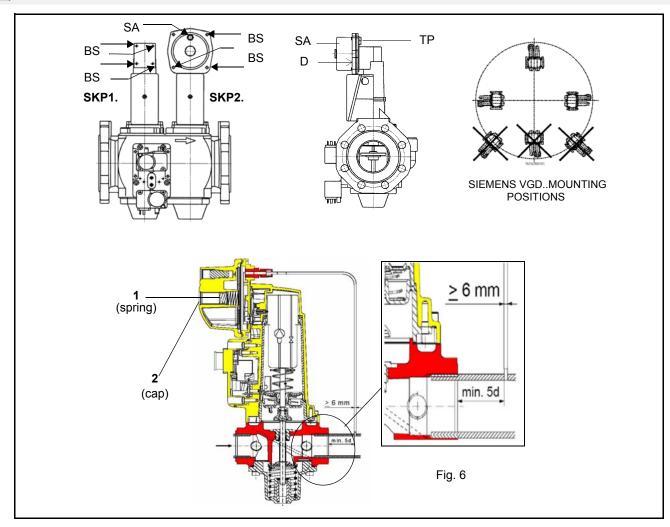
The procedures of installation fo the gas valves are showed in the next paragraphs, according to the gas train used:

- threaded gas trains with Multibloc Dungs MB-DLE or Siemens VGD20...
- flanged gas trains with Siemens VGD40..

Siemens VGD20.. and VGD40.. gas valves - with SKP2.. (pressure governor)

Mounting

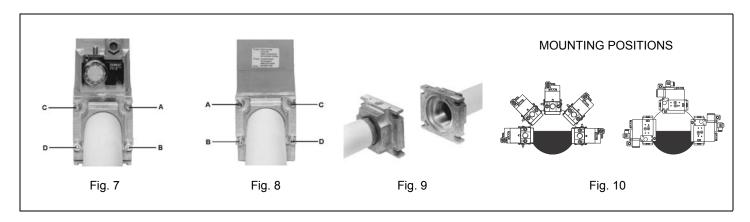
- When mounting the VGD.. double gas valve, two flanges are required (as for VGD20.. model, the flanges are threaded); to prevent
 cuttings from falling inside the valve, first fit the flanges to the piping and then clean the associated parts;
- install the valve;
- the direction of gas flow must be in accordance with the direction of the arrow on the valve body;
- ensure that the bolts on the flanges are properly tightened;
- ensure that the connections with all components are tight;
- make certain that the O-rings and gaskets between the flanges and the double gas valve are fitted.
- Connect the reference gas pipe (**TP** in figure; 8mm-external size pipe supplied loose), to the gas pressure nipples placed on the gas pipe, downstream the gas valves: gas pressure must be measured at a distance that must be at least 5 times the pipe size.


Leave the blowhole free (**SA** in figure). Should the spring fitted not permit satisfactory regulation, ask one of our service centres for a suitable replacement.

Caution: the SKP2 diaphragm D must be vertical (see Fig. 6).

WARNING: removing the four screws BS causes the device to be unserviceable!

Siemens VGD valves with SKP actuator:


The pressure adjusting range, upstream the gas valves group, changes according to the spring provided with the valve group.

Performance range (mbar)	0 - 22	15 - 120	100 - 250
Spring colour	neutral	yellow	red

MULTIBLOC DUNGS MB-DLE 415..420

Mounting

- 1. Loosen screws A and B do not unscrew (Fig. 7 Fig. 8).
- 2. unscrew screws C and D (Fig. 7 Fig. 8).
- 3. Remove MultiBloc between the threaded flanges (Fig. 8).
- 4. After mounting, perform leakage and functional tests.

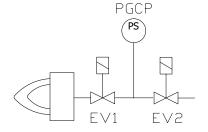
Once the train is installed, connect the gas valves group and pressure switches plugs.

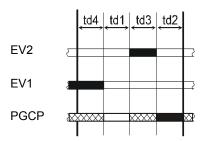
Gas Filter (if provided)

The gas filters remove the dust particles that are present in the gas, and prevent the elements at risk (e.g.: burner valves, counters and regulators) from becoming rapidly blocked. The filter is normally installed upstream from all the control and on-off devices.

ATTENTION: it is reccomended to install the filter with gas flow parallel to the floor in order to prevent dust fall on the safety valve during maintenance operation.

Integrated proving system (burners equipped with LME7x, LMV, LDU)

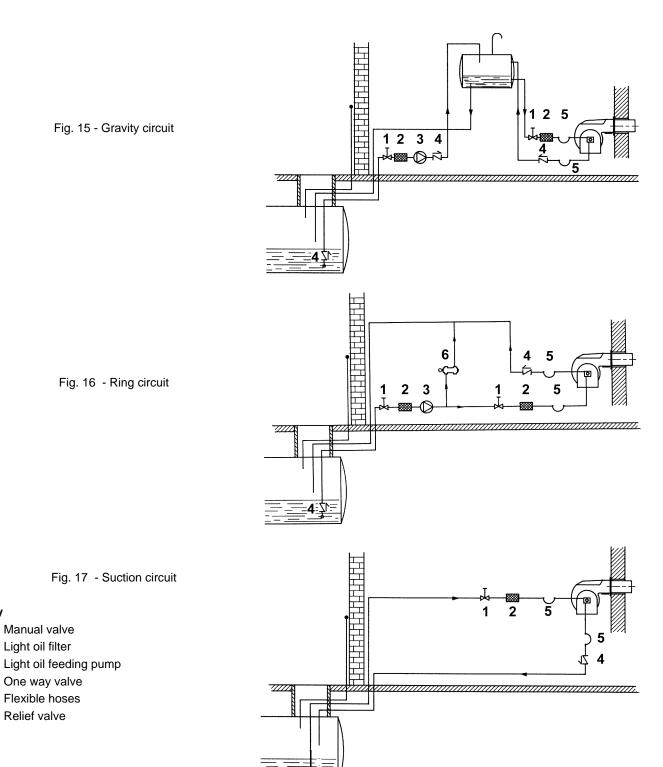

This paragraph describes the integrated proving system operation sequence:


- At the beginning both the valves (EV1 and EV2) must be closed.
- Test space evacuating: EV1 valve (burner side) opens and keep this position for a preset time (td4), in order the bring the test space to ambient pressure. Test atmospheric pressure: EV1 closes and keep this position for a preset time (test time td1). The pressure switch PGCP has not to detect a rise of pressure.
- Test space filling: EV2 opens and keep this position for a preset time (td3), in order to fill the test space.
- Test gas pressure: EV2 closes and keep this position for a preset time (td2). The pressure switch PGCP has not to detect a pressure drop down.

If all of the test phases are passed the proving system test is successful, if not a burner lockout happens.

On LMV5x and LMV2x/3x and LME73 (except LME73.831BC), the valve proving can be parameterized to take place on startup, shutdown, or both.

On LME73.831BC the valve proving is parameterized to take place on startup only.


OIL TRAIN CONNECTIONS

Key 1

2

5

Hydraulic diagrams for light oil supplying circuits

NOTE: in plants where gravity or ring feed systems are provided, install an automatic interception device.

Installation diagram of light oil pipes

N PLEASE READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNING OF THIS MANUAL.

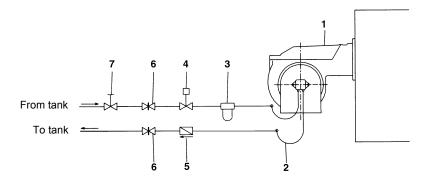


Fig. 14 - Double-pipe system

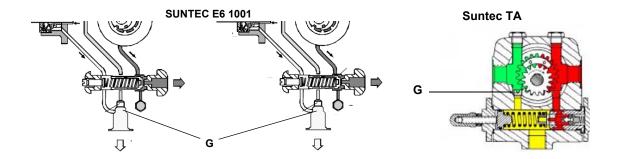
The burner is supplied with filter and flexible hoses, all the parts upstream the filter and downstream the return flexible hose, must be installed by the customer. As far as the hoses connection, see the related paragraph.

Key

- 1 Burner
- 2 Flexible hoses (fitted)
- Light oil filter (fitted) 3
- 4 Automatic interceptor (*)
- 5 One-way valve (*)
- 6 Gate valve
- Quick-closing gate-valve (outside the tank or boiler rooms)

(*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing.

The direct connection of the device without a timer may cause pump breaks.

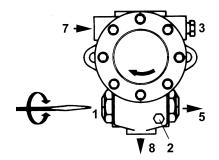

Depending on the installed pump, it is possible to design the plant for single or double pipe feeding line

Single-pipe system: a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass plug, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer.

Double-pipe system: as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pump's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-bleeding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump.

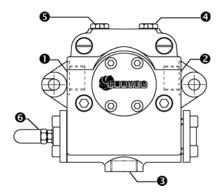
Burners come out from the factory provided for double-pipe systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug G (as for ccw-rotation- referring to the pump shaft).

Caution: Changing the direction of rotation, all connections on top and side are reversed.


About the use of fuel pumps

- Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them.
- After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump.
- On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet.
- Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the
 joint, noise and overloading the gears.
- Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage.
- Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible.
- An external filter should always be installed in the suction line upstream the fuel unit.

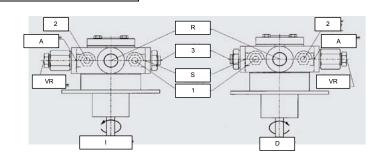
ATTENTION: before the burner first start, it is mandatory to fill the adduction pipes with diesel fuel and bleed out residual air bubbles. Prior to switching on the burner, check direction of rotation of the pump motor by briefly pressing the starter switch; ensure there are no anomalous sounds during equipment operation, and only then turn on the burner. Neglect to comply with this requirement will invalidate the burner warranty.


Suntec E6 - E7 1001	
Oil viscosity	3 - 75 cSt
Oil temperature	0 - 90°C
Inlet maximum pressure	1,5 bar
Maximum return pressure	1,5 bar
Minimum inlet pressure	- 0,45 to avoid gasing
Rotation speed	3600 rpm max.

Key

- 1. Pressure governor
- 2. Pump pressure gauge
- 3. Vacuum gauge
- 5. To the nozzle
- 7. Inlet
- 8. Return

Suntec TA	
Oil viscosity	3 ÷ 75 cSt
Oil temperature	0 ÷ 150°C
Min. suction pressure	- 0.45 bar to avoid gasing
Max. suction pressure	5 bar
Max. return pressure	5 bar
Rotation speed	3600 rpm max.

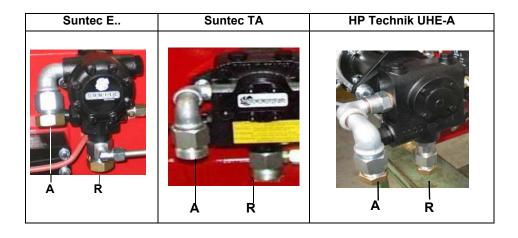


- 1. Inlet G1/2
- 2. To the nozzle G1/2
- 3. Return G1/2
- 4. Pressure gauge port G1/4
- 5. Vacuum gauge port G1/4
- 6. Pressure governor

HP-Technick UHE-A	
Oil viscosity	3 ÷ 75 cSt
Oil temperature	0 ÷ 150°C
Min. suction pressure	- 0.45 bar to avoid gasing
Max. suction pressure	5 bar
Max. return pressure	5 bar

Rotation speed 3600 rpm max.

- 1. Connection for manometer 1 delivery (M1) G1/4
- 2. Connection for manometer 2 suction (M2) G1/4
- 3. Connection for manometer 3 (M3)
- A. Suction connection- G1/2
- D. Direct clockwise
- I. Indirect counter clockwise
- R. By-pass connection— G1/2
- S. Delivery connection G1/2
- VR. After removal of cover screw: pressure regulation



Connecting the oil flexible hoses to the pump

To connect the flexible oil hoses to the pump, proceed as follows, according to the pump provided:

- 1 remove the closing nuts A and R on the inlet and return connections of the pump;
- 2 screw the rotating nut of the two flexible hoses on the pump **being careful to avoid exchanging the lines**: see the arrows marked on the pump.

For further information, refer to the technical documentation of the pump.

ELECTRICAL CONNECTIONS

WARNING! Respect the basic safety rules. make sure of the connection to the earthing system. do not reverse the phase and neutral connections. fit a differential thermal magnet switch adequate for connection to the mains.

WARNING! before executing the electrical connections, pay attention to turn the plant's switch to OFF and be sure that the burner's main switch is in 0 position (OFF) too. Read carefully the chapter "WARNINGS", and the "Electrical connections" section.

ATTENTION: Connecting electrical supply wires to the burner teminal block MA, be sure that the ground wire is longer than phase and neutral ones.

To execute the electrical connections, proceed as follows:

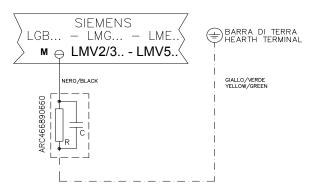
- 1 remove the cover from the electrical board, unscrewing the fixing screws;
- 2 execute the electrical connections to the supply terminal board as shown in the attached wiring diagrams;
- 3 check the direction of the fan motor (see next paragraph);
- 4 refit the panel cover.

WARNING: (only for double stage and progressive burners) The burner is provided with an electrical bridge between terminals 6 and 7; when connecting the high/low flame thermostat, remove this bridge before connecting the thermostat.

Rotation of electric motor

Once the electrical connection of the burner is executed, remember to check the rotation of the electric motor. The motor should rotate according to the "arrow" symbol on the body. In the event of wrong rotation, reverse the three-phase supply and check again the rotation of the motor.

CAUTION: check the motor thermal cut-out adjustment


NOTE: the burners are supplied for three-phase 380 V or 400 V supply, and in the case of three-phase 220 V or 230 V supply it is necessary to modify the electrical connections into the terminal box of the electric motor and replace the overload tripped relav.

Note on elecrtical supply

If the power supply to the burner is 230V three-phase or 230V phase-phase (without a neutral), with the Siemens control box, between the terminal 2 (terminal X3-04-4 in case of LMV2x, LMV3x, LMV5x, LME7x) on the board and the earth terminal, an RC Siemens RC466890660 filter must be inserted.

Key

C - Capacitor (22nF/250V) LME / LMV - Siemens control box R - Resistor (1M Ω) M - Terminal 2 (LGB,LMC,LME), terminal X3-04-4 (LMV2x, LMV3x, LMV5, LME7x) RC466890660 - RC Siemens filter

For LMV5 control box, please refer to the clabeling recommendations avaible on the Siemens CD attached to the burner

PART III: OPERATION

WARNING: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed.

DANGER: During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the gas decrease slowly until the normal combustion values are achieved.

WARNING: never loose the sealed screws! otherwise, the device warranty will be immediately invalidate!

LIMITATIONS OF USE

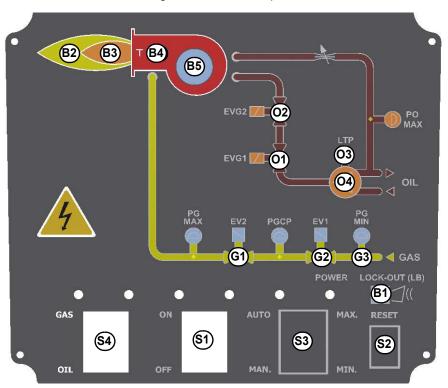
THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS.

THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER.

A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER.

THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER).

NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE EXCEPT FOR ITS MAINTENANCE.


TO SECURE THE MACHINE, ACT ON THE ISOLATOR SWITCH. IN CASE OF ANOMALIES THAT REQUIRED A SHUT DOWN OF THE BURNER, IT'S POSSIBLE TO ACT ON THE AUXILIARY LINE SWITCH, LOCATED ON THE BURNER FRONT PANEL.

IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER.

WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT.

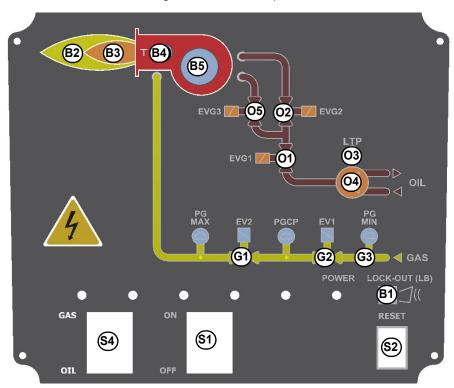
Fully modulating / Progressive Burners

Fig. 15 - Burner front panel

Keys

- B1 Lock-out LED
- B2 Hi-flame operation LED
- B3 Lo-flame operation LED
- B4 "Ignition transformer operation" LED
- B5 "Fan motor overload tripped" LED
- G1 "EV2 opening" LED
- G2 "EV1 opening" LED
- G3 "Gas pressure switch signal" LED
- S1 Main switch
- S2 Reset pushbutton for control box
- S3 Operation selector MAN AUTO (operation in manual or automatic mode):

MIN = operation with minimum output


0 = Stop

MAX = operation at the maximum output

- S4 Fuel selection
- O1 EVG1 solenoid valve operation LED
- O2 EVG2 solenoid valve operation LED
- O3 "Pump motor overload tripped" LED
- O4 Oil pump in operation LED

Double stages burner

Fig. 16 - Burner front panel

Keys

- B1 Lock-out LED
- B2 Hi-flame operation LED
- B3 Lo-flame operation LED
- B4 "Ignition transformer operation" LED
- B5 "Fan motor overload tripped" LED
- G1 "EV2 opening" LED
- G2 "EV1 opening" LED
- G3 "Gas pressure switch signal" LED
- S1 Main switch
- S2 Reset pushbutton for control box
- S4 Fuel selection
- O1 EVG1 solenoid valve operation LED
- O2 EVG2 solenoid valve operation LED
- O3 "Pump motor overload tripped" LED
- O4 Oil pump in operation LED
- O5 EVG3 solenoid valve operation LED

Fuel selection:

In order to start the burner with gas or light oil, the operator must commute the selector on the burner control panel on (1) = gas, or
 (2) = light oil.

If the selector is set on (1) the gas cock must be open, while the light oil cock must be closed. Viceversa if the selector is set on (2). **CAUTION:** if the fuel chosen is oil, be sure the cutoff valves on the feed and return pipes are open.

Gas operation

- Turn to the ON position the mains switch S1 on the burner front panel.
- Check the flame control box is not in the lockout position (light B1 on), if necessary reset it by means of the pushbutton S2 (reset);
- Check that the control thermostats or pressure switches enable the burner to operate.
- Check the gas supply pressure is sufficient (light G3 on), if necessary, adjust the pressure switches.

Only burners provided with the gas proving system: the check cycle of the gas proving system starts; the end of this check is signalled by the light of the lamp on the device. When the valves check is finished, the startup cycle of the burner begins. In the case of a leak in a valve, the gas proving system locks and the lamp G4 lights. To reset the device press the device pushbutton.

- The startup cycle begins, the actuator drives the air damper to the maximum opening position, the fan motor starts and the pre-purgue phase begins. During the pre-purgue phase, the complete opening of the air damper is signalled by the lamp B2 on the frontal panel of the electrical board.
- At the end of the pre-purgue phase, the air damper goes to the ignition position, the ignition transformer turns on (signalled by the lamp B4) and few seconds later the solenoid valves EV1 and EV2 are energized (lights G1 and G2 on the front panel).
- Few seconds after the opening of the valves, the ignition transformer turns off and the lamp B4 turns off subsequently:

Double-stage burners: the burner is on in low flame stage (light G is on); some seconds later, the high flame operation begins and the burner switches automatically to high flame (light B2 is on) or remains in low flame operation, according to the plant requests.

Progressive and fully modulating burners - few seconds after the gas valve opening, the ignition transformer is de-energized. The burner is in low flame operation and some seconds later, the two-stages operation begins; the burner increases or decreases its output, directly driven by the external thermostat (progressive version) or by the modulator (fully modulating burners only).

Light oil operation

- The fan motor starts and the pre-purge phase as well. Since the pre-purge phase must be carried out at the maximum air rate, the control box drives the actuator opening and when the maximum opening position is reached, the pre-purge time counting starts.
- At the end of the pre-purge time, the actuator is in the light oil ignition position: the ignition transformer is energised (lamp **B4** on); the ignitor gas valves (if provided) and the light oil valves open. Few seconds after the valves opening, the transformer is de-energised and lamp **B4** turns off.
- The burner is now operating, meanwhile the actuator goes to the high flame position; after some seconds, the two-stage operation begins; the burner is driven automatically to high flame or low flame, according to the plant requirements. Operation in high or low flame is signalled by LED **B2** on the burner control panel.

1

AIR FLOW AND FUEL ADJUSTMENT

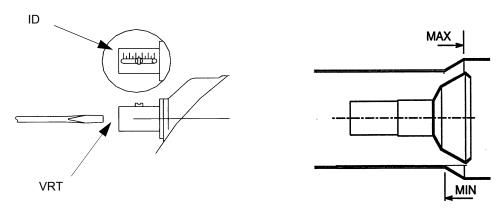
WARNING! During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the fuel decrease slowly until the normal combustion values are achieved.

WARNING! the combustion air excess must be adjusted according to the values in the following chart.

Recommended combustion parameters								
Fuel	Recommended (%) CO ₂	Recommended (%) O ₂						
Natural gas	9 ÷ 10	3 ÷ 4.8						
LPG	11 ÷ 12	2.8 ÷ 4.3						
Light oil	11.5 ÷ 13	2.9 ÷ 4.9						

Adjustments - brief description

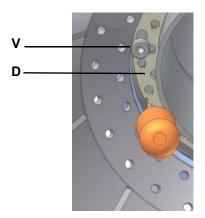
- Adjust the air and gas flow rates at the maximum output ("high flame") first, by means of the air damper and the valves group pressure stabiliser respectively.
- Check that the combustion parameters are in the suggested limits.
- Check the flow rate measuring it on the counter or, if it was not possible, verifying the combustion head pressure by means of a differential pressure gauge, as described on par. "Measuring the gas pressure in the combustion head".
- Then, adjust the combustion values corresponding to the points between maximum and minimum (progressive -fully modulating burners only): set the shape of the adjusting cam foil. The adjusting cam sets the air/gas ratio in those points, regulating the opening-closing of the air damper.
- Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing
 too much or that the flues temperature gets too low to cause condensation in the chimney.

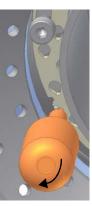

To change the burner setting during the testing in the plant, follows the next procedure, according to the model provided.

Adjusting the combustion head

Attention! if it is necessary to change the head position, repeat the air and fuel adjustments described above.

The burner is factory-adjusted with the combustion head in the "MAX" position, accordingly to the maximum power. To operate the burner at a lower power, progressively shift back the combustion head, towards the "MIN" position, screwing the screw **VRT**. The ID index shows how much the combustion head moved.




CAUTION: perform these adjustments once the burner is turned off and cooled.


(HR75A M-..) Center head holes gas flow regulation

To adjust the gas flow, partially close the holes, as follows:

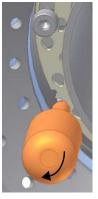
- 1 loosen the three V screws that fix the adjusting plate D;
- 2 insert a screwdriver on the adjusting plate notches and let it move CW/CCW as to open/close the holes;
- 3 once the adjustmet is performed, fasten the **V** screws.

opened holes

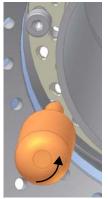
closed holes

The adjusting plate correct position must be regulated in the plant during the commissioning.

The factory setting depends on the type of fuel for which the burner is designed:


• For natural gas burners, plate holes are fully opened

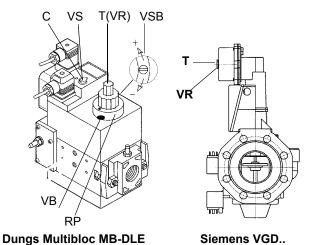
(HR75A L-..) Center head holes gas flow regulation


To adjust the gas flow, partially close the holes, as follows:

- 1 loosen the three **V** screws that fix the adjusting plate **D**;
- 2 insert a screwdriver on the adjusting plate notches and let it move CW/CCW as to open/close the holes;
- 3 once the adjustmet is performed, fasten the **V** screws.

closed holes

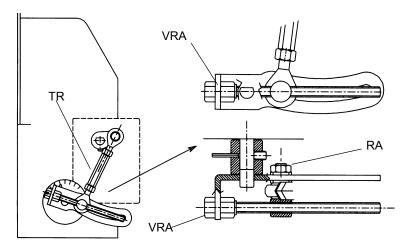
The adjusting plate correct position must be regulated in the plant during the commissioning.


The factory setting depends on the type of fuel for which the burner is designed:

• For LPG burners, plate holes are opened about 1.7mm

ADJUSTMENTS FOR GAS OPERATION

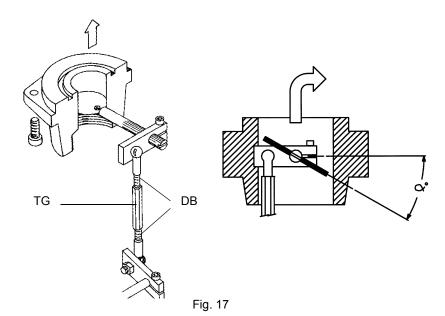
Adjustment procedure


- 1 Turn the burner on by means of its main switch **S1**: if the burner locks (LED **B1** on in the control panel) press the RESET button (**S2**) on the control panel. See chapter "Operation" for further details.
- 2 check the fan motor rotation
- 3 Start the burner up by means of the thermostat series and wait unitl the pre-purge phase comes to end and that burner starts up;
- 4 the burner starts up in the low flame stage: drive the burner to high flame stage, by means of the "high/low flame" thermostat TAB.
- 5 adjust the burner combustion values in the high flame stage as described in the following steps.
- 6 go on adjusting air and gas flow rates: check, continuosly, the flue gas analisys, as to avoid combustion with little air; dose the air according to the gas flow rate change following the steps quoted below;
- 7 acting on the pressure governor of the valves group, adjust the **gas flow rate in the high flame stage** as to meet the values requested by the boiler/utilisation:
 - **Multibloc MB-DLE**: the valve is adjusted by means of the **RP** regulator after slackening the locking screw **VB** by a number of turns. By unscrewing the regulator **RP** the valve opens, screwing the valve closes. The pressure stabilizer is adjusted by operating the screw **VS** located under the cover **C**. By screwing down the pressure is increased and by unscrewing it is reduced. **Note:** the screw **VSB** must be removed only in case of replacemente of the coil.
 - Siemens VGD valves group: remove cap T and act on the VR adjusting screw to increase or decrease the pressure and consequently the gas rate; screwind VR the rate increases, unscrewing it decreases (see next figure).

A Pressure governor is factory-set. The setting values must be locally adapted to machine conditions. Important! Follow the instructions carefully!

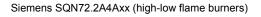
8 .To adjust the **air flow rate in the high flame stage**, loose the **RA** nut and screw **VRA** as to get the desired air flow rate: moving the rod **T** towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases.

Note: once the procedure is perfored, be sure that the blocking nut **RA** is fasten.



Go on adjusting the burner according to the model (double-stage, progressive, fully-modulating).

Double-stage burners


- 9 drive the burner to the low flame stage by means of the **TAB** thermostat;
- 10 In order to change the gas flow rate slacken the nuts **DB** (Fig. 17) and adjust the opening angle of the gas butterfly valve by rotating the rod **TG** (clockwise rotation increases gas flow, anticlockwise rotation decreases it). The slot on the butterfly valve shaft shows the opening degree of the valve regardingthe horizontal axis (Fig. 17).

NOTE: At the end of settings, make sure the locking screws RA and DB are fully tightened.

- 11 Now adjust the pressure switches.
- 12 If it is necessary to change the burner output in the low flame stage, move the low flame cam: the low flame position matches the ignition position. As far as burners fitted with Dungs MBC gas valves, the low flame cam does not match the ignition cam position, that is why it must be set at about 30° more than the ignition cam.
- 13 Turn the burner off and then start it up again. If the adjustment is not correct, repeat the previous steps.

Berger STA6 B 3.41 (high-low flame burners)

For DUNGS MB-DLE / Siemens VGD gas valves	Actuator camsBerger STA	Siemens SQN72
High flame position (set to 90°)	ST2	I (red)
Low flame and ignition position	ST1	III (orange)
Stand-by position (set to 0°)	ST0	II (blue)
Not used	MV	IV (black)

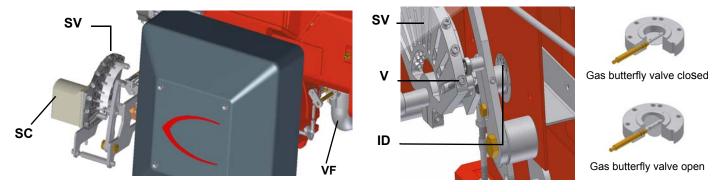
- Berger STA: on this actuator, the manual control of the air damper is not provided; the setting of the cams is carried out working
 with a screwdriver on the VS screw placed on the cam.
- •

Berger STA12: a key is provided to move the cams.

Siemens SQN72: a key is provided to move cams I and IV, the other cams can be moved by means of screws.

On the BERGER STA12B3.41 actuator, the manual air damper control is not provided. On the Siemens actuator the AUTO/MAN mode is provided (see picture).

Progressive burners

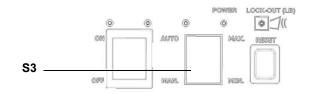

Once the procedure till step 8 described on paragraph "Adjustment procedure" on page 31, is accomplished, go on as follows:

- 9 set the low flame cam matching the high flame cam;
- 10 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position;

The manual air damper control is not provided on these actuators. The adjustments must be carried out acting manually on the cams.

SQM40.265 CSW Actuator cams VI I High flame V II Stand-by III Low flame - gas III III II VI Ignition - gas I

- 11 move the low flame cam to the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to the lower position: screw **V** to increase the rate, unscrew to decrease.
- 12 Move again the low flame cam towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point.
- 13 Now adjust the pressure switches.


- 14 If it is necessary to change the burner output in the low flame stage, move the low flame cam: the low flame position matches the ignition position. As far as burners fitted with Dungs MBC gas valves, the low flame cam does not match the ignition cam position, that is why it must be set at about 30° more than the ignition cam.
- 15 Turn the burner off and then start it up again. If the adjustment is not correct, repeat the previous steps.

Fully modulating burners

To adjust the fully-modulating burners, use the **S3** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**.

The **S3** position sets the oprating stages: to drive the burner to the high-flame stage, set S3=MAX; to drive it to the low-flame stage, set S3=MIN.

To move the adjusting cam set S3=MIN or MAX and then S3=MAN.

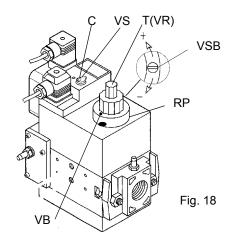
S3 = MAN stop at the current position

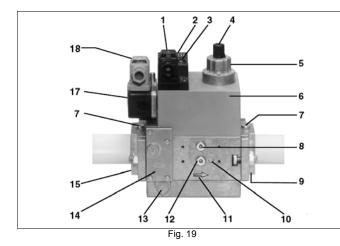
S3 = MAX high flame operation

S3 = MIN low flame operation

S3 = AUTO automatic operation

Multibloc MB-DLE


The multibloc unit is a compact unit consisting of two valves, gas pressure switch, pressure stabilizer and gas filter.


The valve is adjusted by means of the RP regulator after slackening the locking screw VB by a number of turns. By unscrewing the regulator RP the valve opens, screwing the valve closes. To set the fast opening remove cover T, reverse it upside down and use it as a tool to rotate screw VR. Clockwise rotation reduces start flow rate, anticlockwise rotation increases it.

Do not use a screwdriver on the screw VR!

The pressure stabilizer is adjusted by operating the screw VS located under the cover C. By screwing down the pressure is increased and by unscrewing it is reduced.

Note: the screw **VSB** must be removed only in case of replacemente of the coil.

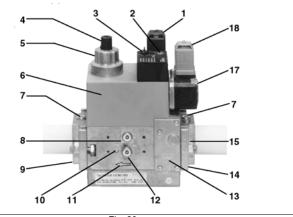
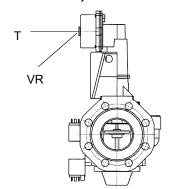


Fig. 20


Key

- 1 Electrical connection for valves
- 2 Operation display (optional)
- 3 Pressure governor closing tap
- 4 Start setting cap
- 5 Hydraulic brake and rate regulator
- 6 Coil
- 7 Test point connection G 1/8
- 8 Test point connection G 1/8 downstream of valve 1, on both sides 18 Pressure switch electric connection

- Output flange
- 10 Test point connection M4 downstream of valve 2
- Gas flow direction
- 12 Test connection G 1/8 downstream of valve 1, on both sides
- 13 Vent nozzle pressure regulator
- 14 Filter (below cover)
- 15 Input flange
- 17 Pressure switch

Gas valves Siemens VGD - Version with SKP2. (provided with pressure stabilizer).

To increase or decrease gas pressure, and therefore gas flow rate, remove the cap T and use a screwdriver to adjust the regulating screw VR. Turn clockwise to increase the flow rate, counterclockwise to reduce it.

Setting air and gas pressure switches

The **air pressure switch** locks the control box if the air pressure is not the one requested. If it happens, unlock the burner by means of the control box unlock pushbutton, placed on the burner control panel.

The **gas pressure switches** check the pressure to avoid the burner operate when the pressure value is not in the requested pressure range.

Calibration of low gas pressure switch

As for the gas pressure switch calibration, proceed as follows:

- Be sure that the filter is clean.
- Remove the transparent plastic cap.
- While the burner is operating at the maximum output, test the gas pressure on the pressure port of the minimum gas pressure switch.
- Slowly close the manual cutoff valve (placed upstream the pressure switch, see gas train installation diagram), until the detected
 pressure is reduced by 50%. Pay attention that the CO value in the flue gas does not increase: if the CO values are higher than the
 limits laid down by law, slowly open the cutoff valve as to get values lower than these limits.
- Check that the burner is operating correctly.
- Clockwise turn the pressure switch adjusting ring nut (as to increase the pressure value) until the burner stops.
- Slowly fully open the manual cutoff valve.
- Refit the transparent plastic cover on the pressure switch.

Adjusting the maximum gas pressure switch (when provided)

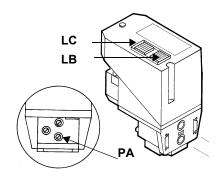
To calibrate the maximum pressure switch, proceed as follows according to its mounting position:

- 1 remove the pressure switch plastic cover;
- if the maximum pressure switch is mounted upstreaam the gas valves: measure the gas pressure in the network, when flame is off; by means of the adjusting ring nut **VR**, set the value read, increased by the 30%.
- if the maximum pressure switch is mounted downstream the "gas governor-gas valves" group and upstream the butterfly valve: light the burner, adjust it according to the procedure in the previous paragrph. Then, measure the gas pressure at the operating flow rate, downstream the "gas governor-gas valves" group and upstream the butterfly valve; by means of the adjusting ring nut **VR**, set the value read on step 2, increased by the 30%;
- 4 replace the plastic cover.

Calibration of air pressure switch

To calibrate the air pressure switch, proceed as follows:

- Remove the transparent plastic cap.
- Once air and fuel setting have been accomplished, startup the burner.
- During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%.
- Repeat the ignition cycle of the burner and check it runs properly.
- Refit the transparent plastic cover on the pressure switch.


PGCP Gas leakage pressure switch (with Siemens LDU/LME7x burner control/Siemens LMV Burner Management System)

- remove the pressure switch plastic cover;
- adjust the PGCP pressure switch to the same value set for the minimum gas pressure switch;
- replace the plastic cover.

Gas Proving System VPS504 (Option)

The VPS504 check the operation of the seal of the gas shut off valves. This check, carried out as soon as the boiler thermostat gives a start signal to the burner, creates, by means of the diaphragm pump inside it, a pressure in the test space of 20 mbar higher than the supply pressure.

When wishing to monitor the test, install a pressure gauge ranged to that of the pressure supply point ${\bf PA}$. If the test cycle is satisfactory, after a few seconds the consent light ${\bf LC}$ (yellow) comes on. In the opposite case the lockout light ${\bf LB}$ (red) comes on. To restart it is necessary to reset the appliance by pressing the illuminated pushbutton ${\bf LB}$.

ADJUSTMENT PROCEDURE FOR LIGHT OIL OPERATION

The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the table below and the diagram on Fig. 21 (as far as reading the pressure values, see next paragraphs).

NOZZLE	NOZZLE SUPPLY PRESSURE bar	HIGH FLAME RETURN PRESSURE bar	LOW FLAME RETURN PRESSURE bar
MONARCH BPS	23	See table below	See table below
BERGONZO A3	23	11 ÷ 13	6 (recommended)

RETURN PRESSURE bar														
Nozzle sizeNozzl e size (GPH)	0	1,4	2,8	4,1	5,5	6,9	8,3	9,6	11	12,4	13,8	15,2	Flow rate in kg/h with close return	Pressure with close return to use in the nozzle choice)
0,75	1,3	1,6	2,1	2,5									3,2	5,5
1,0	2,1	2,1	2,4	3,0	3,7	4,6	5,2						5,4	8,6
1,5	2,9	3,0	3,3	4,1	4,9	6,0	7,0						7,9	9,3
2,0	4,6	5,1	5,4	6,4	7,5	8,7	9,9						10,5	9,3
2,5	3,5	4,1	4,9	5,9	7,5	9,1	10,8	12,4					13,5	10,7
3,0	5,6	5,9	6,2	7,2	8,7	10,0	11,9	13,8					15,3	11,0
3,5	7,0	7,2	7,8	8,7	9,9	11,3	12,4	13,7	18,4				19,7	12,1
4,0	7,8	7,9	8,3	8,6	10,3	11,6	13,0	14,1	17,3	20,2			21,0	12,8
4,5	9,2	9,4	10,0	11,0	11,9	12,9	14,3	15,3	17,2	24,5			24,8	14,1
5,0	10,8	11,0	11,3	11,6	13,0	14,3	15,6	17,0	18,6	24,3			26,2	13,4
5,5	9,7	10,0	10,2	11,1	12,1	13,4	14,8	16,4	18,1				29,7	12,4
6,0	9,2	9,5	9,9	10,0	10,8	12,4	14,1	15,7	17,5	18,9	29,3		33,1	14,8
6,5	10,5	10,8	11,1	11,4	12,1	13,8	15,3	16,5	18,4	20,0	22,4	36,2	36,7	15,5
7,0	8,7	9,4	10,0	11,4	13,2	14,9	17,2	19,6	23,1	25,1	33,2		33,7	15,2
7,5	11,3	11,8	10,3	13,0	14,3	15,3	17,2	19,2	21,8	24,2	30,4		39,3	14,1
8,0	9,9	9,9	10,2	11,3	12,6	14,3	16,1	18,4	21,1	24,3			39,7	13,8
9,0	10,8	11,0	11,1	12,6	14,5	16,1	18,8	21,8	25,1	28,9			45,9	13,8
9,5	11,4	11,6	12,2	13,7	15,3	17,3	19,7	23,2	26,5	30,0	33,5		49,1	14,5
10,5	11,6	11,6	12,2	13,7	15,4	17,6	20,7	24,0	27,3	31,2	35,5		50,9	15,2
12,0	13,7	14,0	14,3	15,6	18,1	21,9	25,8	30,2	34,7	39,7	44,5		61,7	14,5
13,8	13,4	13,4	13,7	15,6	18,1	23,2	28,3	34,7	41,0	47,7	54,7		71,2	15,2
15,3	16,5	16,9	17,2	18,4	20,7	23,8	28,3	33,1	36,9	44,5	51,8		76,0	15,2
17,5	21,6	21,9	21,9	23,2	25,8	29,6	34,7	40,7	46,4	54,0	62,3	71,2	89,7	15,5
19,5	19,7	20,0	20,3	21,3	23,8	28,0	32,7	39,7	47,1	55,3	66,4	75,0	97,3	16,2
21,5	24,8	24,8	25,1	26,1	28,3	33,4	37,8	45,1	53,1	61,7	73,8	83,9	106,5	16,6
24,0	26,7	27,0	27,7	29,3	31,8	36,6	45,8	55,0	65,5	77,3	90,9	106,2	111,6	15,9
28,0	28,6	28,9	30,5	35,3	43,6	42,1	67,1	85,5	107,1	127,8	151,7		154,8	14,8
30,0	25,8	25,8	28,6	35,9	43,2	56,3	73,8	90,6	102,4	120,8	144,0	160,9	164,1	15,5
35,0	34,3	35,0	40,7	49,9	63,6	82,7	103,6	122,1	145,9	120,8			186,0	13,8
40,0	52,8	53,1	60,4	70,6	86,8	106,5	128,8	149,7	179,6	172,6			217,2	13,1
45,0	73,4	73,4	83,0	93,5	112,2	134,5	157,7	185,0	225,7	209,8			242,3	12,4
50,0	92,5	94,4	104,6	118,9	139,9	167,2	196,8	231,8	263,3				266,8	11,4

Tab. 1- Monarch nozzle

N.B. Specific gravity of the light oil: 0.840kg/dm³

Example: If the nozzle provided is mod. MONARCH 10.5 GPH, when the return pressure is 13.8 bar, the flow rate will be 35.5kg/h (see the chart above). If the return pressure is 13.80bar (with the same nozzle), the flow rate value will be 15.4kg/h. The flow rate in the High-flame operation is related to the nozzle provided with close return.

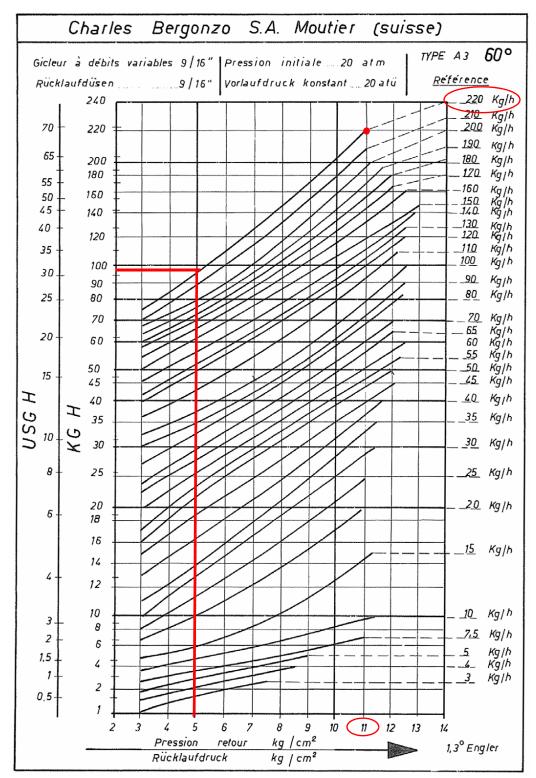
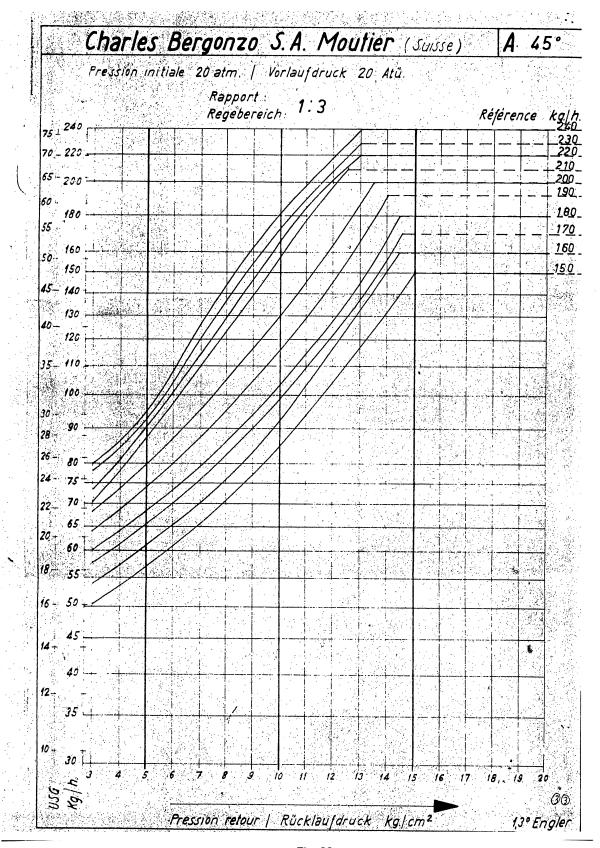
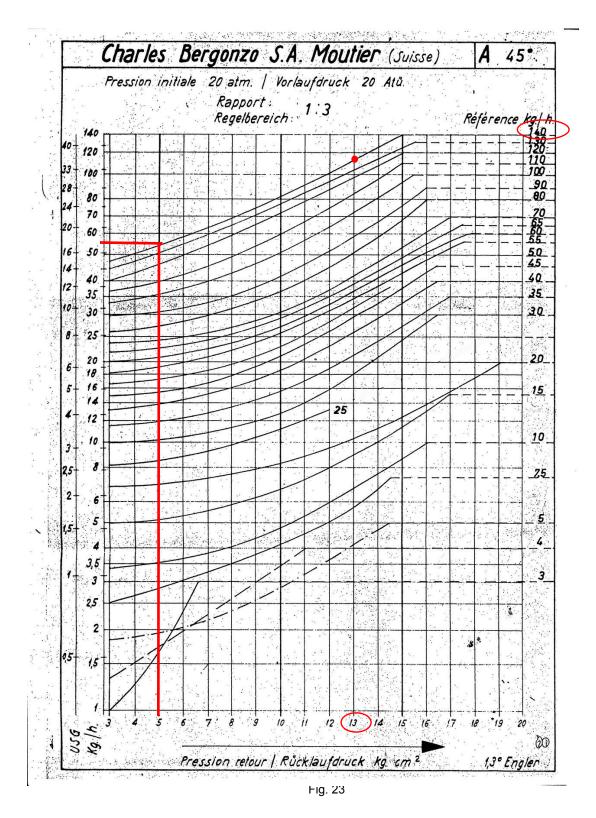
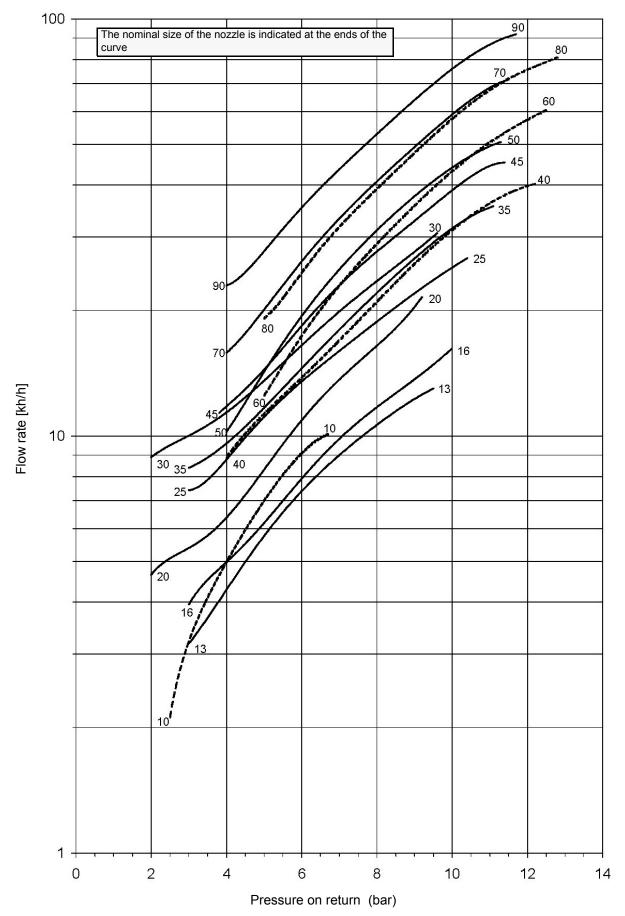


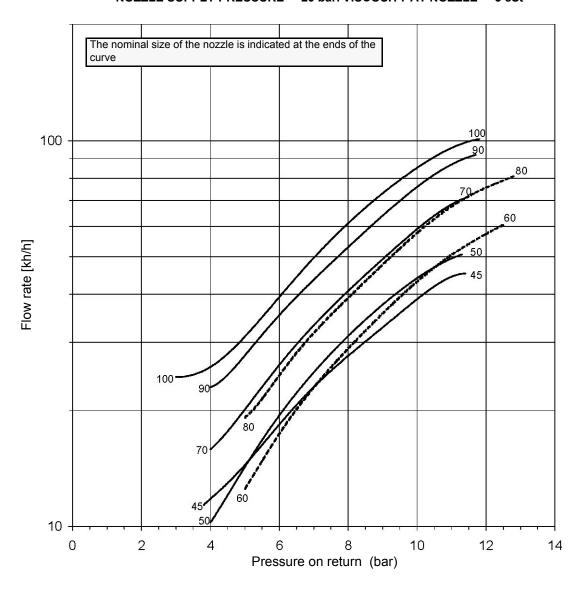
Fig. 21

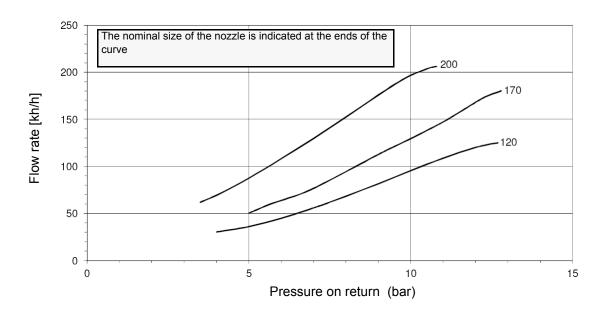
Example (Bergonzo): if a 220kg/h flow rate BERGONZO nozzle is provided, set the return pressure at 11bar, supply at 20bar on the delivery to get a 220kg/h flow rate. If the return pressure needed is 5bar, instead, act on the **V** adjusting screw on the pressure governor (see chapter on page 36). The flow rate will then be about 95kg/h (see the example showed on the Bergonzo diagram).

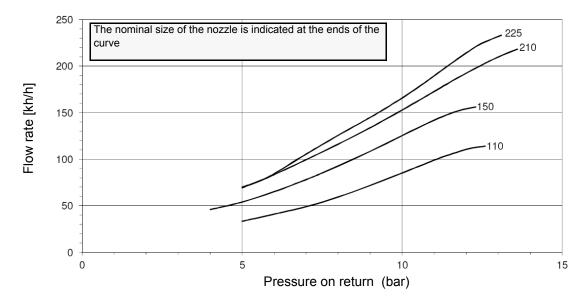

Fig. 22

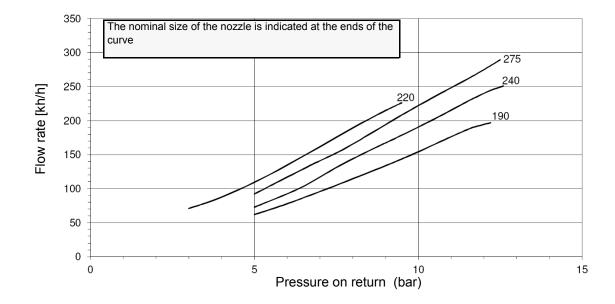
Example (Bergonzo): if a 140kg/h flow rate BERGONZO 45° nozzle is provided, set the return pressure at 13bar, supply at 20bar on the delivery to get a 110kg/h flow rate. If the return pressure needed is 5bar, instead, act on the adjusting screw on the pressure governor. The flow rate will then be about 55kg/h (see the example showed on the Bergonzo diagram).

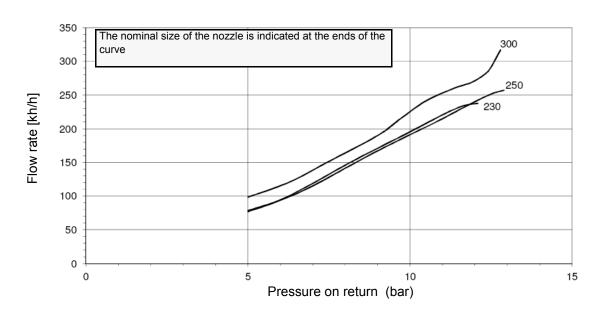

FLUIDICS KW3...60°


NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt

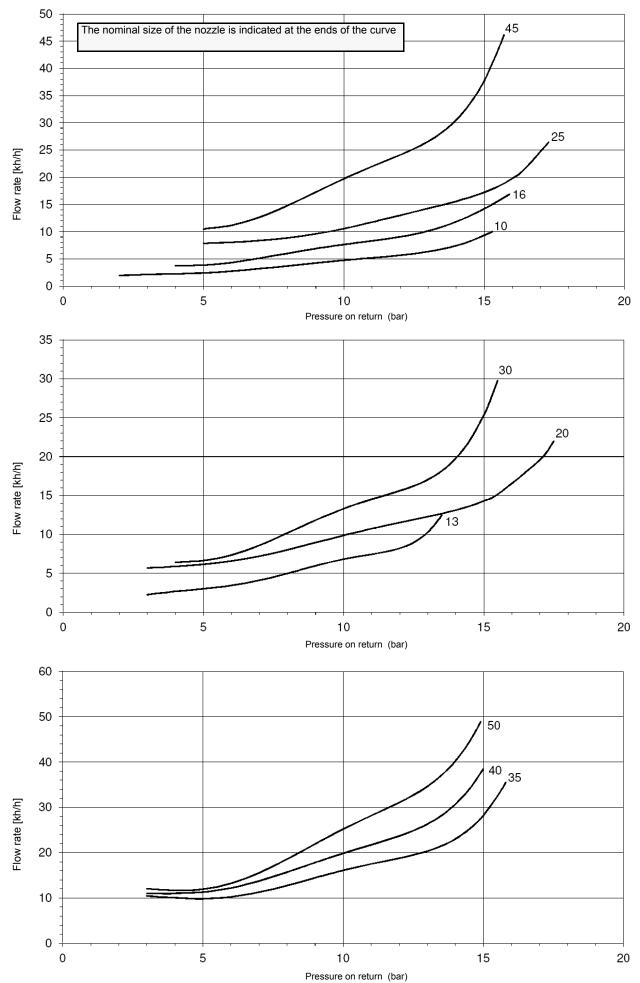
FLUIDICS KW3...60°

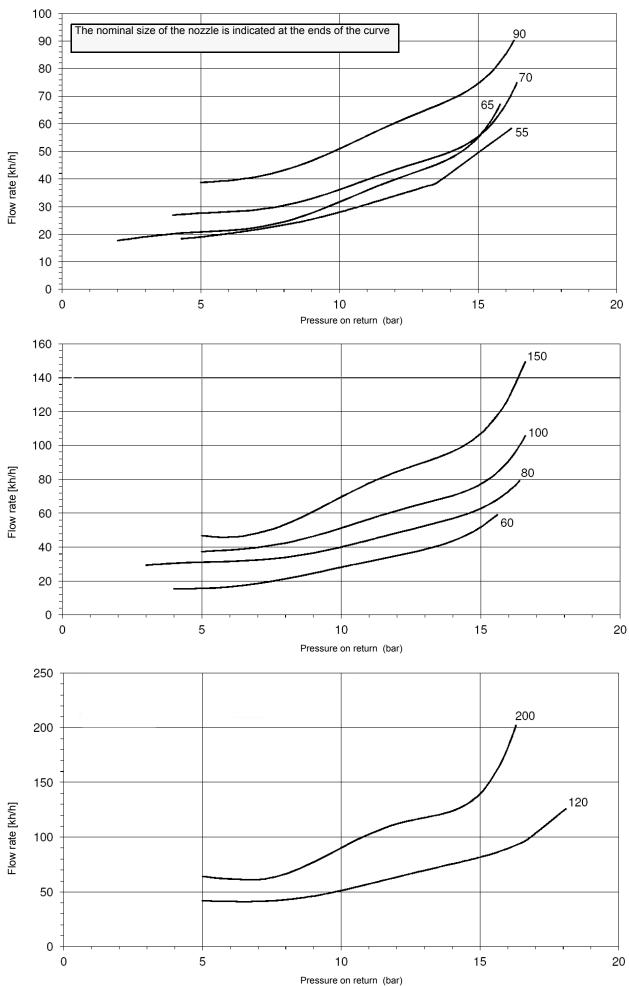

NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt



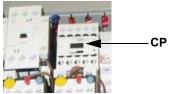


FLUIDICS KW3...60°


NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt



FLUIDICS KW3...45° NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt



FLUIDICS KW3...45° NOZZLE SUPPLY PRESSURE = 20 bar. VISCOSITY AT NOZZLE = 5 cSt

Double-stage burners

- 1 Once the air and gas flow rates are adjusted, turn the burner off, switch the **CM** switch to the heavy oil operation (OIL, on the burner control panel.
- with the electrical panel open, prime the oil pump acting on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged;

- 3 start the burner up by means of the thermostat series;
- 4 bleed the air from the **M** pressure gauge port (Fig. 24) by loosing the cap without removing it, then release the contactor.

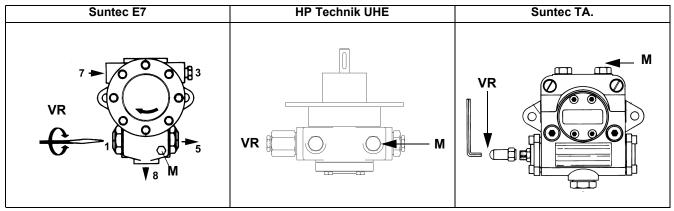
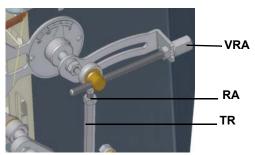



Fig. 24

- 5 drive the burner to high flame stage, by means fo the thermostat **TAB** (high/low flame thermostat see Wiring diagrams).
- the nozzle supply pressure is already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 25 and act on on the pump adjusting screw **VR** (see Fig. 38) as to get the nozzle pressure at 20bar (Monarch or Fluidics nozzles see page 36).
- 7 the oil flow rate in the high flame stage is the maximum pressure with the return line closed
- 8 To adjust the **air flow rate in the high flame stage**, loose the **RA** nut and screw **VRA** as to get the desired air flow rate: moving the rod **TR** towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases.

Note: once the procedure is performed, be sure that the blocking nut **RA** is fasten. Do not change the position of the air damper rods.

- 9 drive the burner to low flame by means of the TAB thermostat.
- 10 To perform the regulation, remove the cap **D** and loosen the screw **V** (see Fig. 40), by means of a screwdriver (see Fig. 40). The regulating screw **V** acts on the return pressure from the nozzle. Set the pressure to the minimum value of 5 bar. Read the values on the pressure gauge placed on the regulator's coupling **M**. Once the regulation is accomplished, replace cap **D**.

Note: After a certain operating period, the pressure can change because of some dirt on the needle's seal: remove the screw **VT** (see Fig. 38) and clean.

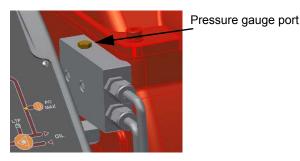
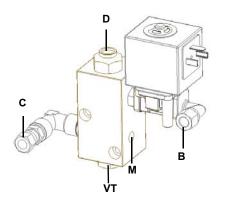
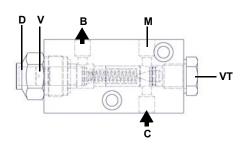




Fig. 25

- D Adjusting screw cap
- V Pressure adjusting screw
- M Pressure gauge port
- VT Needle screw
- B Return to tank
- CReturn from nozzle

Fig. 26 - Oil manual governor

- 11 always checking the combustion values, adjust the low flame air flow rate by means of the actuator ST1 (Berger)/III (Siemens) cam;
- 12 The low flame position must never match the ignition position that is why cam MV (Berger)/IV (Siemens) must be set 20°- 30° more than the ignition position ST1 (Berger)/III (Siemens).
- 13 Turn the burner off and go on with the gas operation adjustment.

Attention:

- Berger actuator: cams can be moved manually
- Siemens actuator: set the MAN/AUTO lever to MAN to move the cams, remember to set it to AUTO once the adjustment is accomplished.

•

Berger STA12 B 3.41	Siemens SQN72
MV — MV ST2 ST1 ST0 ST0	AUTO-MAN SIEMENS SGN72 2AAAZBET SIEMENS SGN72 2AAAZB
ST2 = High flame cam ST0 = Ignition position	I = High flame cam (red) II = Ignition position (blue)
ST1 = Low flame	III = Low flame (orange))
MV = Auxiliary cam for the second valve enabling	IV = Auxiliary cam for the second valve enabling (black)

Progressive burners

Oil Flow Rate Settings by means of Siemens SQM40.. actuator

- 1 Once the air and gas flow rates are adjusted, turn the burner off, switch the **CM** switch to the heavy oil operation (OIL, on the burner control panel.
- 2 with the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressing for some seconds until the oil circuit is charged;

3 bleed the air from the **M** pressure gauge port by loosing the cap without removing it, then release the contactor.

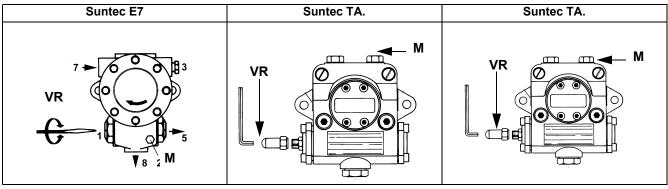
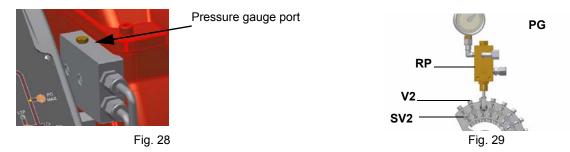


Fig. 27

- 4 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to achieve safely the high flame stage.
- 5 record the high flame value set during the gas operation adjustments (see previous paragraphs);
- 6 start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and that the bruner starts up;
- drive the burner to high flame stage, by means fo the thermostat **TAB** (high/low flame thermostat see Wiring diagrams), as far as fully-modulating burners, see related paragraph.drive the burner to high flame stage, by means fo the thermostat **TAB**, as for fully-modulating burners, see next paragraphs.
- 8 Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjusting the oil pressure (see next step).

Siemens SQM40

Actuator cams


- High flame
- II Stand-by

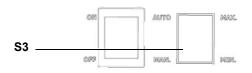
Ш

- III Low flame gas
- IV Low flame oil (SQM40..)
- V Oil Ignition
- VI Gas Ignition

the nozzle suplly pressure already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 28 and act on on the pump adjusting screw **VR** (see

Fig. 27) as to get the nozzle pressure at 20bar (Monarch or Fluidics nozzles - see page 36-34).

- 10 in order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge) without changing the air flow rate set during the gas operation adjustments (see previous paragraph): checking always the combustion parameters, the adjustment is to be performed by means of the **SV2** adjusting cam screw (see picture) when the cam has reached the high flame position.
- as for the point-to-point regulation in order to set the cam foil shape, move the oil low flame microswitch a little lower than the maximum position (90°);
- 12 set the **TAB** thermostat (as for fully-modulating burners, see next paragraphs) to the minimum in order that the actuator moves progressively towards the low flame position;
- 13 move the oil low flame cam towards the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to a lower position: screw **V2** to increase the rate, unscrew to decrease, in order to get the pressure as showed on chart/diagram on "ADJUSTMENT PROCEDURE FOR LIGHT OIL OPERATION" on page 36, according to the requested rate.
- 14 Move again the oil low flame cam towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point.
- 15 The low flame position must never match the ignition position that is why the related cam must be set 20°- 30° more than the ignition position.


Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps.

Fully modulating burners

To adjust the fully-modulating burners, use the **S3** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**.

The **S3** position sets the oprating stages: to drive the burner to the high-flame stage, set S3=MAX; to drive it to the low-flame stage, set S3=MIN.

To move the adjusting cam set S3=MIN or MAX and then S3=MAN.

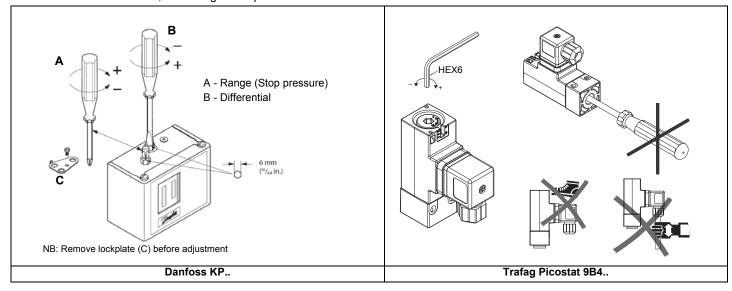
MAN stop at the current position MAX high flame operation MIN low flame operation AUTO automatic operation

Minimum oil pressure switch (when provided)

The minimum oil pressure switch on the inlet line, checks that the pressure does not drop below a default value. The pressure switch must be set, say, at 10% under the pressure at the nozzle.

Maximum oil pressure switch

The oil pressure switch on the return line, checks that the pressure does not exceed a default value. This value must not be higher than the maximum acceptable pressure on the return line (this value is reported on the specification table). A pressure change on the return line could affect the combustion parameters: for this reason, the pressure switch must be set, say, at 20% over the pressure recorded during the combustion adjustment. The factory setting is 4 bar.


It is recommended to verify that the combustion parameters are within the range of acceptable values even against a pressure variation that gets close to the limit of the pressure switch.

This check should be carried out along the whole range of the burner output.

In case of inacceptable values, reduce from 20% to 15% the overpressure; later on, repeat the adjustments described above.

Oil pressure switch adjustment

Follow the below instruction, according to the pressure switch installed.

PART IV: MAINTENANCE

At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months.

WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED!

ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL.

ROUTINE MAINTENANCE

- Clean and examine the gas filter and replace it if necessary.
- Clean and examine the oil filter cartridge and replace it if necessary.
- Examine the flexible hoses and check for possible leaks.
- Check and clean if necessary the oil heaters and the tank, according to the fuel type and its use; remove the heaters flange fixing
 nuts and remove the heaters from the tank: clean by using steam or solvents and not metallic things.
- Remove and clean the combustion head.
- Examine and clean the ignition electrode, adjust and replace if necessary.
- Examine and clean the detection probe, adjust and replace if necessary.
- Examine the detection current.
- Remove and clean the heavy oil nozzle (Important: use solvents for cleaning, not metallic tools) and at the end of the maintenance procedures, after replacing the burner, turn it on and check the shape of the flame; if in doubt replace the nozzle. Where the burner is used intensively it is recommended to replace the nozzle as a preventive measure, at the begin of the operating season.
- Clean and grease joints and rotating parts.

IMPORTANT: Remove the combustion head before checking the ignition electrode.

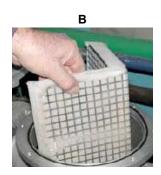
- Remove and clean the compressed air regulator
- Remove and clean the oil regulator (if provided)

CAUTION: avoid the contact of steam, solvent and other liquids with the electric terminals of the resistor. On flanged heaters, replace the seal gasket before refitting it.

Periodic inspections must be carried out to determine the frequency of cleaning.

ATTENTIONwhen servicing, if it was necessary to disassemble the gas train parts, remember to execute the gas proving test, once the gas train is reassembled, according to the procedure imposed by the law in force.

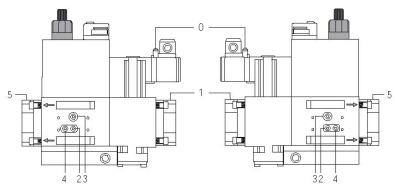
Gas filter maintenance



ATTENTION: Before opening the filter, close the manual cutoff valve downstream the filter and bleed the gas; check that inside the filter there is no pressurised gas.

To clean or remove the filter, proceed as follows:

- 1 remove the cap unscrewing the fixing screws (A);
- 2 remove the filtering cartridge (B), clean it using water and soap, blow it with compressed air(or replace it, if necessary)
- 3 replace the cartridge in its proper position taking care to place it inbetween the guides as not to hamper the cap replacement;
- 4 be sure to replace the "O" ring into its place (C) and replace the cover fastening by the proper screws (A).



Removing the filter in the MULTIBLOC DUNGS MB-DLE 415 - 420 B01 1" 1/2 - 2"

- Check the filter at least once a year!
- Change the filter if the pressure difference between pressure connection 1 and 2 (Fig. 30-Fig. 31) ∆p> 10 mbar.
- Change the filter if the pressure difference between pressure connection 1 and 2 (Fig. 30-Fig. 31) is twice as high compared to the last check.

You can change the filter without removing the fitting.

- 1 Interrupt the gas supply closing the on-off valve.
- 2 Remove screws 1 ÷ 6 (Fig. 32).
- 3 Change filter insert.
- 4 Re-insert filter housing, screw in screws 1 ÷ 6 without using any force and fasten.
- 5 Perform leakage and functional test, $p_{max.}$ = 360 mbar.
- 6 Pay attention that dirt does not fall inside the valve.

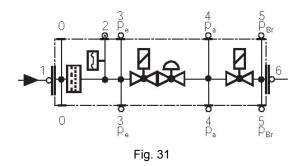


Fig. 30

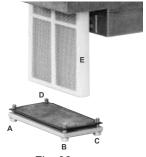
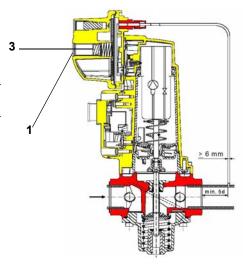



Fig. 32

Replacing the spring in the gas valve group

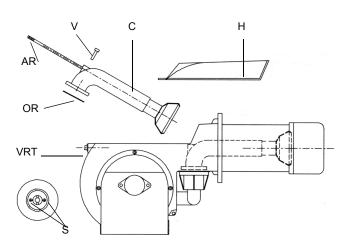
To replace the spring in the gas valve group, proceed as follows:

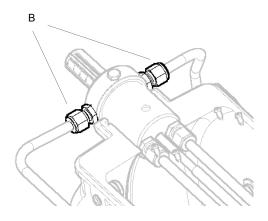
- 1 Carefully twist the protection cap 1 and the O-ring 2.
- 2 remove the "set value" spring 3 from housing 4.
- 3 Replace spring 3.
- 4 Carefully insert the new "set value" spring. Pay attention to mount properly. First insert the spring part with smaller diameter in the housing.
- 5 Place O-ring 2 in protective cap 1. Screw in the protective cap with the O-ring in it.
- 6 Stick the adhesive label for spring identification on the type plate.

SKP Siemens actuator

Light oil filter maintenance

For correct and proper servicing, proceed as follows:

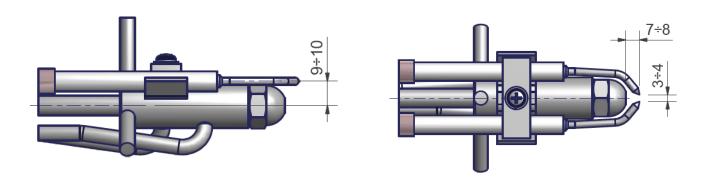

- 1 cutoff the required pipe section;
- 2 unscrew the filter cup;
- 3 remove the filtering cartridge, wash it with gasoline; if necessary, replace it; check the tightening O-rings and replace them if necessary;
- 4 replace the cup and restore the pipe line.



Removing the combustion head

- Remove the top H.
- Slide the UV detector from its housing.
- Unscrew the two screws S holding in position the washer and then unscrew VRT to free the threaded rod AR.
- Slacken the screws V holding the gas manifold C, slacken the connectors B and remove the complete assembly as shown in figure.

Note: for the subsequent assembly carry out the above described operations in the reverse order, checking the correct position of the OR ring.

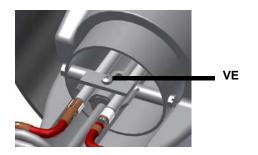


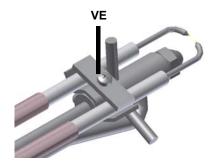
Electrodes Adjustment

Important Note: Check the ignition and detection electrodes after removing/adjusting the combustion head.

ATTENTION: avoid the ignition and detection electrodes to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrodes position after any intervention on the combustion head.

Cleaning/replacing the electrodes




ATTENTION: avoid the electrodes to get in touch with metallic parts (blast tube, head, etc.), otherwise the boiler operation would be compromised. Check the electrodes position after any intervention on the combustion head.

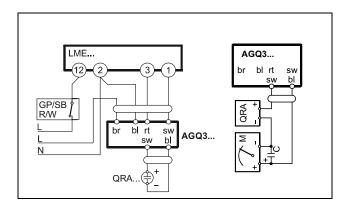
To clean/replace the electrodes, proceed as follows:

- 1 remove the combustion head as described in the previous paragraph;
- 2 remove the electrodes ass.y and clean them;

in order to replace the electrodes, unscrew the **VE** fixing screws and remove them: place the new electrodes being careful to observe the measures in the previous paragraph; reassemble the electrodes and the combustion head following the reversed procedure.

Cleaning and replacing the detection photocell

To clean/replace the detection photocell, proceed as follows:


- 1 Disconnect the system from the electrical power supply.
- 2 Shut off the fuel supply;
- 3 remove the photocell from its slot (see next figure);
- 4 clean the bulbe if dirty, taking care not to touch it with bare hands;
- 5 if necessary, replace the bulb;
- 6 replace the photocell into its slot.

Checking the detection current

To check the detection signal follow the scheme in the picture below. If the signal is less than the value indicated, check the position of the detection electrode or detector, the electrical contacts and, if necessary, replace the electrode or the detector.

Control box	Minimum detection signal
Siemens LME21-22	200 μΑ

Control box	Minimum detection signal
Siemens LME7	70μA with UV detector)

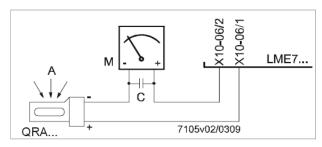


Fig. 33: Detection by photocell QRA..

Seasonal stop

To stop the burner in the seasonal stop, proceed as follows:

- 1 turn the burner main switch to 0 (Off position)
- 2 disconnect the power mains
- 3 close the fuel valve of the supply line

Burner disposal

In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials".

WIRING DIAGRAMS

Refer to the attached wiring diagrams.

WARNING

- 1 Electrical supply 230V / 400V 50Hz 3N a.c.
- 2 Do not reverse phase with neutral 3 Ensure burner is properly earthed

TROUBLESHOOTING

							TROUBLE	JBLE						
CAUSE	THE BURNER DOESN'TSTART CONTINUE WITH PRE-	PURGE	DOESN'T START AND	DOESN'T START AND REPEATS THE CYCLE	STATS AND REPEATS THE CYCLE	STARTS AND LOCK-OUT	THE FLAME MONITOR DEVICE DOESN'T GIVECONSENT TO START	DOESEN'T SWITCH TO	NO NESEN'T RETURN IN LOW FLAME	HE SERVO CONTROL IS	LOCK-OUT DURING	TURNS OF AND REPEATS CYCLE DURING OPERATION	URNS OF AND REPEATS CYCLE DURING OPERATION	URNS OF AND REPEATS CYCLE DURING OPERATION
MAIN SWITCH OPEN	•													
LACK OF GAS	•			•										
MAXIMUM GAS PRESSURE SWITCH DEFECTIVE (IF PROVIDED)	•		•											
THERMOSTATS/PRESSURE SWITCHES DEFECTIVE	•			•								•		
FAN MOTOR THERMAL CUTOUT INTERVENTION	•													
OVERLOAD TRIPPED INTERVENTION	•													•
AUXILIARY FUSES INTERRUPTED	•													
CONTROL BOX FAULTY	•	•	•			•					•			
DEFECTIVE ACTUATOR	•	•	•				•							
AIR PRESSURE SWITCH FAULT OR BAD SETTING	•					•	•				•			
MINIMUM GAS PRESSURE SWITCH DEFECTIVE OR GAS FILTER DIRTY	•			•	•		•					•		
IGNITION TRANSFORMER FAULT			•											
IGNITION ELECTRODES BAD POSITION			•											
BUTTERFLY VALVE BAD SETTING			•			•								
DEFECTIVE GAS GOVERNOR			•	•	•							•		
GAS VALVE DEFECTIVE			•											
BAD CONNECTION OR DEFECTIVE HIGH/LOW FLAME THERMOSTAT OR PRESSURE SWITCH								•	•	•				
WRONG SETTING ACTUATOR CAM							•	•	•					
UV PROBE DIRTY OR DEFECTIVE			•			•					•			
OIL FILTER DIRTY													•	

APPENDIX

SIEMENS LME11/21/22 CONTROL BOX

The series of equipment LME.. is used for the starup and supervisione of 1- or 2- stage gas burners. The series LME.. is interchangeable with the series LGB.. and LMG.., all diagrams and accessories are interchangeable

Comparative table

LGB Series	LMG Series	LME Series
	LMG 25.33	LME 11.33
LGB 21.33	LMG 21.33	LME 21.33
LGB 22.33	LMG 22.33	LME 22.33

Preconditions for burner startup

- Burner control must be reset
- All contacts in the line are closed, request for heat
- No undervoltage
- Air pressure switch LP must be in its "no-load" position
- Fan motor or AGK25 is closed
- Flame detector is darkened and there is no extraneous light

Undervoltage

Safety shutdown from the operating position takes place should mains voltage drop below about AC 175 V (at UN = AC 230 V)

Restart is initiated when mains voltage exceeds about AC 185 V (at UN = AC 230 V).

Controlled intermittent operation

After no more than 24 hours of continuous operation, the burner control will initiate automatic controlled shutdown followed by a restart.

Reversed polarity protection with ionization

If the connections of live conductor (terminal 12) and neutral conductor (terminal 2) aremixed up, the burner control will initiate lockout at the end of the safety time "TSA".

Control sequence in the event of fault

If lockout occurs, the outputs for the fuel valves, the burner motor and the ignition equipment will immediately be deactivated (< 1 second).

Operational status indication

In normal operation, the different operating states are showed by means of the multicolor LED, inside the lockout reset button:

red LED	 Steady on
yellow L green LE	Off

During startup, status indication takes place according to the table:

Status	Color code	Color
Waiting time tw, other waiting states	O	Off
Ignition phase, ignition controlled	• • • • • • • • • • • •	Flashing yellow
Operation, flame ok	<u> </u>	Green
Operation, flame not ok		Flashing green
Extraneous light on burner startup		Green - red
Undervoltage	• 4 • 4 • 4 • 4	Yellow - red
Fault, alarm	A	Red
Error code output (refer to "Error code table")	AO AO AO	Flashing red

START-UP PROGRAM

As far as the startup program, see its time diagram:

A Start command (switching on)

This command is triggered by control thermostat / pressure controller «R». Terminal 12 receives voltage and the programming mechanism starts running. On completion of waiting time «tw» with the LME21..., or after air damper «SA» has reached the nominal load position (on completion of «t11») with the LME22..., fan motor «M» will be started.

tw Waiting time

During the waiting time, air pressure monitor «LP» and flame relay «FR» are tested for correct contact positions.

t11 Programmed opening time for actuator «SA»

(Only with LME22...) The air damper opens until the nominal load position is reached. Only then will fan motor «M» be switched on.

t10 Specified time for air pressure signal

On completion of this period of time, the set air pressure must have built up, or else lockout will occur.

t1 Prepurge time

Purging the combustion chamber and the secondary heating surfaces: required with low-fire air volumes when using the LME21... and with nominal load air volumes when using the LME22.... The diagrams show the so-called prepurge time «t1» during which air pressure monitor «LP» must indicate that the required air pressure is available. The effective prepurge time «t1» comprises interval end «tw» through «t3».

t12 Programmed closing time for actuator «SA»

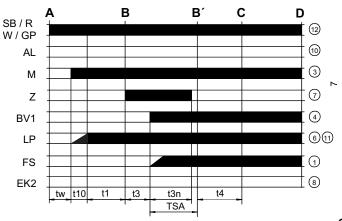
(Only with LME22...)During «t12», the air damper travels to the low-fire position.

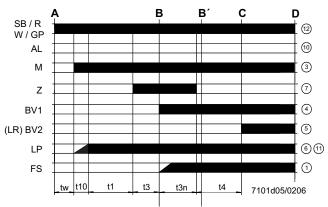
t3 Preignition time

During «t3» and up to the end of «TSA», flame relay «FR» is forced to close. On completion of «t3», the release of fuel is triggered at terminal 4.

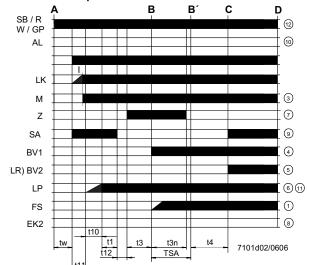
TSA Ignition safety time

On completion of «TSA», a flame signal must be present at terminal 1. That flame signal must be continuously available until shutdown occurs, or else flame relay «FR» will be deenergized, resulting in lockout.


t4 Interval BV1 and BV2-LR


Time between the end of TSA and the signal to the second fuel valve BV2 or to the load controller LR

- B B' Interval for flame establishment
- C Burner operation position
- C D Burner operation (heat production)
- D Controlled by "R" shutdown


The burner stops and the control device is ready for a new startup.

LME21 control sequence

LME22 control sequence

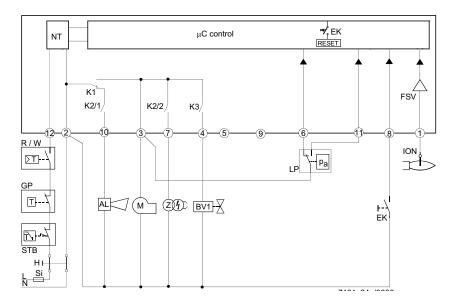
Control sequence

tw Waiting timet1 Purge time

TSA Ignition safety time

t3 Preignition time

t3n Postignition time


t4 Interval between BV1 and BV2/LR

t10 Specified time for air pressure signal

t11 Programmed opening time for actuator SA

t12 Programmed closing time for actuator SA

LME11 connection diagram

Connection diagram

AL Error message (alarm)

BV Fuel valve

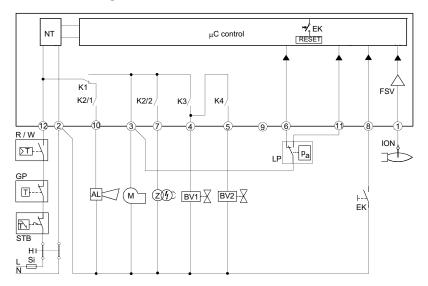
EK2 Remote lockout reset button

FS Flame signal

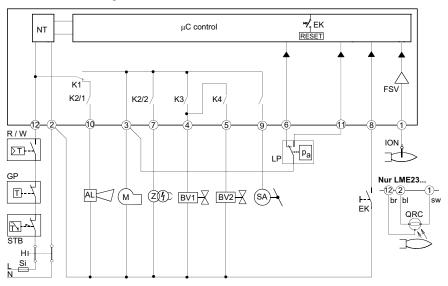
GP Gas pressure switch

LP Air pressure switch LR Load controller

M Fan motor


R Control thermostat/pressurestat

SB Safety limit thermostat


W Limit thermostat /pressure switch

Z Ignition transformer

LME21 connection diagram

LME22 connection diagram

CONTROL PROGRAM IN THE EVENT OF FAULT

- If a fault occurs, all outputs will immediately be deactivated (in less than 1s)
- After an interruption of power, a restart will be made with the full program sequence.
- If the operating voltage drops below the undervoltage thresold, a safety shutdown is performed.
- If the operating voltage exceeds the undervoltage thresold, a restart will be performed.
- In case of extraneous light during "t1", a lockout occurs.
- In case of extraneous light during "tw", there is a prevention of startup and a lockout after 30 seconds.
- In case of no flame at the end of TSA, there will be max. 3 repetitions of the startup cycle, followed by a lockout at the end of TSA, for mod. LME11..; directly a lockout at the end of TSA for LME21-22 models.
- For LME11 model: if a loss of flame occurs during operation, in case of an establishment of flame at the end of TSA, there will be max. 3 repetitions, otherwise a lockout will occur.
- For LME21-22 models: if a loss of flame occurs during operation, there will be a lockout.
- If the contact of air pressure monitor LP is in working position, a prevention of startup and lockout after 65 seconds will occur.
- Ilf the contact of air pressure monitor LP is in normal position, a lockout occurs at the end of t10.
- If no air pressure signal is present after completion of t1, a lockout will occur.

CONTROL BOX LOCKED

In the event of lockout, the LME.. remains locked and the red signal lamp (LED) will light up. The burner control can immediately be reset. This state is also mantained in the case fo mains failure.

DIAGNOSITICS OF THE CASUE OF FAULT

- Press the lockout reset button for more than 3 seconds to activate the visual diagnostics.
- Count the number of blinks of the red signsl lamp and check the fault condition on the "Error code table" (the device repeats the blinks for regular intervals).

During diagnostics, the control outputs are deactivated:

- the burner remains shut down;
- external fault indication is deactivated;
- fault status is showed by the red LED, inside the LME's lockout reset buttonaccording to the "Error code table":

ERROR CODE TABLE		
2 blinks **	No establishment of flame at the end of TSA	
	- Faulty or soiled fuel valves	
	- Faulty or soiled flame detector	
	- Inadequate adjustement of burner, no fuel	
	- Faulty ignition equipment	
	The air pressure switch does not switch or remains in idle position:	
3 blinks ***	- LP is faulty	
5 billiks	- Loss of air pressure signal after t10	
	- LPis welded in normal position.	
4 blinks ****	- Extraneous light when burner starts up.	
5 blinks *****	- LP is working position.	
6 blinks *****	Free.	
7 blinks ******	Loss of flame during operation	
	- Faulty or soiled fuel valves	
	- Faulty or soiled flame detector	
	- Inadequate adjustement of burner	
8 ÷ 9 blinks	Free	
10 blinks ********	Faulty output contacts	
	Attention: "lockout" remote signal (terminal no. 10) not enabled	
	- Wiring error	
	- Anomalous voltage on ouput terminals	
	- Other faults	
14 blinks ************* (only for LME4x)	- CPI contact (gas valve microswitch) not closed.	

RESETTING THE BURNER CONTROL

When lockout occurs, the burner control can immediately be reset, by pressing the lockout reset button for about 1..3 seconds. The LME.. can only be reset when all contacts in the line are closed and when there is no undervoltage.

LIMITATION OF REPETITIONS (only for LME11.. model)

If no flame is established at the end of TSA, or if the flame is lost during operation, a maximum of 3 repetitions per controller startup can be performed via "R", otherwise lockout will be initiated. Counting of repetitions is restarted each time a controlled startup via "R" takes place.

Condensation, formation of ice and ingress of water are not permitted!

TECHNICAL CHARACTERISTICS

Storage conditions

Weight

Mains voltage 120V AC +10% / -15% 230V AC +10% / -15% Frequency 50 ... 60 Hz +/- 6% Power consumption 12VA External primary fuse max. 10 A (slow) input current at terminal 12 max. 5 A Detection cable length max. 3m (for electrode) Detection cable length max. 20 m (laid separately, for QRA probe) Reset cable length max. 20 m (posato separatamente) Term. 8 & 10 cable length max. 20 m Thermostat cable length max. 3 m and other terminals Safety class Index of protection IP40 (to be ensured during mounting) Operating conditions -20... +60 °C, < 95% UR

-20... +60 °C, < 95% UR

approx. 160 g

C.I.B. UNIGAS S.p.A.
Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY
Tel. +39 049 9200944 - Fax +39 049 9200945/9201269
web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it

Note: specifications and data subject to change. Errors and omissions excepted.

LME73.000Ax + PME73.831AxBC LME73.831AxBC

Service instruction manual

M12921CB Rel.1.2 02/2016

GENERAL FEATURES

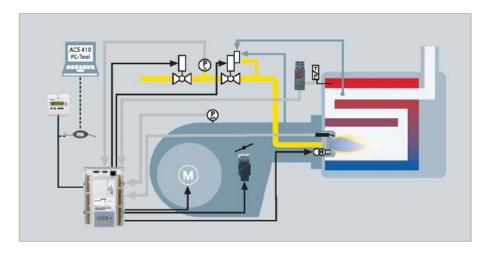
LME/ is suitable for gas, light and heavy oil burners

LME7 series has two devices: <u>LME73.000</u> (hardware) and <u>PME73.831AxBC</u> (programmable unit). The <u>LME73.831AxBC</u> is also available: it has a built in software and it is a not programmable.

LME7 is inside the control panel. If supplied, PME73.831BC is inside the LME7;

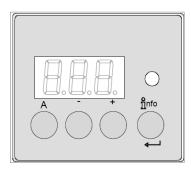
The display AZL23.. or AZL21.. is available for Service and hardware setup.

LME7... are used for the startup and supervision of 2-stage/progressive, modulating forced draft gas burners in intermittent operation.


The flame is supervised with an ionization probe, optionally with UV flame detector QRA2..., QRA4.U or QRA10.... Integrated in the LME7... basic unit are:

- Burner control
- BCI
- · Control for one actuator
- Lockout reset button (info button)
- 3 multicolor signal lamp LED for operations and fault notifications
- 3 x 7-segment display for service, fault and operating state information
- Interface for program module (no function)

Passwords protect the different parameter levels against unauthorized access. Basic settings that the plant operator can make on site require no password.


Functions:

- Undervoltage detection
- Electrical remote reset facility
- Accurate control times thanks to digital signal handling
- Multicolor indication of fault status and operating state messages
- Air pressure supervision with function check of air pressure switch during start and operation (gas)
- Repetition limitation
- Controlled intermittent operation after 24 hours of continuous operation*
- BCI
- Indication of program sequence

^{*} after no more than 24 hours of continuous operation, the burner control initiates automatic controlled shutdown followed by a restart.

User interface:

A	Display preset output In lockout position: Power value to the time of fault
info	Info and Enter button - Reset in the event of fault, changeover visual diagnostic of the cause of fault (refer to chapter Diagnostics of cause of fault)
	- button - Display flame signal current 2 or phases display - In lockout position: MMI phase to the time of fault
+	+ button - Display flame signal current 1 or phases display - In lockout position: MMI phase to the time of fault
	3 multicolor signal lamp - Refer to chapter "Blink code table"
+	+ and - button: Escape function (press + and - simultaneously) - No adoption of value - One menu level up - Keep depressed for >1second for backup / restore function
+	

First startup when PME is supplied or PME replacement:

First startup:

- 1) insert a new PME
- 2) turn the power on; The diplay shows "rst" and "PrC" one after the other.
- 3) keep pushing the INFO button more than 3 seconds; "run" appears; PME parameters will be transferred to LME
- 4) at the end, "End" and "rst" appears one after the other; Later (2'), the control box locks out "Loc 138"

nfo

5) reset the control box by pressing the INFO button (for less than 3 seconds) Now the display shows "OFF"; the burner is ready to be started.

Replacement:

- 1) Turn off the burner, replace the existing PME with a new one
- 2) For the first startup, repeat the above procedure, from step 2.

List of phase display on board LME:

Phase number of 7-segment display	LED	Function
Standby		
OFF	Off	Standby, waiting for heat demand
P08	Off	Mains ON / test phase (e.g. detector test)
Startup		,
P21	Yellow	Safety valve ON, air pressure switch test / POC test (timeout / locking
P22	Yellow	Fan motor ON / air pressure switch test / settling time
P24	Yellow	Actuator opens in prepurging position
P30	Yellow	Prepurging
P36	Yellow	Actuator closes in ignition load / low-fire position
P38	Yellow blinking	Preignition time
P40	Yellow blinking	1st safety time (TSA1) / ignition transformer ON
P42	Green	Safety time (ignition transformer OFF), flame check
P44	Croon	Interval: End of safety time and fuel valve 1 (V1) ON
P44	Green	Interval: End of safety time and load controller (LR) release
P50 Green	P50 Green	2nd safety time (TSA2)
P54 Green	P54 Green	P259.01: Actuator opens in > low-fire
P54 Green	P54 Green	P260: Actuator closes in low-fire
oP1 Green	oP1 Green	Interval until release of load controller target (analog or 3-position step input)
Operation		
оР	Green	Operation, modulating operation
Shutdown		
P10	Yellow	Shutdown, actuator opens in CLOSE position (home run)
P72	Yellow	Actuator opens in high-fire position / end of operation
P74	Yellow	Postpurging
Valve proving		
P80	Yellow	Test space evacuating
P81	Yellow	Checking time fuel valve 1
P82	Yellow	Test space filling
P83	Yellow	Checking time fuel valve 2
Waiting phases (start		
P01	Red / yellow blinking	Undervoltage
P02	Yellow	Safety loop open
P04	Red / green blinking	Extraneous light on burner startup (timeout / locking after 30 s)
P90	Yellow	Pressure switch-min open
Lockout		'
LOC	Red	Lockout phase

Operation:

nfo L	The lockout reset button (info button) (EK) is the key operating element for resetting the burner control and for activating / deactivating the diagnostics functions.
Red Yellow Green	The multicolor signal lamp (LED) is the key indicating element for visual diagnostics.

Both lockout reset button (EK) and signal lamp (LED) are located in the control panel. There are 2 diagnostics choices:

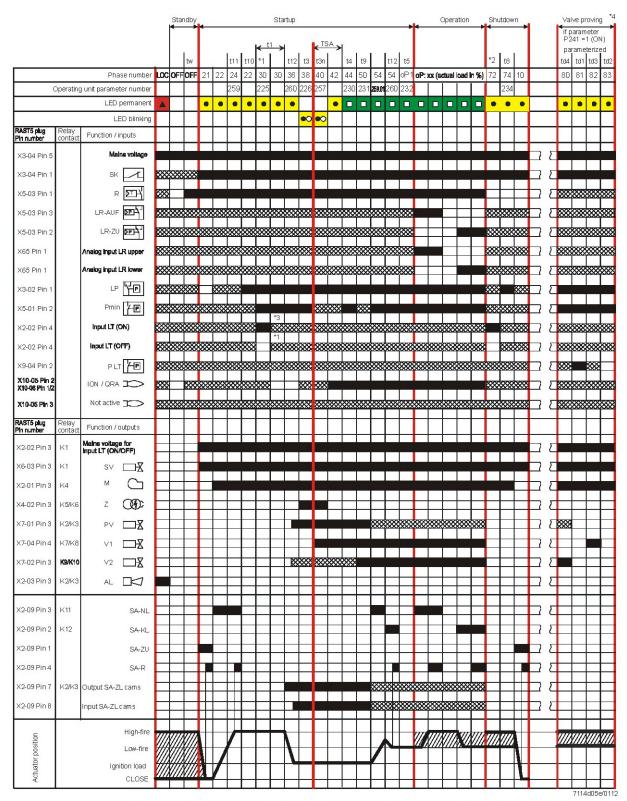
- 1. Visual diagnostics: Indication of operating state or diagnostics of cause of fault
- 2. Diagnostics: Via internal display or to AZL2.. display and operating unit

Visual diagnostics:

In normal operation, the different operating states are indicated in the form of color codes according to the color code table given below.

Color code table for multicolor signal lamp (LED):

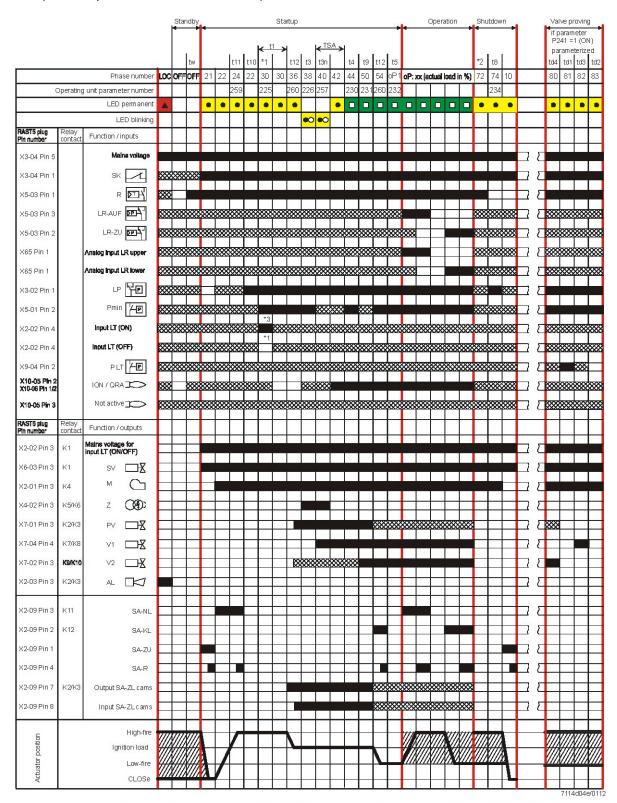
State	Color code	Color
Waiting time (tw), other waiting states	O	OFF
Ignition phase, ignition controlled		Blinking yellow
Operation, flame o.k.		Green
Operation, flame not o.k.		Blinking green
Extraneous light on burner startup		Green-red
Undervoltage		Yellow-red
Fault, alarm	A	Red
Error code output (refer to «Error code table»)		Blinking red
Interface diagnostics		Red flicker light
Heating request	•	Yellow
Heating request		Yellow


Kev

Tiey	
	Steady on
•	Led off
A	Led red
•	Led yellow
	Led green

Program sequence:

Version 1:


- Ignition load < low-fire
- Prepurging in high-fire
- Parameter 515 = 1 (condition parameter 259.01 > 0 seconds)

Program sequence:

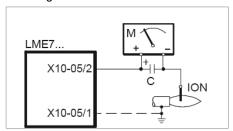
Version 2:

- Ignition load > low-fire
- Prepurging in high-fire
- Parameter 515 = 1 (condition parameter 259.01 = 0 seconds)

Function
Lockout phase
Standby, waiting for heat demand
Operation, modulating operation
Interval until release of load controller target (analog or 3-position step input)
Under voltage
Safety loop open
Extraneous light on burner startup (timeout/locking after 30 seconds)
Mains ON/test phase (e.g. detector test)
Shutdown, actuator opens in CLOSE position (homerun)
Safety valve ON, air pressure switch OFF, actuator opens in CLOSE position
Part 1: Fan motor ON
Part 2: Specified time (t10) air pressure switch (LP)
Message (timeout) stabilization air pressure switch
Actuator opens in prepurge position
Part 1: Prepurge time (t1) without extraneous light test
Valve proving after mains ON, lockout
Part 2: Prepurge time (t1) with extraneous light test
Actuator closes in ignition load
Preignition (t3)
Postignition time (t3n), parameter 257 + 0.3 seconds
Flame detection
Interval (t4): End of safety time (TSA) and burner valve 2 ON
2nd safety time (t9)
Parameter 259.01: Actuator opens in > low-fire
Parameter 260: Actuator closes in low-fire
End of operation, checking if valve proving (LT) shall be performed
Postpurging (t8)
Test space evacuation (td4)
Test time (td1) fuel valve 1 (V1)
Test space filling (td3)
Test time (td2) fuel valve 2 (V2)
Pressure switch-min open safety shutdown
Valve proving is conducted when
- parameter 241.00 = 1 and parameter 241.02 = 1, or
- parameter 241.00 = 1 and parameter 241.01 = 0
Valve proving is conducted when
- parameter 241.00 = 1 and parameter 241.02 = 1, or
- parameter 241.00 = 1 and parameter 241.01 = 1
Valve proving (LT) will not be performed

Error code table:

Red blink code of fault signal lamp (LED)	Possible cause
2 x blinks	No establishment of flame at the end of the safety time (TSA)
	- Faulty or soiled flame detector
	- Faulty or soiled fuel valves
	- Poor adjustment of burner, no fuel
	- Faulty ignition equipment
3 x blinks	Air pressure switch (LP) faulty
	 Loss of air pressure after specified time (t10)
	 - Air pressure switch (LP) welded in no-load position
4 x blinks	Extraneous light on burner startup
5 x blinks	Time supervision air pressure switch (LP)
	- Air pressure switch (LP) welded in working position
6 x blinks	Actuator position not reached
	- Actuator faulty
	- Wrong adjustment of cam
	- Actuator defective or blocked
	- False connection
	- Misadjustment
7 x blinks	Too many losses of flame during operation (limitation of repetitions)
	- Faulty or soiled flame detector
	- Faulty or soiled fuel valves
	- Poor adjustment of burner
8 x blinks	Free
9 x blinks	Free
10 x blinks	Wiring error or internal error, output contacts, other faults
12 x blinks	Valve proving (LT)
	- Fuel valve 1 (V1) leaking
13 x blinks	Valve proving (LT)
	- Fuel valve 2 (V2) leaking
14 x blinks	Error in connection with valve closure control POC
15 x blinks	Error code ≥15
	Error code 22: Error of safety loop (SL)


During the time the cause of fault is diagnosed, the control outputs are deactivated: - Burner remains shut down

- External fault indication (AL) at terminal X2-03, pin 3 steady on Diagnostics of cause of fault is quit and the burner switched on again by resetting the burner control. Press the lockout reset button (info button) for about 1 second (<3 seconds).

Flame detection - detection electrode:

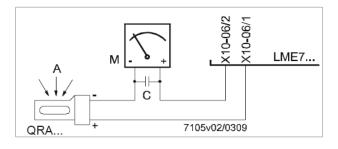
Short-circuit current	Max. AC 1 mA
Required detector current	Min. DC 2 μA, display approx. 45 %
Possible detector current	Max. DC 3 μA, display approx. 100 %
Permissible length of detector cable (laid separately)	30 m (core-earth 100 pF/m)

Measuring circuit

Keys

C - Electrolytic condenser 100...470 μF; DC 10...25 V

ION - Ionization probe


M - Microammeter Ri max. 5,000 Ω

Flame detection - UV probe :

Threshold values when flame is supervised by QRA...

- Start prevention (extraneous light)	Intensity (parameter 954) approx. 12 %
- Operation	Intensity (Parameter 954) approx. 13 %
Operating voltage	AC 280 V ±15 %
Mains frequency	5060 Hz ±6 %
Required detector current	Min. 70 μA
Possible detector current	
- Operation	Max. 700 μA
Perm. length of detector cable	
- Normal cable, laid separately 1)	Max. 100 m

1) Multicore cable not permitted

Keys

A - Exposure to light

C - Electrolytic condenser 100...470 μF; DC 10...25 V

 $\,$ M $\,$ Microammeter Ri max. 5,000 $\,$ Ω

Warning!

Input QRA... is not short-circuit-proof!

Short-circuits of X10-06/2 against earth can destroy the QRA... input

Simultaneous operation of flame detector QRA... and detection electrode is not permitted

To make certain the age of the UV tube can be determined, the LME7... basic unit must always be connected to mains supply.

Gas proving system:

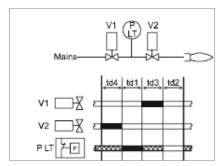
Valve proving is dependent on input valve proving ON / OFF (X2-02). When a leak is detected, the gas valve proving function ensures that the gas valves will not be opened and that ignition will not be switched on. Lockout will be initiated.

Valve proving with separate pressure switch (P LT)

Step 1: td4 - Evacuation of test space

Gas valve on the burner side is opened to bring the test space to atmospheric pressure.

Step 2: td1 – Test atmospheric pressure


When the gas has closed, the gas pressure in the test space must not exceed a certain level.

Step 3: td3 Filling of test space

Gas valve on the mains side opens to fill the test space.

Step 4: td2 - Test gas pressure

When the gas valve has closed, the gas pressure in the test space must not drop below a certain level.

Controllo tenuta con pressostati separati

Keys

td1 Test atmospheric pressure

td2 Test gas pressure

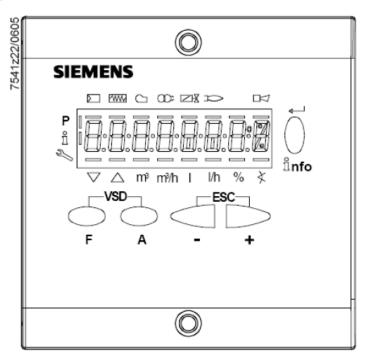
td3 Filling of test space

td4 Evacuation of test space

V... Fuel valve

PLT Pressure switch valve proving

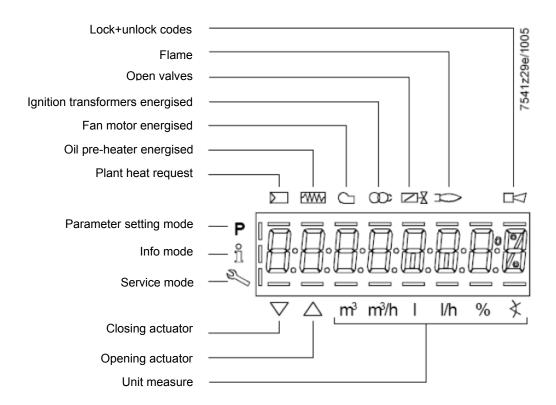
Input / output signal 1 (ON)


Input / output signal 0 (OFF)

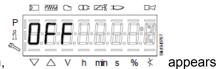
Input permissible signal 1 (ON) or 0 (OFF)

No.	Parameter
242	Valve proving evacuation of test space
243	Valve proving time test atmospheric pressure
244	Valve proving filling of test space
245	Valve proving time test gas pressure

Instruction, control and modify via AZL2x:


The AZL2x.. display/programming unit is shown below:

The keys functions are the following:


VSD_	Key F + A
	While pressing the two keys contemporarly, the code message will appear: by entering the proper password it is possible to access the Service mode.
F A	
4──	Info and Enter keys
	Used for Info and Service menues
()	Used as Enter key in the setting modes
	Used as Reset key in the burner operation mode
0	Used to enter a lower level menu
ĭnfo	
	Key -
	Used for one menu level down
_	Used to decrease a value
	Key +
	Used for one menu level up Used to increase a a value
+	Used to increase a a value
ESC—	Keys (+ & -)= ESC
	By pressing + and - at the same time, the ESCAPE function is performed
	No adoption of value
	One menu level down
- +	

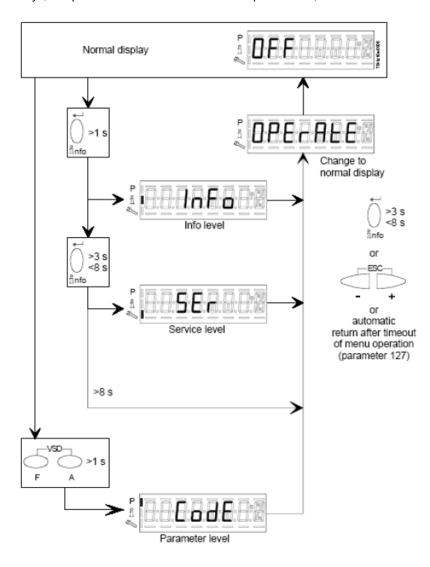
The display will show these data:

While pushing the $^{\mathring{\mathbb{I}}\mathbf{nfo}}$ button together with whatever else button, LME73 locks out; the display shows

On stand-by position,

On operation, all the phases appears with their number.

List of phase with display AZL2x :


Phase number	Function
Standby	
OFF	Standby, waiting for heat request
Ph08	Power ON / test phase (e.g. detector test)
Startup	
Ph21	Safety valve ON, air pressure switch test / POC test (timeout / locking after 5
	seconds), actuator opens in low-fire position / CLOSE position
Ph22	Fan motor ON or air pressure switch test / settling time
Ph24	Actuator travels to the prepurge position
Ph30	Prepurging
Ph36	Actuator closes until ignition load / low-fire is reached, and parameter 259.02:
	Actuator opens to a position > ignition load
Ph38	Preignition
Ph40	1st safety time (TSA1) / ignition transformer ON
Ph42	Safety time (ignition transformer OFF), flame check
Ph44	Interval: End of safety time and fuel valve 1 (V1) ON
Ph50	2nd safety time (TSA2)
Ph54	P259.01: Actuator opens in > low-fire
Ph54	P260: Actuator closes in low-fire
oP1	Interval until release of load controller target (analog or 3-position step input)
Operation	
оР	Operation, modulating operation
Shutdown	
Ph10	Shutdown, actuator opens in CLOSE position (home run)
Ph72	Actuator opens in high-fire position / end of operation
Ph74	Postpurging
Valve proving	
Ph80	Test space evacuating
Ph81	Checking time fuel valve 1
Ph82	Test space filling
Ph83	Checking time fuel valve 2
Waiting phases	
(start prevention)	
Ph01	Undervoltage
Ph02	Safety loop open
Ph04	Extraneous light at burner startup (timeout / locking after 30 seconds)
Ph90	Pressure switch-min open → safety shutdown
Lockout	
LOC	Lockout phase

Error code list with operation via internal AZL :

Error code	Clear text	Possible cause
Loc 2	No establishment of flame at the	- Faulty or soiled fuel valves
	end of the safety time (TSA)	- Faulty or soiled flame detector
		- Poor adjustment of burner, no fuel
		- Faulty ignition equipment
Loc 3	Air pressure faulty (air pressure	Air pressure switch (LP) faulty
	switch (LP) welded in no-load	- Loss of air pressure signal after specified time (t10)
	position, decrease to spe-cified time	- Air pressure switch (LP) is welded in no-load
	(t10) (air pressure switch (LP) re-	position
	sponse time)	
Loc 4	Extraneous light	Extraneous light when burner startup
Loc 5	Air pressure faulty, air pressure	Time out air pressure switch (LP)
	switch wel-ded in working position	- Air pressure switch (LP) is welded in working
		position
Loc 6	Fault of actuator	- Actuator faulty or blocked
		- Faulty connection
		- Wrong adjustment
Loc 7	Loss of flame	Too many losses of flame during operation (limitation
		of repetitions)
		- Faulty or soiled fuel valves
		- Faulty or soiled flame detector
		- Poor adjustment of burner
Loc 8		Free
Loc 9		Free
Loc 10	Error not relatable (application),	Wiring error or internal error, output contacts, other
	internal error	faults
Loc 12	Valve proving	Fuel valve 1 (V1) leak
Loc 13	Valve proving	Fuel valve 2 (V2) leak
Loc 22	Safety loop open	- Gas pressure switch-max open
		- Safety limit thermostat cut out
Loc 138	Restore process successful	Restore process successful
Loc 167	Manual locking	Manual locking
Loc: 206	AZL2 incompatible	Use the latest version

Entering the Parameter levels:

y means of a proper use of the keys, it is possible to enter the various level parameters, as shown in the following flow chart :

Info level:

Keep pushing the info button until

appears. Use + or - for scrolling the parameter list. If on the right side a dash-dot appears, it means the display doesn't show the

full description. Push not again for 1 to 3 s in order to show the full description.

Below the visible **Info** parameters:

Parameter	Parameter list PME73.000Ax + PME73.831AxBC	Edit	Value	Value range		Factory setting	Password level	Password level
number	LME73.831AxBC		Min.	Max.		Setting	reading from level	writing from level
100	General							
102	Identification date	Read only					Info	
103	Identification number	Read only	0	9999	1		Info	
113	Burner identification	Read only	х	xxxxxxx	1		Info	
164	Numbers of startups resettable	Resettable	0	999999	1		Info	Info
166	Total number of startups	Read only	0	999999	1		Info	
170.00	Switching cycles actuator relay K12	Read only	0	999999	1		Info	
170.01	Switching cycles actuator relay K11	Read only	0	999999	1		Info	
170.02	Switching cycles actuator relay K2	Read only	0	999999	1		Info	
170.03	Switching cycles actuator relay K1	Read only	0	999999	1		Info	
171	Max. switching cycles actuator relay	Read only	0	999999	1		Info	

Service level:

Keep pushing the ^{nnfo} button until

appears. Use + or - for scrolling the parameter list. . If on the right side a dash-dot appears, it means the display doesn't show the

full description. Push note in again for 1 to 3 s in order to show the full description.

Below the visible **Info** parameters:

Parameter	Parameter list	Edit	Value	range	Resolution	Factory	Password level	Password
number	PME73.000Ax + PME73.831AxBC LME73.831AxBC		Min.	Max.		setting	reading from level	level writing from level
700	Error history							-
701	Current error:	Read only					Service	
	00: Error code		2	255	1			
	01: Startup meter reading		0	999999	1			
	02: MMI phase							
	03: Power value		0%	100%	1			
702	Error history former 1:	Read only					Service	
	00: Error code		2	255	1			
	01: Startup meter reading		0	999999	1			
	02: MMI phase							
	03: Power value		0%	100%	1			
•								
•								
•								
711	Error history former 10:	Read only					Service	
	00: Error code		2	255	1			
	01: Startup meter reading		0	999999	1			
	02: MMI phase							
	03: Power value		0%	100%	1			

900	Process data						
936	Normalized speed	Read only	0%	100%	0.01 %	Service	
951	Mains voltage	Read only		LME73.000A1: 175 V LME73.000A2: 350 V	1 V	Service	
954	Flame intensity	Read only	0%	100%	1%	Service	

Parameter level (Heating engeneering):

This level lets the engineer to modify some burner parameters. It is protect with a 4 digit password (SO level) and a 5 digit password (OEM level)

Password input: push **F** and **A** buttons together until the display shows "code" and 7 underlines. The left one flashes. By **+** or **-** move the flashing underline until it is on the desired position and push "enter". The underline becomes a dash. By means of **+** or **-**, choose the right character and push "enter". Input the whole password and the **PArA** appears and later on **000 Int**.

Scroll the parameters using **+** or **-**: **000Int**, **100**, **200**, **500**, **600 are on the display**. Choose the proper parameter group with the **enter** button and scroll the options with **+** e poi **-** (below the full par set: the two columns on the right give the level access). Choose the parameter to be modified with "enter" is writing is allowed. The parameter now flashes: **+** or **-** modifies the parameter and **enter** confirms. **+** and **-** pushed togther movbe the menu one step back. Push **+** and **-** several times in order to get the home position.

Parameter	Parameter list PME73.000Ax + PME73.831AxBC	Edit	Value	Value range Resolution		Factory setting	Password level	Password level
number	LME73.831AxBC		Min.	Max.		Setting	reading from level	writing from
0	Internal parameter	<u>-</u>	<u> </u>	<u>- </u>		<u>-</u>	<u>-</u>	
41	Heating engineers password (4 characters)	Edit	xxxx	xxxx				OEM
42	OEM's password (5 characters)	Edit	xxxxx	xxxxx				OEM
60	Backup / restore	Edit	Restore	Backup				SO
100	General						-	_
123	Min. power control step	Edit	1%	10%	0.1		SO	SO
140	Mode display of Display and operating unit AZL2	Edit	1	4	4		SO	SO
	1 = Standard (program phase)							
	2 = Flame 1 (QRA / ION)							
	3 = Flame 2 (QRB / QRC)							
	4 = Active power (power value)							
200	Burner control							
224	Specified time (t10) air pressure switch (LP)	Edit	0 s	13.818 s	0.294 s	12,054	SO	OEM
225	Gas: Prepurge time (t1)	Edit	0 s	1237 s	4.851 s	29,106	SO	OEM
226	Gas: Preignition time (t3)	Edit	1.029 s	37.485 s	0.147 s	2,058	SO	OEM
230	Interval (t4): End of safety time (TSA) - fuel valve 1 (V1) ON	Edit	3.234 s	74.97 s	0.294 s	3,234	SO	OEM
231	Interval (t9): Fuel valve 1 (V1) ON - pilot valve (PV) OFF	Edit	0 s	74.97 s	0.294 s	2,940	SO	OEM
232	Interval (t5): Pilot valve (PV) OFF - load controller (LR) release	Edit	2.058 s	74.97 s	0.294 s	8.820	SO	OEM
234	Gas: Postpurge time (t8)	Edit	0 s	1237 s	4.851 s	0	SO	OEM
239	Gas: Intermittent operation after 24 hours of continuous operation 0=OFF 1=ON	Edit	0	1	1	1	SO	OEM

240	Repetition in the event of loss of flame during operation	Edit	C	2	1	0	SO	OEM
	0 = None							
	1 = None							
	2 = 1 x Repetition							
241.00	Valve proving	Edit	C	1	1	1	SO	OEM
	0 = Off							
	1 = On							
241.01	Valve proving	Edit	С	1	1	0	SO	OEM
	0 = During prepurge time (t1)							
	1 = During postpurge time (t8)							
241.02	Valve proving	Edit	C	1	1	0	SO	OEM
	0 = According to P241.01							
	1 = During prepurge time (t1) and postpurge time (t8)							
242	Valve proving test space evacuating	Edit	0 s	2.648 s	0.147 s	2,646	SO	OEM
243	Valve proving time test atmospheric pressure	Edit	1.029 s	37.485 s	0.147 s	10,290	SO	OEM
244	Valve proving test space filling	Edit	0 s	2.648 s	0.147 s	2,646	SO	OEM
245	Valve proving time test gas pressure	Edit	1.029 s	37.485 s	0.147 s	10,290	SO	OEM
254	Response time detector error	Edit	С	1	1	0	SO	OEM
	0 = 1 s							
	1 = 3 s							
257	Gas: Postignition time (t3n – 0.3 seconds)	Edit	0 s	13.23 s	0.147 s	2,205	so	OEM
259.00	Opening time of actuator (t11) (timeout for lockout)	Edit	0 s	1237 s	4.851 s	67,914	so	OEM
259.01	Opening time of actuator from ignition load to low-fire position	Edit	0 s	37.485 s	0.147 s	14,994	so	OEM
259.02	Opening time of actuator from low-fire to ignition load position	Edit	0 s	37.485 s	0.147 s	14,994		
260	Closing time of actuator (t12) (timeout for lockout)	Edit	0 s	1237 s	4.851 s	67,914	SO	OEM
500	Ratio control	<u>-</u>	<u>.</u>	<u>.</u>	•			
515	Actuator position during prepurge time (t1) and postpurge time (t8)	Edit	C	1	1	1	SO	OEM
	0: Purging in low-fire							
	1: Purging in high-fire							
560	Pneumatic combustion control	Edit	C	2	1	1	SO	SO
	0 = off / 3-step modulation							
	1 = PWM fan / analog modulation							
	2 = air damper / analog modulation (feedback potentiometer ASZxx.3x							
	required)	Ļ	<u>.</u>	_L	Ţ		<u> </u>	
		-	-		-	-	-	

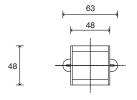
600	Power setting							
654	Analog input (feedback potentiometer ASZxx.3x required)	Edit	0	5	1	0	SO	SO
	0 = 3-position step input							
	1 = 010 V							
	2 = 0135 Ω							
	3 = 020 mA							
	4 = 420 mA with lockout at I <4 mA							
	5 = 420 mA							

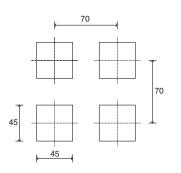
WARNING		
Parameter Num. : 41 42 60 123 140 242 243 244 245 259.01	Adjustable parameters from SO or OEM levels for LME73.831AxBC	

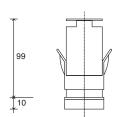
CIB UNIGAS 600V

CONTROLLER

USER'S MANUAL


COD. M12925CA Rel 1.2 08/2014


SOFTWARE VERSION 1.0x T73 code 80379 / Edition 01 - 06/2012


(€

1 · INSTALLATION

· Dimensions and cut-out; panel mounting

For correct and safe installation, follow the instructions and observe the warnings contained in this manual.

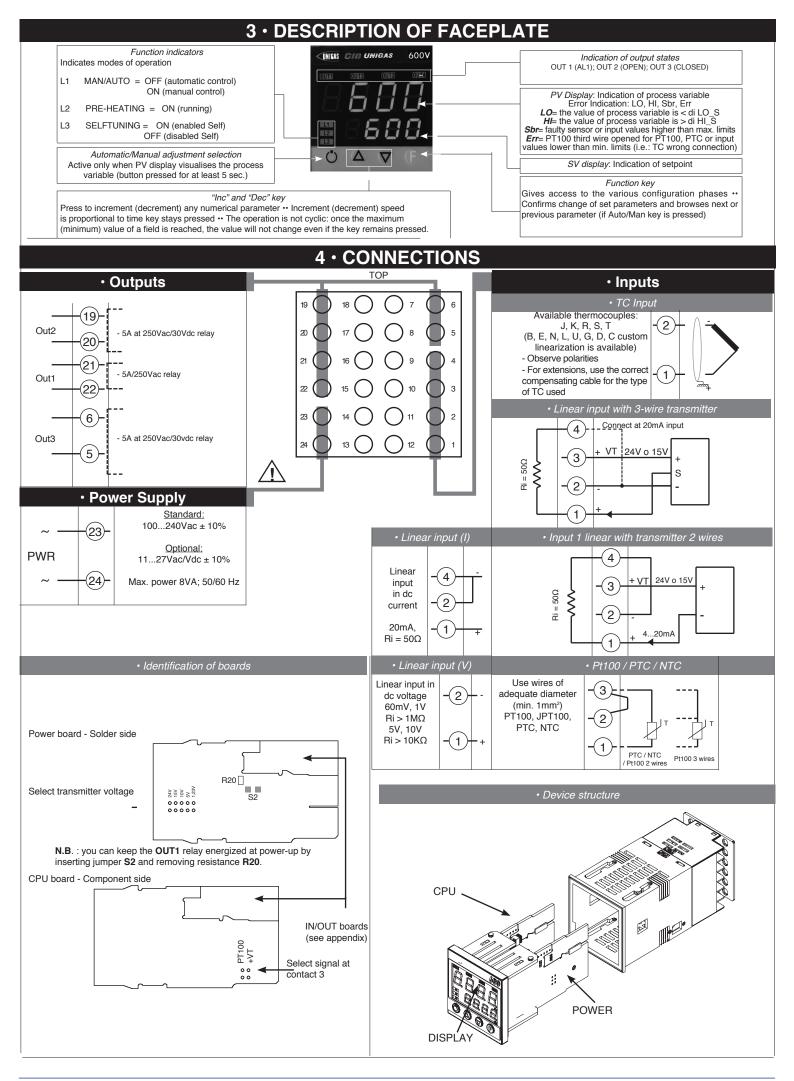
Panel mounting:

To fix the unit, insert the brackets provided into the seats on either side of the case. To mount two or more units side by side, respect the cut-out dimensions shown in the drawing.

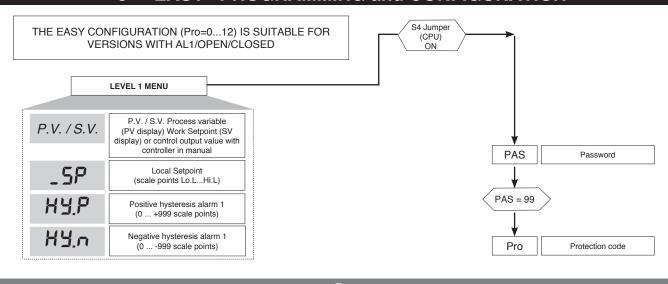
CE MARKING: The instrument conforms to the European Directives 2004/108/CE and 2006/95/CE with reference to the generic standards: EN 61000-6-2 (immunity in industrial environment) EN 61000-6-3 (emission in residential environment) EN 61010-1 (safety).

MAINTENANCE: Repairs must be done only by trained and specialized personnel.

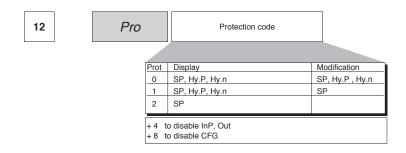
Cut power to the device before accessing internal parts.

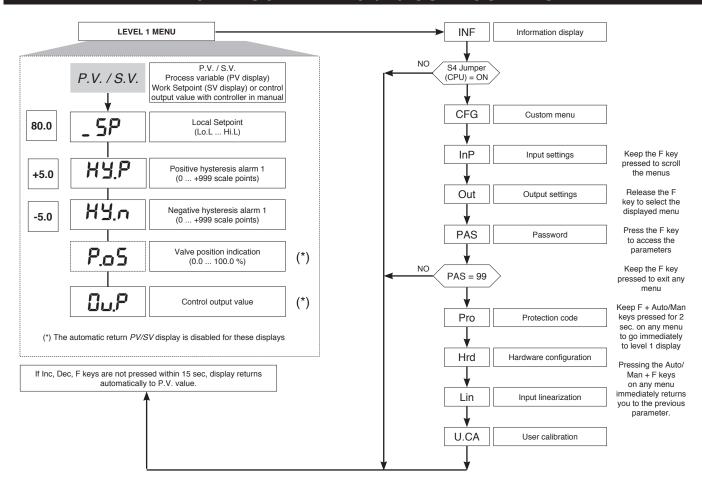

Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene, etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case.

SERVICE: GEFRAN has a service department. The warranty excludes defects caused by any use not conforming to these instructions.

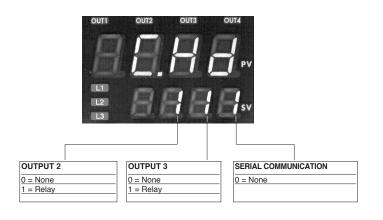

EMC conformity has been tested with the following connections

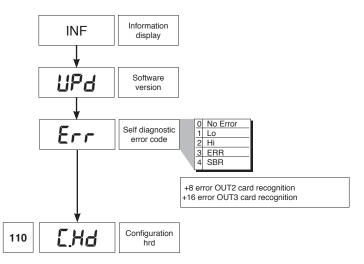
FUNCTION	CABLE TYPE	LENGTH
Power supply cable	1 mm²	1 m
Relay output cable	1 mm²	3,5 m
TC input	0,8 mm ² compensated	5 m
Pt100 input	1 mm²	3 m

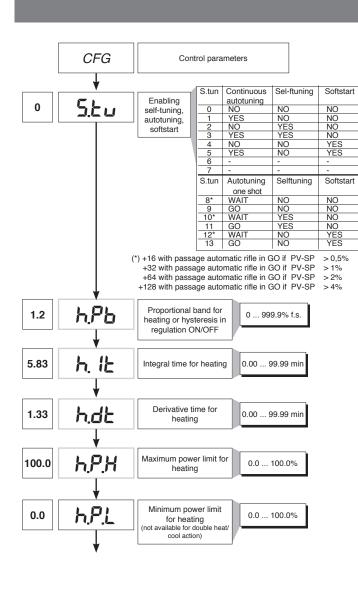

2 · TECHNICA	L SPECIFICATIONS
Display	2x4 digit green, high display 10 and 7mm
Kevs	4 of mechanical type (Man/Aut, INC, DEC, F)
Accuracy	0.2% f.s. ±1 digit ambient temperature 25°C
Main input (settable digital filter)	TC, RTD, PTC, NTC 60mV,1V Ri≥1MΩ; 5V,10V Ri≥10KΩ; 20mA Ri=50Ω Tempo di campionamento 120 msec.
Type TC Thermocouples (ITS90)	Type TC Thermocouples : J,K,R,S,T (IEC 584-1, CEI EN 60584-1, 60584-2); custom linearization is available / types B,E,N,L GOST,U,G,D,C are available by using the custom linearization.
Cold junction error	0,1° / °C
RTD type (scale configurable within indicated range, with or without decimal point) (ITS90)	DIN 43760 (Pt100), JPT100
Max line resistance for RTD	20Ω
PTC type / NTC Type	990Ω, 25°C / 1KΩ, 25°C
Safety	detection of short-circuit or opening of probes, LBA alarm
°C / °F selection	configurable from faceplate
Linear scale ranges	-1999 to 9999 with configurable decimal point position
Controls	PID, Self-tuning, on-off
pb - dt - it	0,0999,9 % - 0,0099,99 min - 0,0099,99 min
Action	Heat / Cool
Control outputs	on / off
Maximum power limit heat / cool	0,0100,0 %
Cycle time	0200 sec
Main output type	relay, logic, continuous $(010V \text{ Rload} \ge 250K\Omega$, $0/420\text{mA Rload} \le 500\Omega$)
Softstart	0,0500,0 min
Fault power setting	-100,0100,0 %
Automatic blanking	Displays PV value, optional exclusion
Configurable alarms	Up to 3 alarm functions assignable to an output, configurable as: maximum, minimum, symmetrical, absolute/deviation, LBA
Alarm masking	- exclusion during warm up - latching reset from faceplate or external contact
Type of relay contact	NO (NC), 5A, 250V/30Vdc cosφ=1
Logic output for static relays	24V ±10% (10V min at 20mA)
Transmitter power supply	15/24Vdc, max 30mA short-circuit protection
Power supply (switching type)	(std) 100 240Vac ±10% (opt.) 1127Vac/dc ±10%; 50/60Hz, 8VA max
Faceplate protection	IP65
Working / Storage temperature range	050°C / -2070°C
Relative humidity	20 85% non-condensing
Environmental conditions of use	for internal use only, altitude up to 2000m
Installation	Panel, plug-in from front
Weight	160g for the complete version

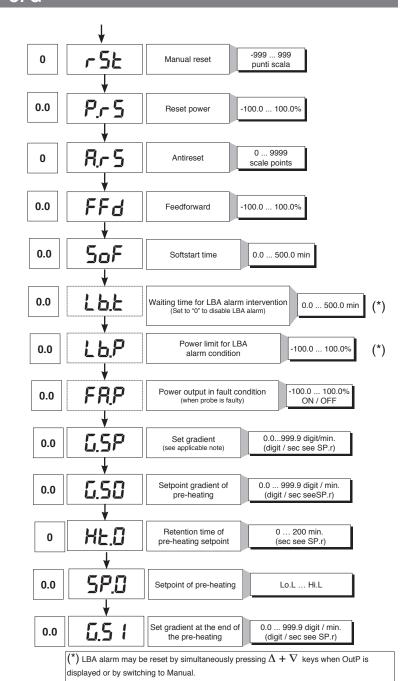

5 · "EASY" PROGRAMMING and CONFIGURATION

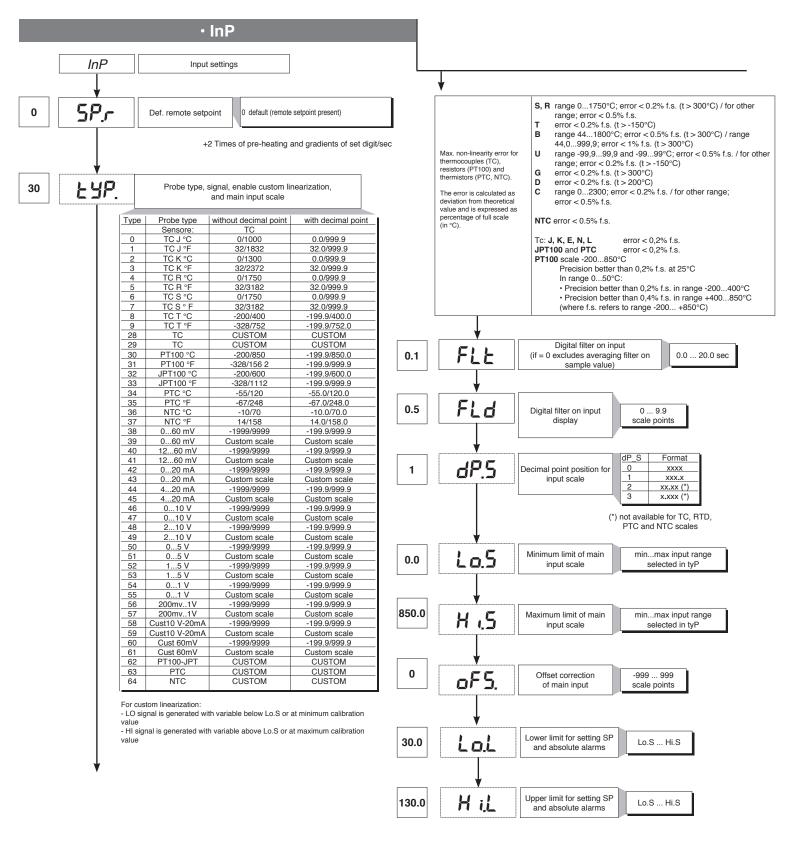
Prot

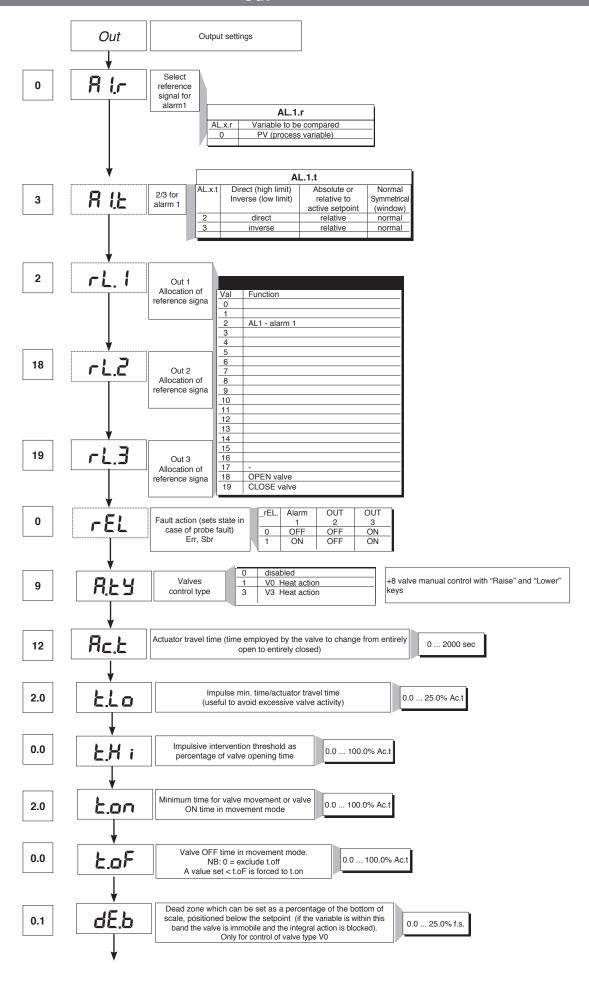


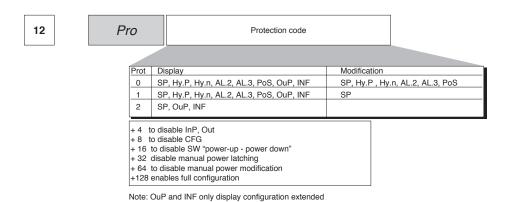

6 · PROGRAMMING and CONFIGURATION

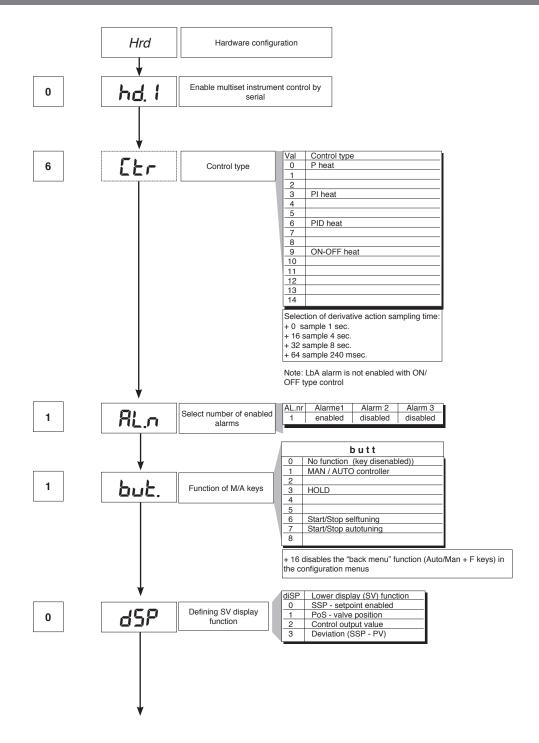

N.B.: Once a particular configuration is entered, all unnecessary parameters are no longer displayed

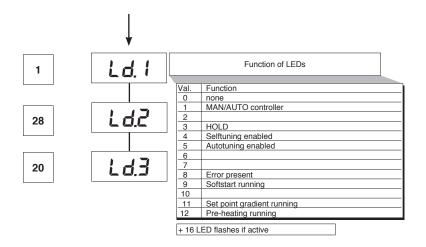

· InFo Display

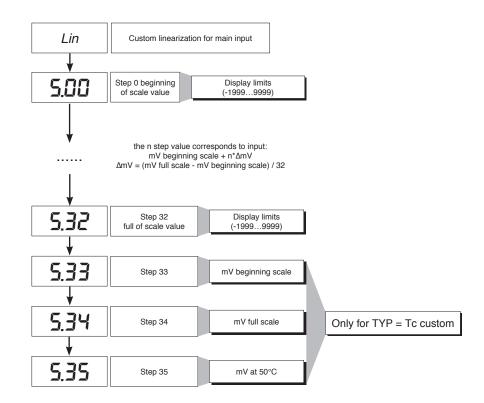




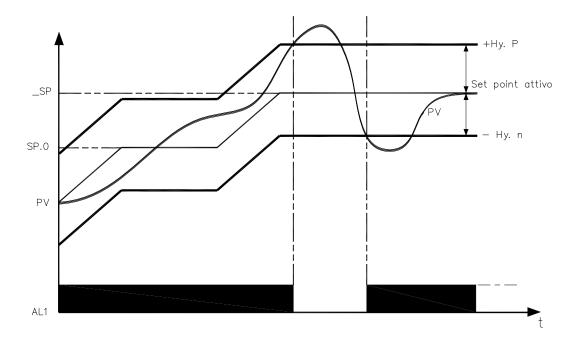

· CFG







• Hrd



• Lin

· U.CAL

	User calibration	Val	Function
U.CA		1	-
0.071		2	Input 1 – custom 10V / 20mA
		3	Input 1 - custom 60mV
		4	Custom PT100 / J PT100
		5	Custom PTC
		6	Custom NTC
		7	-

Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n

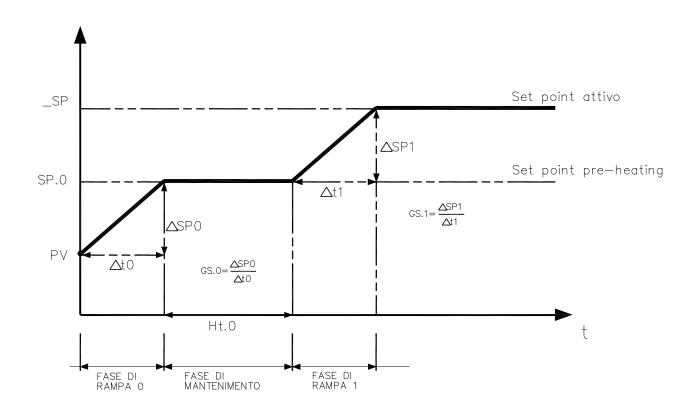
8 · PRE-HEATING FUNCTION

Enable the pre-heating function by setting parameters GS.0, Ht.0, GS.1 other than zero.

It consists of three phases that are activated sequentially at firing:

- Ramp 0 phase

Enabled by setting GS.0 > 0. Starting from setpoint = PV (initial state), it reaches pre-heating set SP.0 with gradient GS.0

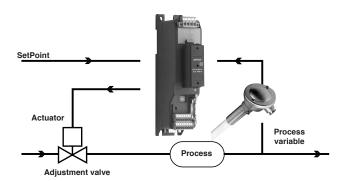

- Maintenance phase

Enabled by setting Ht.0 > 0. Maintains pre-heating setpoint SP.0 for time Ht.0

- Ramp 1 phase

Enabled by setting GS.1 > 0. Starting from pre-heating setpoint SP.0, it reaches active $_SP$ set with gradient GS.1

In case of selftuning, the pre-heating function is not activated


9 · ADJUSTMENT WITH MOTORIZED VALVE

In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller.

For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it.

The adjustment valves vary the delivery in a modulated manner, producing finite variations in the fluid passage inner area corresponding to finite variations of the actuator input signal, coming from the controller. The servomechanism, for example, comprises an electric motor, a reducer and a mechanical transmission system which actions the valve.

Various auxiliary components can be present such as the mechanical and electrical safety end travels, manual actioning systems.

CONTROL EXAMPLE FOR V0 VALVE

The controller determines, on the basis of the dynamics of the process, the control output for the valve corresponding to the opening of the same in such a way so as to maintain the desired value of the process variable.

Characteristic parameters for valves control

- Actuator time (Ac.t) is the time employed by the valve to pass from entirely open to entirely closed (or vice-versa), and can be set with a resolution of one second. It is a mechanical feature of the valve+actuator unit.

NOTE: if the actuator's travel is mechanically limited it is necessary to proportionally reduce the Ac.t value.

- Minimum impulse (t.Lo) expressed as a % of the actuator time (resolution 0.1%).

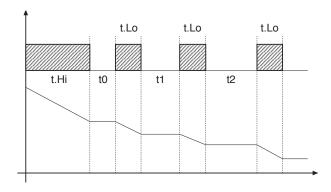
Represents the minimum change in position corresponding to a minimum change in power supplied by the instrument below which the actuator will not physically respond to the command.

This represents the minimum variation in position due to which the actuator does not physically respond to the command.

The minimum duration of the movement can be set in t.Lo, expressed as a % of actuator time.

- Impulsive intervention threshold (t.Hi) expressed as a % of the actuator time (resolution 0.1%) represents the position displacement (requested position – real position) due to which the manoeuvre request becomes impulsive.

You can choose between 2 types of control:


- 1) ON time of movement = t.on and OFF time proportional to shift and greater than or equal to t.Lo (we recommend setting t.on = t.Lo) (set t.oF = 0).
- 2) ON time of movement = t.on and OFF time = t.oF. A value set for t.oF < t.on is forced to t.on. To activate this type, set t.oF <> 0.

The type of movement approach allows fine control of the reverse drive valve (from potentiometer or not), especially useful in cases of high mechanical inertia. Set t.Hi = 0 to exclude modulation in positioning.

This type of modulated approach allows precise control of the feedback actioned valve, by a potentiometer or not, and is especially useful in cases of high mechanical inertia. Setting t.Hi = 0 excludes modulation in positioning.

- Dead zone(dE.b) is a displacement band between the adjustment setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF). It is expressed as a percentage of the bottom scale and is positioned below the setpoint.

The dead zone is useful in an operative process to avoid straining the actuator with repeated commands and an insignificant effect on the adjustment. Setting dE.b = 0 the dead zone is excluded.

Graph of behavior inside the band with integral time $\neq 0$.

With integral time = 0, movement ON time is always equal to OFF time.

t0 = t.Lo

Valve control modes

With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats.

V0 - for floating valve without potentiometer

Model V0 have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays; every action updates the presumed position of the virtual potentiometer calculated on the basis of the actuator travel declared time.

In this way there is always a presumed position of the valve which is compared with the position request of the controller.

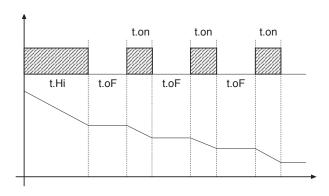
Having reached a presumed extreme position (entirely open or entirely closed determined by the "virtual potentiometer") the controller provides a command in the same direction, in this way ensuring the real extreme position is reached (minimum command time = t.on).

The actuators are usually protected against the OPEN command in the entirely open position or CLOSE command in the entirely closed position.

V3 - for floating valve, PI control

When the difference between the position calculated by the controller and the only proportional component exceeds the value corresponding to the minimum impulse t.Lo the controller provides an OPEN or CLOSE command of the duration of the minimum impulse itself t.Lo.

At each delivery the integral component of the command is set to zero (discharge of the integral).


The frequency and duration of the impulses is correlated to the integral time (h.it or c.it).

Non-movement behavior

t.Hi = 0: with power = 100% or 0.0%, the corresponding open or close outputs always remain enabled (safety status).

Movement behavior

t.Hi < > 0: with position attained corresponding to 100% or 0.0%, the corresponding open or close outputs are switched off.

If t.oF = 0, current function is maintained

If t.oF \neq 0 movement mode will be as shown on the graph

10 · CONTROL ACTIONS

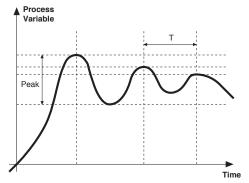
Proportional Action:

action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint). Derivative Action:

action in which contribution to output is proportional to rate of variation input deviation.

Integral Action:

action in which contribution to output is proportional to integral of time of input deviation.


Influence of Proportional, Derivative and Integral actions on response of process under control

- * An increase in P.B. reduces oscillations but increases deviation.
- * A reduction in P.B. reduces the deviation but provokes oscillations of the controlled variable (the system tends to be unstable if P.B. value is too low).
- * An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation and prevents oscillation up to a critical value of Derivative Time, beyond which deviation increases and prolonged oscillations occur.
- * An increase in Integral Action corresponds to a reduction in Integral Time, and tends to eliminate deviation between the controlled variable and the setpoint when the system is running at rated speed.

If the Integral Time value is too long (Weak integral action), deviation between the controlled variable and the setpoint may persist. Contact GEFRAN for more information on control actions.

11 · MANUAL TUNING

- A) Enter the setpoint at its working value.
- B) Set the proportional band at 0.1% (with on-off type setting).
- C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure:

D) The PID parameters are calculated s follows: Proportional band

(V max - V min) is the scale range.

Integral time: $It = 1.5 \times T$ Derivative time: dt = It/4

E) Switch the unit to manual, set the calculated parameters. Return to PID action by setting the appropriate relay output cycle time, and switch back to Automatic.

F) If possible, to optimize parameters, change the setpoint and check temporary response. If an oscillation persists, increase the proportional band. If the response is too slow, reduce it.

12 · SET GRADIENT

SET GRADIENT: if set to $\neq 0$, the setpoint is assumed equal to PV at power-on and auto/man switchover. With gradient set, it reaches the local setpoint. Every variation in setpoint is subject to a gradient.

The set gradient is inhibited at power-on when self-tuning is engaged.

If the set gradient is set to $\neq 0$, it is active even with variations of the local setpoint.

The control setpoint reaches the set value at the speed defined by the gradient.

13 · SOFTWARE ON / OFF SWITCHING FUNCTION

How to switch the unit OFF: hold down the "F" and "Raise" keys simultaneously for 5 seconds to deactivate the unit, which will go to the OFF state while keeping the line supply connected and keeping the process value displayed. The SV display is OFF.

All outputs (alarms and controls) are OFF (logic level 0, relays de-energized) and all unit functions are disabled except the switch-on function and digital communication.

How to switch the unit ON: hold down the "F" key for 5 seconds and the unit will switch OFF to ON. If there is a power failure during the OFF state, the unit will remain in OFF state at the next power-up (ON/OFF state is memorized).

The function is normally enabled, but can be disabled by setting the parameter Prot = Prot + 16.

14 · SELF-TUNING

The function works for single output systems (heating or cooling). The self-tuning action calculates optimum control parameter values during process startup. The variable (for example, temperature) must be that assumed at zero power (room temperature).

The controller supplies maximum power until an intermediate value between starting value and setpoint is reached, after which it zeros power.

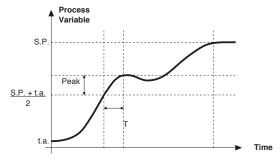
PID parameters are calculated by measuring overshoot and the time needed to reach peak. When calculations are finished, the system disables automatically and the control proceeds until the setpoint is reached.

How to activate self-tuning:

A. Activation at power-on

- 1. Set the setpoint to the required value
- 2. Enable selftuning by setting the Stun parameter to 2 (CFG menu)
- 3. Turn off the instrument
- 4. Make sure the temperature is near room temperature
- 5. Turn on the instrument again

B. Activation from keyboard


- 1. Make sure that key M/A is enabled for Start/Stop selftuning (code but = 6 Hrd menu)
- 2. Bring the temperature near room temperature
- 3. Set the setpoint to the required value
- 4. Press key M/A to activate selftuning (Attention: selftuning interrupts if the key is pressed again)

The procedure runs automatically until finished, when the new PID parameters are stored: proportional band, integral and derivative times calculated for the active action (heating or cooling). In case of double action (heating or cooling), parameters for the opposite action are calculated by maintaining the initial ratio between parameters (ex.: CPb = HPb * K; where K = CPb / HPb when self-tuning starts). When finished, the Stun code is automatically cancelled.

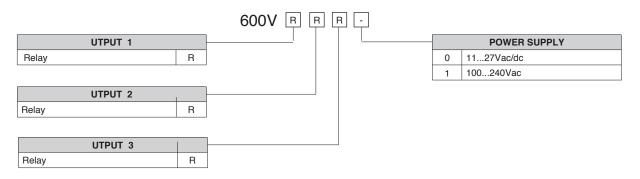
Notes:

- -The procedure does not start if the temperature is higher than the setpoint (heating control mode) or if the temperature is lower than the setpoint (cooling control mode). In this case, the Stu code is not cancelled.
- -It is advisable to eneable one of the configurable LEDs to signal selftuning status. By setting one of parameters

LED1, LED2, LED3=4 or 20 on the Hrd menu, the respective LED will be on or flashing when selftuning is active.

15 · ACCESSORIES

Interface for instrument configuration


Kit for PC via the USB port (Windows environment) for GEFRAN instruments configuration:

Lets you read or write all of the parameters

- · A single software for all models
- · Easy and rapid configuration
- · Saving and management of parameter recipes
- · On-line trend and saving of historical data Component Kit:
- Connection cable PC USB ... port TTL
- Connection cable PC USB ... RS485 port
- Serial line converter
- CD SW GF Express installation

· ORDERING CODE			
GF_eXK-2-0-0	cod F049095		

16 · ORDER CODE

WARNINGS

WARNING: this symbol indicates danger. It is placed near the power supply circuit and near high-voltage relay contacts.

Read the following warnings before installing, connecting or using the device:

- · follow instructions precisely when connecting the device.
- · always use cables that are suitable for the voltage and current levels indicated in the technical specifications.
- the device has no ON/OFF switch: it switches on immediately when power is turned on. For safety reasons, devices permanently connected to the power supply require a twophase disconnecting switch with proper marking. Such switch must be located near the device and must be easily reachable by the user. A single switch can control several units.
- if the device is connected to electrically NON-ISOLATED equipment (e.g. thermocouples), a grounding wire must be applied to assure that this connection is not made directly through the machine structure.
- if the device is used in applications where there is risk of injury to persons and/or damage to machines or materials, it MUST be used with auxiliary alarm units. You should be able to check the correct operation of such units during normal operation of the device.
- before using the device, the user must check that all device parameters are correctly set in order to avoid injury to persons and/or damage to property.
- the device must NOT be used in infiammable or explosive environments. It may be connected to units operating in such environments only by means of suitable interfaces in conformity to local safety regulations.
- the device contains components that are sensitive to static electrical discharges. Therefore, take appropriate precautions when handling electronic circuit boards in order to prevent permanent damage to these components.

Installation: installation category II, pollution level 2, double isolation

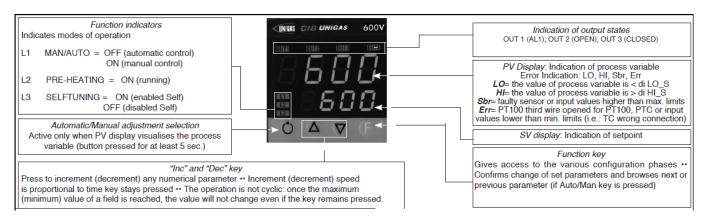
The equipment is intended for permanent indoor installations within their own enclosure or panel mounted enclosing the rear housing and exposed terminals on the back.

- · only for low power supply: supply from Class 2 or low voltage limited energy source
- · power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label. • install the instrumentation separately from the relays and power switching devices
- · do not install high-power remote switches, contactors, relays, thyristor power units (particularly if "phase angle" type), motors, etc... in the same cabinet.
- · avoid dust, humidity, corrosive gases and heat sources.
- do not close the ventilation holes; working temperature must be in the range of 0...50°C.
- · surrounding air: 50°C
- use 60/75°C copper (Cu) conductor only, wire size range 2x No 22 14AWG, Solid/Stranded
- · use terminal tightening torque 0.5N m

If the device has faston terminals, they must be protected and isolated; if the device has screw terminals, wires should be attached at least in pairs.

- · Power: supplied from a disconnecting switch with fuse for the device section; path of wires from switch to devices should be as straight as possible; the same supply should not be used to power relays, contactors, solenoid valves, etc.; if the voltage waveform is strongly distorted by thyristor switching units or by electric motors, it is recommended that an isolation transformer be used only for the devices, connecting the screen to ground; it is important for the electrical system to have a good ground connection; voltage between neutral and ground must not exceed 1V and resistance must be less than 6Ohm; if the supply voltage is highly variable, use a voltage stabilizer for the device; use line filters in the vicinity of high frequency generators or arc welders; power supply lines must be separated from device input and output lines; always check that the supply voltage matches the
- · Input and output connections: external connected circuits must have double insulation; to connect analog inputs (TC, RTD) you have to: physically separate input wiring from power supply wiring, from output wiring, and from power connections; use twisted and screened cables, with screen connected to ground at only one point; to connect adjustment and alarm outputs (contactors, solenoid valves, motors, fans, etc.), install RC groups (resistor and capacitor in series) in parallel with inductive loads that work in AC (Note: all capacitors must conform to VDE standards (class x2) and support at least 220 VAC. Resistors must be at least 2W); fit a 1N4007 diode in parallel with the coil of inductive loads that operate in

GEFRAN spa will not be held liable for any injury to persons and/or damage to property deriving from tampering, from any incorrect or erroneous use, or from any use not conforming to the device specifications.



Set-up for 600V RRR0-1-T73 regulator

Set up for temperature probe Pt100 (ex Siemens QAE2120 130°C max.)

The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x

Verify wiring of the sensor

Regulation of the set-point = 80

It can be modified by using arrows "up" and "down".

By pushing **F** you go to parameters:

Hy.P	5 (hysteresis positive for output 1, terminals 21-22 (ex Q13-Q14)
Hy.n	-5 hysteresis negative for output ,1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG S.tun	
S.tun	0
hPb	1,2
hlt	5,83
hdt	1,33

InP	
tyP	30 (Pt100)
dP_S Lo.S	1 (decimals num.)
	0 (min. sensor scale)
Hi.S	850,0 (max sensor scale)
oFS	0 (offset of input correction)
Lo.L	30,0 (lower set-point range limit)
Hi.L	130,0 (upper set-point range limit)

Out	
A1.r	0
A1.t	3 (operating mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
CtrL	6 (PID warm)
AL.nr	1
but	1
diSP	0
Ld.1	1
Ld.2	28
Ld.3	20

Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value.

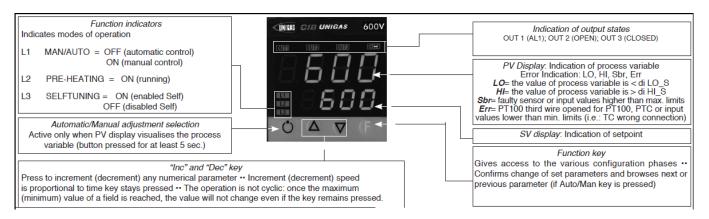
Manual operation:

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on).

Through the arrows, "Open" and "Close" outputs are activated.

To come back to normal working keep the lower left key pushed for at least 5 sec.


Software switch off:

By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.

To restore keep pushed **F** for more than 5 sec.

Set up for temperature probe Pt100 for high temperature (350°C max.)

Verify wiring of the sensor

Regulation of the set-point = 80

It can be modified by using arrows "up" and "down".

By pushing **F** you go to parameters:

Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG		
S.tun	0	
hPb hIt	1,2	
hlt	5,83	
hdt	1,33	

InP				
tyP	30 (Pt100)			
dP_S Lo.S	1 (decimals num.)			
Lo.S	0 (min. sensor scale)			
Hi.S	850,0 (max sensor scale)			
oFS	0 (offset of input correction)			
Lo.L	0,0 (lower set-point range limit)			
Hi.L	350,0 (upper set-point range limit)			

Out	
A1.r	0
A1.t	3 (mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12;
	SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

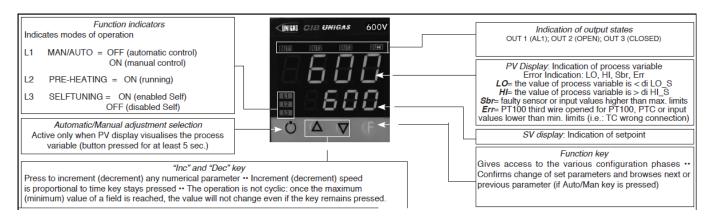
PAS	99 then push and keep pushed F until visualization of Hrd					
Hrd						
CtrL	6 (PID warm)					
AL.nr	1					
but	1					
diSP	0					
Ld.1	1					
Ld.2	28					
Ld.3	20					

Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value.

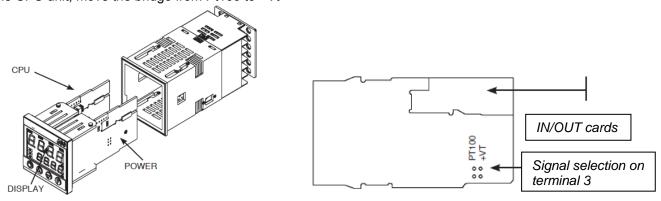
Manual operation:

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated.


To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off:


By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.

To restore keep pushed **F** for more than 5 sec.

Set up for pressure transmitter 2 wires signal 4÷20mA

With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt

Verify wiring of the sensor

Impostazione set-point

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Set-point	1bar	1,5bar	6bar	6bar	6bar	6bar

To modify it directly use "up" and "down" arrows.

By pushing **F** you go to parameter:

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar
Hy.P	0,2bar	0,5bar	0,5bar	0,8bar	1,25bar	2bar
Hy.n	0bar	0bar	0bar	0bar	0bar	0bar

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG	
S.tun	0
hPb	5
hlt	1,33
hdt	0,33

InP	
tyP	44 (4÷20mA)
dP S	2 (decimals num.)

Transmitter	1,6bar	3bar	10bar	16bar	25bar	40bar		
Lo.S	0,00	0,00	0,00	0,00	0,00	0,00	min. sensor scale	
Hi.S	1,60	3,00	10,00	16,00	25,00	40,00	max sensor scale	
oFS	0	0	0	0	0	0	offset of input correction	
Lo.L	0,00	0,00	0,00	0,00	0,00	0,00	lower set-point setting	
Hi.L	1,60	3,00	10,00	16,00	25,00	40,00	upper set-point setting	

Out	
A1.r	0
A1.t	3 (mode AL1 =inverse-relative-normal)
rL.1	2 (AL1)
rL.2	18 (open)
rL.3	19 (close)
rEL	0
A.ty	9 (type of servocontrol command)
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)
t_Lo	2
t_Hi	0.0
t.on	2
t.oF	0.0
dE.b	0,1 (dead zone in % of end scale)

PAS	99 then push and keep pushed F until visualization of Hrd
Hrd	
CtrL	6 (PID warm)
AL.nr	1
but	1
diSP	0
Ld.1	1
Ld.2	28
Ld.3	20

Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value.

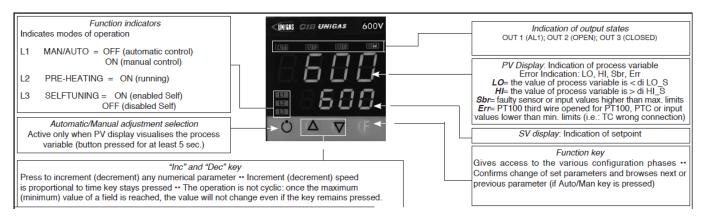
Manual operation:

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on).

Through the arrows, "Open" and "Close" outputs are activated.

To come back to normal working keep the lower left key pushed for at least 5 sec.


Software switch off:

By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.

To restore keep pushed **F** for more than 5 sec.

Set -up for thermocouples type **K** or **J**

Verify wiring of the sensor

Regulation of the set-point = 80

It can be modified by using arrows "up" and "down".

By pushing **F** you go to parameters:

Hy.P	10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14)
Hy.n	-5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14)

Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized.

CFG S.tun	
S.tun	0
hPb	1,2
hlt	5,83
hdt	1,33

InP		
tyP	2 (thermocouple K 0÷1300°C) / 0 (thermocouple J 0÷1000°C)	
dP_S	0 (no decimal) / 1 (1 decimal)	
Lo.S	0 (min. sensor scale)	
Hi.S	1300 (max sensor scale for tc K) / 1000 (max sensor scale for tc J)	
oFS	0 (offset of input correction)	
Lo.L	0 (lower set-point range limit)	
Hi.L	1300 (upper set-point range limit) per tc K / 1000 for tc J	

Out		
A1.r	0	
A1.t	3 (mode AL1 =inverse-relative-normal)	
rL.1	2 (AL1)	
rL.2	18 (open)	
rL.3	19 (close)	
rEL	0	
A.ty	9 (type of servocontrol command)	
Ac.t	12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30)	
t_Lo	2	
t_Hi	0.0	
t.on	2	
t.oF	0.0	
dE.b	0,1 (dead zone in % of end scale)	

PAS	99 then push and keep pushed F until visualization of Hrd	
Hrd		
CtrL	6 (PID warm)	
AL.nr	1	
but	1	
diSP	0	
Ld.1	1	
Ld.2	28	
Ld.3	20	

Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value.

Manual operation:

Keep pushed the lower left key for at least 5 sec.

The instrument will enter the "MAN" mode (see also "Ld1" switching on).

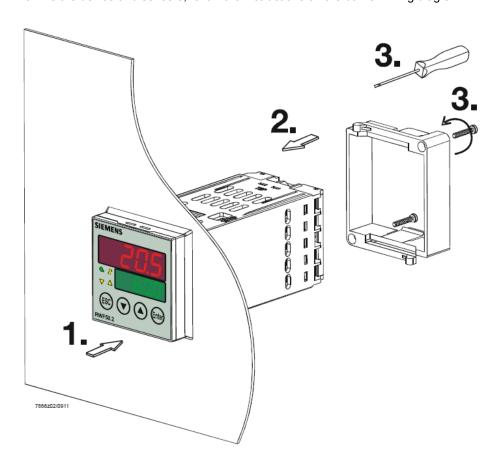
Through the arrows, "Open" and "Close" outputs are activated.

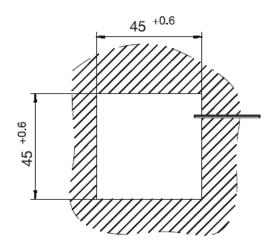
To come back to normal working keep the lower left key pushed for at least 5 sec.

Software switch off:

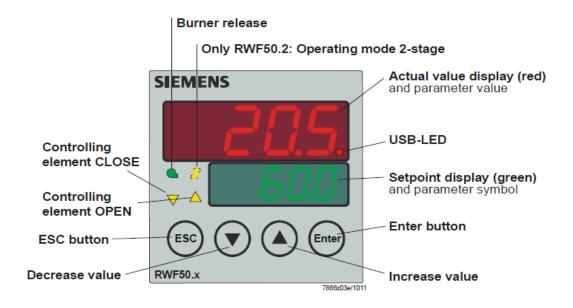
By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe.

To restore keep pushed **F** for more than 5 sec.

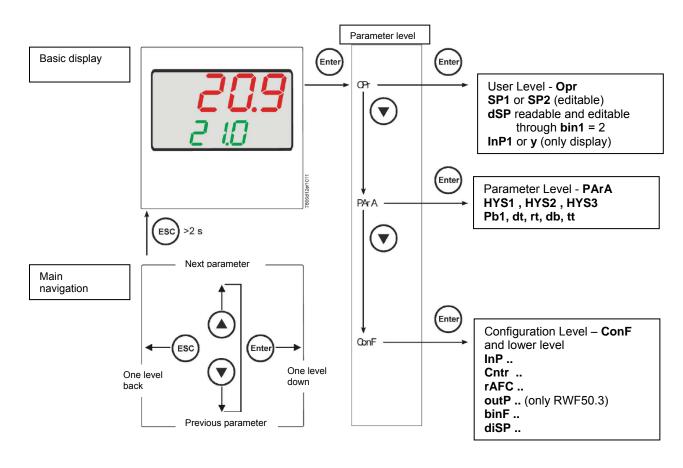

RWF50.2x & RWF50.3x



User manual


M12922CB Rel.1.0 07/2012

DEVICE INSTALLATIONInstall the device using the relevant tools as shown in the figure.
To wire the device and sensors, follow the instructions on the burner wiring diagram.



FRONT PANEL

NAVIGATION MENU

RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow:

Set-point: set or modification:

When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the **Enter** button: on the lower display (green) **Opr** appears; push **Enter** again and in the same display **SP1** appears. Push **Enter** again and the lower display (green **SP1**) flashes. Using the **up and down arrows** change the set-point on the upper display (red). Push **Enter** to confirm and push **ESC** more times to get the home position.

PID parameters set and modifications (see table below):

- Push Enter button, on the green display Opr appears; using the down arrow, scroll until group PArA is reached and push Enter.
- on the green display **Pb1** e appears and on the red one the set parameter.
- Push is sequence the **down or up** arrow the menu is scrolled.
- Push **Enter** to select and the **arrows** to choose the desired value. **Enter** to confirm.

Parameter	Display	Range	Factory setting	Remarks
Proportional band	PB.1	1 9999 digit	10	Typical value for temperature
Derivative action	dt	0 9999 sec.	80	Typical value for temperature
Integral action	rt	0 9999 sec.	350	Typical value for temperature
Dead band (*)	db	0 999,9 digit	1	Typical value
Servocontrol running time	tt	10 3000 sec.	15	Set servocontrol running time
Switch-on differential (*)	HYS1	0,01999 digit	-5	Value under setpoint below which the burner switches back on (1N-1P closes)
Switch-off differential 2° stage (*)	HYS2	0,0 HYS3	3	(enable only with parameter bin1 = 4)
Upper switch-off differential (*)	HYS3	0,0 9999 digit	5	Value over setpoint above which the burner switches off (1N-1P opens)
Switch-on differential on cooling controller (*)	HYS4	0,0 9999 digit	5	Do not used (enable only with parameter CACt = 0)
Switch-off differential 2° stage on cooling controller (*)	HYS5	HYS60,0 digit	5	Do not used (enable only with parameters CACt = 0 and bin1 = 4)
Upper switch-off differential on cooling controller (*)	HYS6	0,01999 digit	5	Do not used (enable only with parameter CACt = 0)
Delay modulation	q	0,0 999,9 digit	0	Do not alter

^(*)Parameters affected by setting of decimal place (ConF > dISP parameter dECP)

Setting the kind of sensor to be connected to the device:

- push the **Enter** button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **ConF.** Push **Enter** to confirm.
- Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm.
- You are inside InP1; the green display shows Sen1 (sensor type), while the red display shows the chosen sensor code
- Push Enter to enter the Sen1 parameter, then choose the desired sensor using the arrows. Push Enter to confirm and ESC to escape.
- Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below.

ConF > InP >InP1

Parameter	Value	Description
SEn1	1	Pt100 3 fili
type of sensor for	2	Pt100 2 fili
analog input 1	3	Pt1000 3 fili
	4	Pt1000 2 fili
	5	Ni1000 3 fili
	6	Ni1000 2 fili
	7	0 ÷ 135 ohm
	15	0 ÷ 20mA
	16	4 ÷ 20mA
	17	0 ÷ 10V
	18	0 ÷ 5V
	19	1 ÷ 5V
OFF1		Using the measured value correction (offset), a measured
sensor offset	-1999 0 +9999	value can be corrected to a certain degree, either up or down
SCL1		In the case of a measuring transducer with standard signal, the
scale low level		physical signal is assigned a display value here
	-1999 0 +9999	(for input ohm, mA, V)
SCH1		In the case of a measuring transducer with standard signal, the
scale high level		physical signal is assigned a display value here
	-1999 100 +9999	(for input ohm, mA, V)
dF1		Is used to adapt the digital 2nd order input filter
digital filter	0 0,6 100	(time in s; 0 s = filter off)
Unit	1	1 = degrees Celsius
temperature unit	2	2 = degrees Fahrenheit

(**bold** = factory settings)

Remark:

RWF50.2 e RWF50.3 cannot be connected to thermocouples.

If thermocouples have to be connected, convert the signal to a 4-20 mA one and set the RWF accordingly.

ConF > Cntr

Parameter	Value	Description
CtYP	1	1 = 3-position controller (open-stop-close only RWF50.2)
controller type	2	2 = continuative action controller (only RWF50.3)
CACt	1	1 = heating controller
control action	0	0 = cooling controller
SPL		
least value of the		set-point limitation prevents entry of values outside the defined
set-point range	-1999 0 +9999	range
SPH		
maximum value of the		set-point limitation prevents entry of values outside the defined
set-point range	-1999 100 +9999	range
oLLo		
set-point limitation		
start, operation limit		
low	-1999 +9999	lower working range limit
oLHi		
set-point limitation		
end, operation limit		
high	-1999 +9999	upper working range limit

(**bold** = factory settings)

ConF > rAFC

Activation boiler shock to	-	only on sites where the set-point is lower than 250°C and according
to rAL parameter.		orny or one of the control of the co
Parameter	Value	Description
FnCT		Choose type of range degrees/time
function	0	0 = deactivated
	1	1 = Kelvin degrees/minute
	2	2 = Kelvin degrees/hour
rASL		Slope of thermal shock protection (only with functions 1 and 2)
ramp rate	0,0 999,9	
toLP tolerance band ramp	0 9999	width of tolerance band (in K) about the set-point 0 = tolerance band inactive
rAL ramp limit	0 250	Ramp limit. When this value is lower than the temperature set- point, the RWF controls the output increasing the temp set point step by step according to rASL. If this is over the temp set point, the control is performed in cooling.

(**bold** = factory settings)

ConF > OutP (parameter under group only for RWF50.3)

Parameter	Value	Description
FnCt		1 = analog input 1 doubling with possibility to convert
tipo di controllo	1	(depending on par SiGn)
	4	4 = modulation controller
SiGn		physical output signal (terminals A+, A-)
type of output signal	0	0 = 0÷20mA
	1	1 = 4÷20mA
	2	2 = 0÷10V
rOut		
Value when out of		
input range	0 101	signal (in percent) when measurement range is crossed
oPnt		value range of the output variable is assigned to a physical
zero point		output signal Per default, the setting corresponds to 0100%
		angular positioning for the controller outputs (terminals A+, A-)
	-1999 0 +9999	(effective only with FnCt = 1)
End		value range of the output variable is assigned to a physical
End value		output signal Per default, the setting corresponds to 0100%
		angular positioning for the controller outputs (terminals A+, A-)
	-1999 100 +9999	(effective only with FnCt = 1)

(**bold** = factory settings)

ConF > binF

Parameter	Value	Description
bin1		0 = without function
digital inputs		1 = set-point changeover (SP1 / SP2)
(terminals DG - D1)		2 = set-point shift (Opr > dSP parameter = value of set-point
	0	modify)
	1	4 = changeover of operating mode
	2	open – modulating operation;
	4	close – 2 stage operation.

(**bold** = factory settings)

ConF > dISP

Parameter	Value	Description
diSU		display value for upper display:
upper display	0	0 = display power-off
(red)	1	1 = analog input value
	4	4 = Controller's angular positioning
	6	6 = set-point value
	7	7 = end value with thermal shock protection
diSL		display value for lower display:
lower display	0	0 = display power-off
(green)	1	1 = analog input value
	4	4 = Controller's angular positioning
	6	6 = set-point value
	7	7 = end value with thermal shock protection
tout		time (s) on completion of which the controller returns
timeout	0 180 250	automatically to the basic display, if no button is pressed
dECP	0	0 = no decimal place
decimal point	1	1 = one decimal place
	2	2 = two decimal places
CodE	0	0 = no lockout
level lockout	1	1 = configuration level lockout (ConF)
	2	2 = Parameter and configuration level lockout (PArA & ConF)
	3	3 = keyboard lockout

(**bold** = factory settings)

Manual control:

- in order to manual change the burner load, while firing keep pushing the ESC button for more than 5 s; on the lower green display Hand appears.
- using the UP and DOWN arrows, the load varies.
- Keep pushing the ESC button for getting the normal operation again.
- NB: every ime the device shuts the burner down (start led switched off contact 1N-1P open), the manual control is not active.

Device self-setting (auto-tuning):

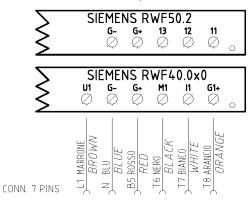
If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request

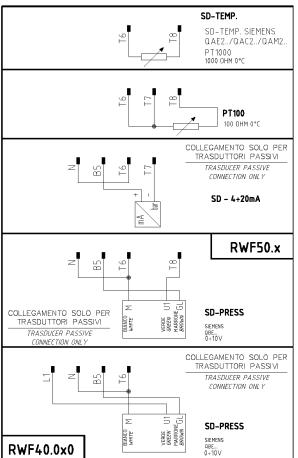
Follow the below instructions:

push the **UP** and **DOWN** arrows for more than 5 s; on the green lower display **TUNE** appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates PID parameters (**Pb1**, **dt** and **rt**). After the calculations, the TUNE is automatically deactivated and the device has already stored them. In order to stop the Auto-tuning function while it works, push again the **UP** and **DOWN** arrows for more than 5 s. The calculated PID parameters can be manually modified following the previously described instructions.

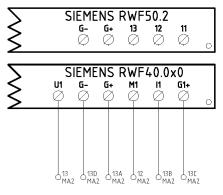
7000204031

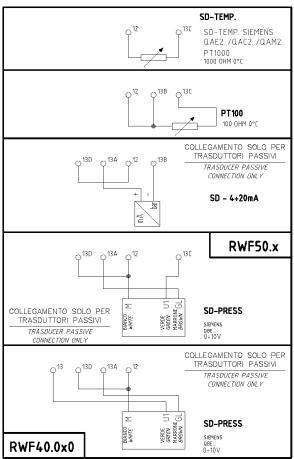
Display of software version:




The software version is shown by pushing ${\bf Enter} + {\bf UP} \ {\bf arrow}$ on the upper display

8


Electric connection:


With 7 pins connector version

With terminals version

Matches terminals between RWF50.2 and RWF40.0x0

ka ⊙ ∅	K2	K3 1N ∅	SIEMENS 1P L1 Ø Ø	S RWF50.2 N Ø		G-	G+	13	12	11 Ø
a Ø	Y1	Y2 Q13	SIEMENS Q14 L1 Ø Ø	RWF40.0x0	U1	G- Ø	G+ Ø	M1	I1 Ø	G1+

Parameters summarising for RWF50.2x:

			Con	f			Conf								
Navigation menù			Inp			0.	-4	-I:OD				_	3 A A		0
Types of probe	SEn1	OFF1	Inp1 SCL1	SCH1	Unit	SPL	ntr SPH	diSP dECP	Pb. 1	dt	rt	tt	PArA HYS1 (*)	HYS3 (*)	Opr SP1 (*)
Siemens QAE2120	6	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80 °C
Siemens QAM2120	6	0	needless	needless	1	0	80	1	10		350	l ` ′	-2,5	2,5	40°C
Pt1000 (130°C max.)	4	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80°C
Pt1000 (350°C max.)	4	0	needless	needless	1	0	350	1	10		350			10	80°C
Pt100 (130°C max.)	1	0	needless	needless	1	0	95	1	10	80	350	(#)	-5	5	80°C
Pt100 (350°C max)	1	0	needless	needless	1	0	350	1	10	80	350	(#)	-5	10	80°C
Probe 4÷20mA / 0÷1,6bar	16	0	0	160	needless	0	160	0	5	20	80	(#)	0	20	100 kPa
Probe 4÷20mA / 0÷3bar	16	0	0	300	needless	0	300	0	5	20	80	(#)	0	20	200 kPa
Probe 4÷20mA / 0÷10bar	16	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa
Probe 4÷20mA / 0÷16bar	16	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa
Probe 4÷20mA / 0÷25bar	16	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa
Probe 4÷20mA / 0÷40bar	16	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa
Siemens QBE2002 P4	17	0	0	400	needless	0	400	0	5	20	80	(#)	0	20	200 kPa
Siemens QBE2002 P10	17	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa
Siemens QBE2002 P16	17	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa
Siemens QBE2002 P25	17	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa
Siemens QBE2002 P40	17	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa
Segnale 0÷10V	17	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(#)	to be fixed	to be fixed	to be fixed
Segnale 4÷20mA	16	0	to be fixed	to be fixed	needless	to be fixed	to be fixed	to be fixed	5	20	80	(#)	to be fixed	to be fixed	to be fixed

NOTE:

SQL33; STM30; SQM40; SQM50; SQM54 = **30** (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = **12** (secondi)

(*)These values are factory set - values <u>must be</u> set during operation at the plant based on the real working temperature/pressure value.

WARNING: With pressure probes the parameters SP1, SCH, SCL, HYS1, HYS3 must be selected, and visualized in kPa (kilo Pascal). (1bar = 100.000Pa = 100kPa)

^(#) tt – servo control run time

APPENDIX: PROBES CONNECTION

To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location.

Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements.

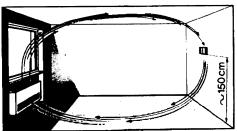
Ambient probes (or ambient thermostats)

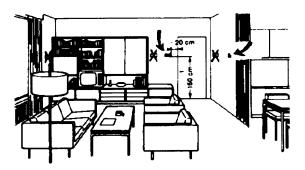
Installation

The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by foreign factors.

It's good to be admired ...even better to be effective

Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system.



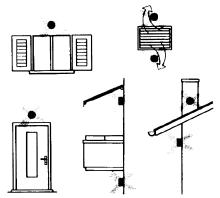

Location

On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold).

Installation position to be avoided

near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them.

Outside probes (weather)


Installation

In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance.

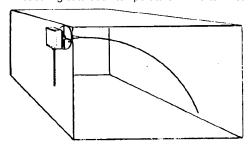
General rule: on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade.

Positions to be avoided

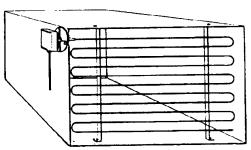
Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever roofs

The sensor must not be painted (measurement error).

Duct or pipe sensors


Installing temperature sensors

For measuring outlet air:

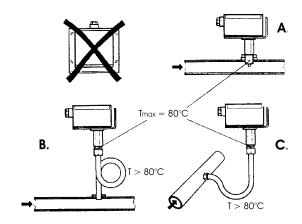

- after delivery fan or
- after coil to be controlled, at a distance of at least 0,5 m

For measuring room temperature:

 before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator.

Bend 0.4m sensor by hand (never use tools) as illustrated.

Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors.


Installing combined humidity sensors

As max. humidity limit sensor on outlet (steam humidifiers).

Installing pressure sensors

- A installation on ducts carrying fluids at max. temperature 80°C
- B installation on ducts at temperature over 80°C and for refrigerants
- C installation on ducts at high temperatures:
 - increase length of siphon
 - place sensor at side to prevent it being hit by hot air coming from the pipe.

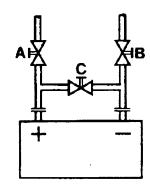
Installing differential pressure sensors for water

- Installation with casing facing down not allowed.-With temperature over 80°C, siphons are needed.
- To avoid damaging the sensor, you must comply with the following instructions

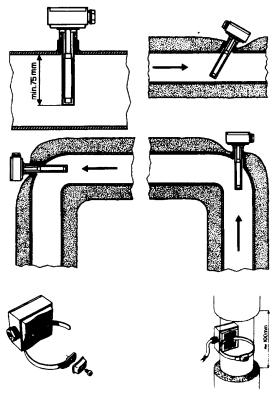
when installing:

- make sure pressure difference is not greater than thevalue permitted by the sensor
- when there are high static pressures, make sure you insert shutoff valves A-B-C.

Putting into operation


Start disable

1=open C1=open C


2=open A2=close B

3=open B3=close A

4= close C

Immersion or strap-on sensors

Placing the probes (QAD22.../QAE21.../QAP21.../RCA...)

Immersion probes installation

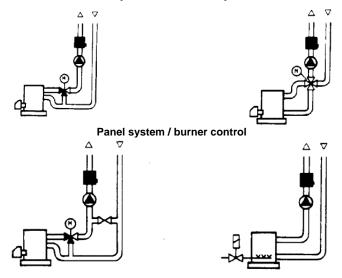
Sensors must be installed on the stretch of pipe in which fluid circulates all the time.

The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow.

Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid.

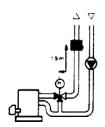
Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.)

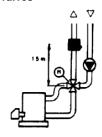
Installing QAD2.. strap-on sensors


Make sure fluid is circulating in the chosen location.

Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe.

Sensors come with straps for pipes up to 100 mm in diameter


With pumps on outlet


with 3 ways valves / with 4 ways valves

With pumps on return

with 3 ways valves / with 4 ways valves

Strap-on or immersion sensors? QAD2.. strap-on sensors

Advantages:

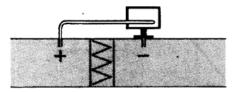
- 10 sec. time constant
- Installed with system running (no plumbing work)
- Installation can be changed easily if it proves incorrect.

Limits:

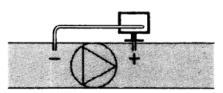
- Suitable for pipe diameters max. 100 mm
- Can be affected by currents of air etc.

QAE2... immersion sensors

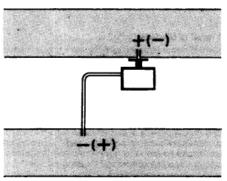
Advantages:

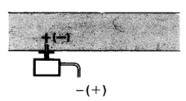

- Measure "mean" fluid temperature
- No external influence on measurement such as: currents of air, nearby pipes etc.

Limits:

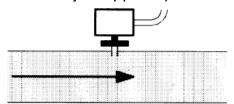

- Time constant with sheath: 20 sec.
- Hard to change installation position if it proves incorrect.

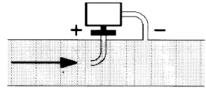
Duct pressure switches and sensors


Installing differential pressure probes for air


A - Control a filter (clogging)

B - Control a fan (upstream/downstream)

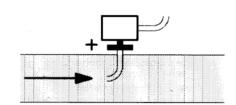

C - Measurement of difference in pressure between two ducts


D - Measurement of difference in pressure between two rooms or of inside of duct and outside

Basic principles

Measuring static pressure(i.e. pressure exerted by air on pipe walls)

Measuring dinamic pressure


$$Pd = \frac{y \vartheta^2}{2g}$$

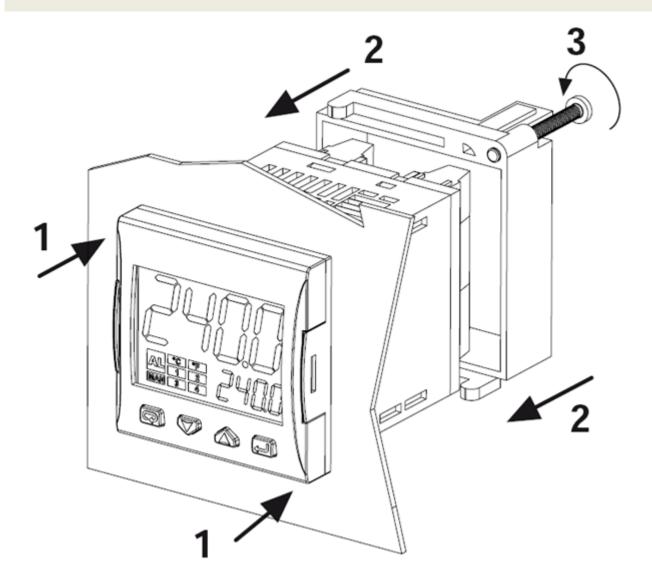
Key

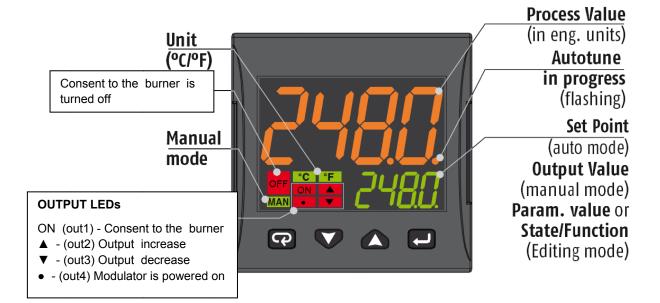
y Kg/m³, specific weight of air m/s, air speed

g 9.81 m/s gravity acceleration Pd mm C.A., dynamic pressure

Measuring total pressure

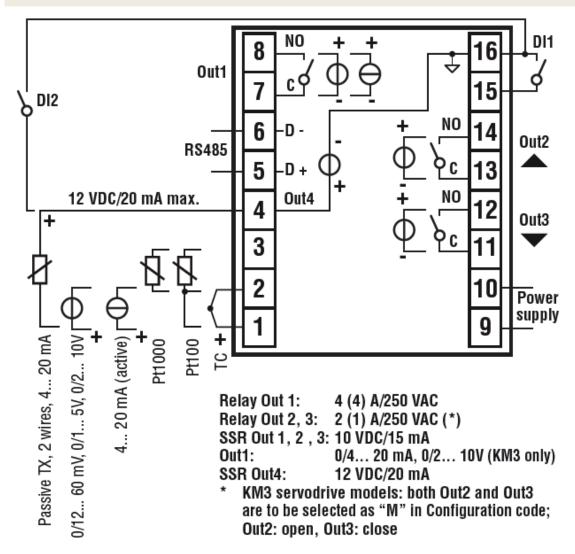
Spare parts


Description	Code
Modulator RWF50.2 (uscita a 3 punti - apri, fermo, chiudi)	2570148
Modulator RWF50.3 (uscita continua 0÷20mA, 4÷20mA, 0÷10V)	2570149
Temperature probe Siemens QAE2120.010A (30÷130°C)	2560101
Temperature probe Siemens QAM2120.040 (-15÷+50°C)	2560135
Thermoresistor Pt1000 ø6mm L100mm (30÷130°C)	2560188
Thermoresistor Pt1000 ø10mm L200mm (0÷350°C)	2560103
Thermoresistor Pt100 ø10mm L200mm (0÷350°C)	2560145
Thermoresistor Pt100 ø8mm L85mm (0÷120°C)	25601C3
Pressure probe Siemens QBE2 P4 (0÷4bar)	2560159
Pressure probe Siemens QBE2 P10 (0÷10bar / signal 0÷10V)	2560160
Pressure probe Siemens QBE2 P16 (0÷16bar / signal 0÷10V)	2560167
Pressure probe Siemens QBE2 P25 (0÷25bar / signal 0÷10V)	2560161
Pressure probe Siemens QBE2 P40 (0÷40bar / signal 0÷10V)	2560162
Pressure probe Danfoss MBS 3200 P 1,6 (0÷1,6bar / signal 4÷20mA)	2560189
Pressure probe Danfoss MBS 3200 P 10 (0÷10bar / signal 4÷20mA)	2560190
Pressure probe Danfoss MBS 3200 P 16 (0÷16bar / signal 4÷20mA)	2560191
Pressure probe Danfoss MBS 3200 P 25 (0÷25bar / signal 4÷20mA)	2560192
Pressure probe Danfoss MBS 3200 P 40 (0÷40bar / signal 4÷20mA)	2560193
Pressure probe Siemens 7MF1565-3BB00-1AA1 (0÷1,6bar / signal 4÷20mA)	25601A3
Pressure probe Siemens 7MF1565-3CA00-1AA1 (0÷10bar / signal 4÷20mA)	25601A4
Sonda di pressione Siemens 7MF1565-3CB00-1AA1 (0÷16bar / signal	25601A5
Pressure probe Siemens 7MF1565-3CD00-1AA1 (0÷25bar / signal 4÷20mA)	25601A6
Pressure probe Siemens 7MF1565-3CE00-1AA1 (0÷40bar / signal 4÷20mA)	25601A7
Pressure probe Gefran E3E B1V6 MV (0÷1,6bar / segnale 4÷20mA)	25601C4
Pressure probe Danfoss E3E B01D MV (0÷10bar / segnale 4÷20mA)	25601C5
Pressure probe Danfoss E3E B16U MV (0÷16bar / segnale 4÷20mA)	25601C6
Pressure probe Danfoss E3E B25U MV (0÷25bar / segnale 4÷20mA)	25601C7
Pressure probe Danfoss E3E B04D MV (0÷40bar / segnale 4÷20mA))	25601C8


KM3 Modulator

USER MANUAL

MOUNTING



DISPLAY AND KEYS

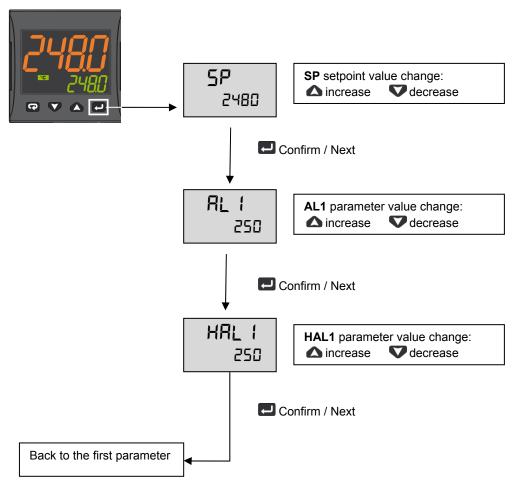
	Operator Mode	Editing Mode
	Access to:	Confirm and go to
	- Operator Commands	Next parameter
	(Timer, Setpoint selection)	
	- Parameters	
	- Configuration	
	Access to:	Increase the displayed
	- Operator additional information	value or select the
	(Output value, running time)	next element of the
		parameters list
	Access to:	Decrease the displayed
	- Set Point	value or select the
		previous element
(P)	Programmable key:	Exit from Operator
74	Start the programmed function	commands/Parameter
	(Autotune, Auto/Man, Timer)	setting/Configuration

CONNECTIONS DIAGRAM

Probe connection:

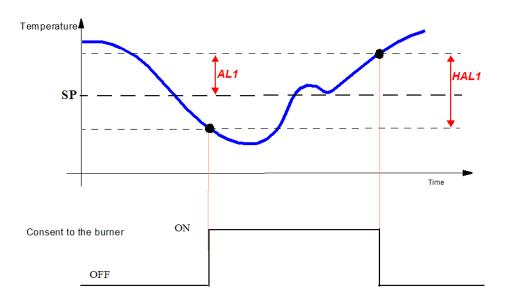
- PT1000/NTC/PTC: between terminal 3 and 2
- PT 100: between terminal 3 and 2 with terminal 1
- Passive pressure probe 0/4-20 mA: between terminal 4 (+) e 1 (-)
 Note: out4 must be activated (IO4F must be setted to ON)
- Powered pressure probe 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive)
 Note: set IO4F to ON to activate Out4

Power supply connection:

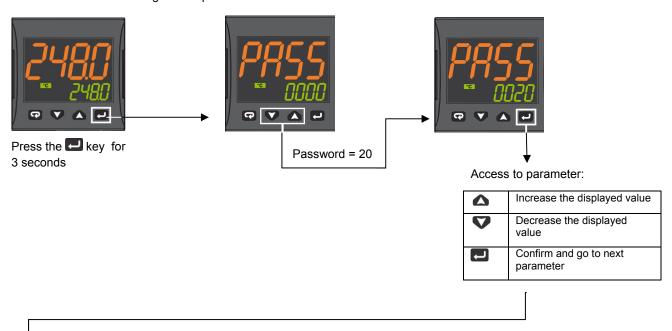

- Neutral wire: terminal 9
- Phase: terminal 10 (100...240 Vac)
- Close terminals 15-16 to switch to the set point 2

Output connection:

- Channel 1: terminal 7 and 8 (burner on off)
- Channel 2: terminal 11 and 12 (servomotor opens)
- Channel 3: terminal 13 and 14 (servomotor closes)


SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)

Push the button to enter into the setpoint configuration:


To return to normal mode, press the 🖸 key for 3 seconds or wait the 10s timeout

Operation example

LIMITED ACCESS LEVEL

Proceed as follows to change some parameters that are not visible in standard user mode:

Param	Description	Values	Default
SEnS	Input type	Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K	Depends on the probe
SP	Set point 1	SPLL SPLH	
AL1	AL1 threshold	AL1L AL1H (E.U.)	
HAL1	AL1 hysteresis	1 9999 (E.U.)	
Pb	Proportional band	1 9999 (E.U.)	
ti	Integral time	0 (oFF) 9999 (s)	
td	Derivative time	0 (oFF) 9999 (s)	See page 7
Str.t	Servomotor stroke time	51000 seconds	
db.S	Servomotor dead band	0100%	
SPLL	Minimum set point value	-1999 SPHL	
SPHL	Maximum set point value	SPLL 9999	
dp	Decimal point position	0 3	
SP 2	Set point 2	SPLLSPLH	60
A.SP	Selection of the active set point	"SP" " nSP"	SP

To exit the parameter setting procedure press the **w** key (for 3 s) or wait until the timeout expiration (about 30 seconds)

Probe parameters configuration MODULATORE ASCON KM3

Parameter Group	inP						AL1		rĒG					S		
Parameter	Sens	dp	SSC	FSc	unit	104.F	AL1 (***)	HAL1 (***)	Pb (***)	ti (***)	td (***)	Str.t	db.S	SPLL	SPHL	SP (***)
Probes		Dec	Scale	Scale) Ju) O	ď	-	ď	servo	Band	SP	SP	Set
Pt1000 (130°C max)	Pt10	-	2	X 22 2	ပ	o	2	10	10	350	-	*	5	30	95	80
Pt1000 (350°C max)	PT10	_			ပွ	no	10	10	10	350	_	*	2	0	350	80
Pt100 (130°C max)	PT1	_			ပ	o	2	10	10	350	_	*	5	0	92	80
Pt100 (350°C max)	Pt1	1			ပွ	on	10	10	10	350	1	*	5	0	350	80
Pt100 (0÷100°C 4÷20mA)	4.20	1	0	100		on	5	10	10	350	1	*	2	0	92	80
Thermocouple K (1200°C max)	crAL	0			၁့	on	20	25	10	350	1	*	5	0	1200	80
Thermocouple J (1000°C max)	l J	0			၁့	on	20	25	10	350	1	*	5	0	1000	80
4-20mA / 0-1,6barPressure probe	4.20	0	0	160		on	20	20	5	120	1	*	5	0	160	100
4-20mA / 0-10bar Pressure probe	4.20	0	0	1000		on	50	50	5	120	1	*	5	0	1000	009
4-20mA / 0-16bar Pressure probe	4.20	0	0	1600		on	80	80	5	120	1	*	5	0	1600	009
4-20mA / 0-25bar Pressure probe	4.20	0	0	2500		on	125	125	5	120	1	*	5	0	2500	009
4-20mA / 0-40bar Pressure probe	4.20	0	0	4000		on	200	200	5	120	1	*	5	0	4000	009
QBE2002 / 0-25bar Pressure probe 0.10	0.10	0	0	2500		0n	125	125	5	120	_	*	5	0	2500	009

Note:

(*) Str.t - Servomotor stroke time SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (Seconds)

STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (Seconds)

(**) Out 4 ... on Display led °4 must be switched on, otherwise change the io4.F parameter value from "on" to "out4", confirm the value, quit the configuration mode then change again the io4.F parameter value from "out4" to "on".

(***) Factory settings. These values must be adapted to machine conditions

N.B. For pressure probe, SP, SPHL, SPLL parameters values are expressed in Kpa (1 bar = 100 Kpa).

CONFIGURATION

How to access configuration level

The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions).

- 1. Push the Dutton for more than 5 seconds. The upper display will show PASS while the lower display will show 0.
- Using \triangle and ∇ buttons set the programmed password. According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section.
 - a. Enter "30" as password to view all the configuration parameters
 - b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv = A or Liv = O will be editable.

 Leave the password blank to edit "user level" parameters, that are identified by attribute Liv = O
- 3. Push the Dutton. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: J. In other words the upper display will show: Input parameters).

The instrument is in configuration mode. To press \square for more than 5 seconds, the instrument will return to the "standard display.

Keyboard functions during parameter changing:

	Operator Mode
(1)	When the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group.
	0 1
	Allows to increase the value of the selected parameter.
lacksquare	Allows to decrease the value of the selected parameter.
(P)	Short presses allow you to exit the current group of parameters and select a new group. A long press terminates the configuration procedure (the instrument returns to the normal display).
⊕ ++	These two keys allow to return to the previous group. Proceed as follows:
	Push the Dutton and maintaining the pressure, then push the D; release both the buttons.

Configuration Parameters

inP	GRO	UP - inpu	t confiuration		
Liv	N°	Param	Description	Values	Default
A	1	SEnS	Input type	Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K	Depends on the probe
Α	2	dp	Decimal point position	0 3	See page 7
Α	3	SSc	Initial scale read-out for linear inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999 9999	0
С	4	FSc	Full scale read-out for linear input inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values)	-1999 9999	Depends on the probe
С	5	unit	Unit of measure (present only in the case of temperature probe)	°C/°F	°C
С	6	Fil	Digital filter on the measured value	0 (= OFF) 20.0 s	1.0
С	7	inE	Selection of the Sensor Out of Range type that will enable the safety output value	or = Over range ou = Under range our = over e under range	or

С	8	oPE	Safety output value	-100 100	0
С	9	io4.F	I/O4 function selection	on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12 24 VDC	on
С	10	diF1	Digital input 1 function	oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, 6 = HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, 10 = Timer Run/Hold, 11 = Timer Run/Reset, 12 = Timer Run/Reset with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Hold, 16 = Program Run/Hold, 17 = Program Run/Hold, 17 = Program Run/Reset, 18 = Sequential SP selection, 19 = SP1 - SP2 selection, 20 = SP1 SP4 binary selection, 21 = Digital inputs in parallel	19
С	12	di.A	Digital Inputs Action (DI2 only if configured)	0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action 2 = DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action	0

Out	GRO	UP- Outp	out parameters		
Liv	N°	Param	Description	Values	Default
С	14	o1F	Out 1 function	AL = Alarm output	AL
С	15	o1AL	Initial scale value of the analog retransmission	-1999 Ao1H	1
С	18	o1Ac	Out 1 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	rEUr.r
С	19	o2F	Out 2 function	H.rEG = Heating output	H.rEG
С	21	o2Ac	Out 2 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir
С	22	o3F	Out 3 function	H.rEG = Heating output	H.rEG
С	24	o3Ac	Out 3 action	dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED	dir

AL1	GRO	UP - Ala	rm 1 parameters		
Liv	N°	Param	Descrizione	Values	Default
С	28	AL1t	Tipo allarme AL1	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the	HidE

				windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the	
				band LHdi = Relative band alarm in alarm inside the	
С	29	Ab1	Alarm 1 function	band 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change	0
С	30	AL1L	For High and low alarms, it is the low limit of the AL1 threshold; For band alarm, it is low alarm threshold	-1999 AL1H (E.U.)	-199.9
С	31	AL1H	For High and low alarms, it is the high limit of the AL1 threshold; For band alarm, it is high alarm threshold	AL1L 9999 (E.U.)	999.9
0	32	AL1	AL1 threshold	AL1L AL1H (E.U.)	See page 7
Ο	33	HAL1	AL1 hysteresis	1 9999 (E.U.)	See page 7
С	34	AL1d	AL1 delay	0 (oFF) 9999 (s)	oFF
С	35	AL10	Alarm 1 enabling during Stand-by mode and out of range conditions	0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition	1

Liv	N°	Param	Description	Values	Default
С	36	AL2t	Alarm 2 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	SE.br
С	37	Ab2	Alarm 2 function	0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change	0
С	42	AL2d	AL2 hysteresis	0 (oFF) 9999 (s)	oFF
С	43	AL2o	Alarm 2 enabling during Stand-by mode and out of range conditions	0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition	0

Liv N°	Param	Description	Values	Default
44	AL3t	Alarm 3 type	nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band	nonE

LbA	LbA Group - Loop break alarm				
Liv	N°	Param	Descrizione	Values	Default
С	52	LbAt	LBA time	Da 0 (oFF) a 9999 (s)	oFF

Liv	N°	Param	Description	Values	Default
С	56	cont	Control type	Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis nr = Heat/Cool ON/OFF control with neutral zone 3Pt = Servomotor control (available only when Output 2 and Output 3 have been ordered as "M")	3pt
С	57	Auto	Autotuning selection	-4 = Oscillating auto-tune with automaticrestart at power up and after all point change -3 = Oscillating auto-tune with manual start -2 = Oscillating -tune with auto-matic start at the first power up only -1 = Oscillating auto-tune with auto-matic restart at every power up 0 = Not used 1 = Fast auto tuning with automatic restart at every power up 2 = Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start 4 = FAST auto-tune with automatic restart at power up and after set point change 5 = Evo-tune with automatic restart at every power up 6 = Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start 8 = Evo-tune with automatic restart at power up and after a set point change	7
С	58	tunE	Manual start of the Autotuning	oFF = Not active on = Active	oFF

С	59	SELF	Self tuning enabling	no = The instrument does not perform the self- tuning YES = The instrument is performing the self- tuning	No
Α	62	Pb	Proportional band	1 9999 (E.U.)	See page 7
Α	63	ti	Integral time	0 (oFF) 9999 (s)	See page 7
Α	64	td	Derivative time	0 (oFF) 9999 (s)	See page 7
С	65	Fuoc	Fuzzy overshoot control	0.00 2.00	1
С	69	rS	Manual reset (Integral pre-load)	-100.0 +100.0 (%)	0.0
Α	70	Str.t	Servomotor stroke time	51000 seconds	See page 7
Α	71	db.S	Servomotor dead band	0100%	5
С	72	od	Delay at power up	0.00 (oFF) 99.59 (hh.mm)	oFF

SP (Grou	p - Set po	pint parameters		
Liv	N°	Param	Description	Values	Default
С	76	nSP	Number of used set points	1 4	2
Α	77	SPLL	Minimum set point value	-1999 SPHL	See page 7
Α	78	SPHL	Maximum set point value	SPLL 9999	See page 7
0	79	SP	Set point 1	SPLL SPLH	See page 7
С	80	SP 2	Set point 2	SPLL SPLH	60
	83	A.SP	Selection of the active set point	"SP" " nSP"	SP
С	84	SP.rt	Remote set point type	RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc = The value will be scaled on the input range and this value will be used as remote SP	trin
С	85	SPLr	Local/remote set point selection	Loc = Local rEn = Remote	Loc
С	86	SP.u	Rate of rise for POSITIVE set point change (ramp UP)	0.01 99.99 (inF) Eng. units per minute	inF
С	87	SP.d	Rate of rise for NEGATIVE set point change (ramp DOWN)	0.01 99.99 (inF) Eng. units per minute	inF

PAn	PAn Group - Operator HMI					
Liv	N°	Param	Description	Values	Default	
С	118	PAS2	Level 2 password (limited access level)	oFF (Level 2 not protected by password) 1 200	20	
С	119	PAS3	Level 3 password (complete configuration level)	3 300	30	
С	120	PAS4	Password livello (livello configurazione a codice)	201 400	300	
С	121	uSrb	button function during RUN TIME	nonE = No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode	tunE	

С	122	diSP	Display management	AAc = Alarm reset ASi = Alarm acknowledge chSP = Sequential set point selection St.by = Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. Str.t = Timer run/hold/reset P.run = Program run P.rES = Program reset P.r.H.r = Program run/hold/reset Spo = Operative set point	SPo
С	123	di.cL	Display colour	0 = The display colour is used to show the actual	2
	123	di.CL	Display coloui	deviation (PV - SP) 1 = Display red (fix) 2 = Display green (fix) 3 = Display orange (fix)	2
	125	diS.t	Display Timeout	oFF (display always ON)	oFF
С	126	fiLd	Filter on the displayed value	0.1 99.59 (mm.ss) oFF (filter disabled)	oFF
	120	IILU	Tiller off the displayed value	From 0.0 (oFF) to 20.0 (E.U.)	011
С	128	dSPu	Instrument status at power ON	AS.Pr = Starts in the same way it was prior to the power down Auto = Starts in Auto mode oP.0 = Starts in manual mode with a power output equal to zero St.bY = Starts in stand-by mode	Auto
С	129	oPr.E	Operative modes enabling	ALL = All modes will be selectable by the next parameter Au.oP = Auto and manual (OPLO) mode only will be selectable by the next parameter Au.Sb = Auto and Stand-by modes only will be selectable by the next parameter	ALL
С	130	oPEr	Operative mode selection	If oPr.E = ALL: - Auto = Auto mode - oPLo = Manual mode - St.bY = Stand by mode If oPr.E = Au.oP: - Auto = Auto mode - oPLo = Manual mode If oPr.E = Au.Sb: - Auto = Auto mode - St.bY = Stand by mode	Auto

Liv	N°	Param	Description	Values	Default
С	131	Add	Instrument address	oFF 1 254	1
С	132	bAud	baud rate	1200 = 1200 baud 2400 = 2400 baud 9600 = 9600 baud 19.2 = 19200 baud 38.4 = 38400 baud	9600
С	133	trSP	Selection of the value to be retransmitted (Master)	nonE = Retransmission not used (the instrument is a slave) rSP = The instrument becomes a Master and retransmits the operative set point PErc = The instrument become a Master and it retransmits the power output	nonE

_iv	N°	Param	Description	Values	Default
<u> </u>	134	Co.tY	Count type	oFF = Not used	oFF
			•	1 = Instantaneous power (kW)	
				2 = Power consumption (kW/h)	
				3 = Energy used during program execution. This	
				measure starts from	
				zero when a program runs end stops at the end	
				of the program. A	
				new program execution will reset the value	
				4 = Total worked days: number of hours the	
				instrument is turned ON	
				divided by 24.	
				5 = Total worked hours: number of hours the	
				instrument is turned ON.	
				6 = Total worked days with threshold: number of	
				hours the instrument is	
				turned ON divided by 24, the controller is forced	
				in stand-by when	
				Co.ty value reaches the threshold set in [137]	
				h.Job.	
				7 = Total worked hours with threshold: number of	
				hours the instrument	
				is turned ON, the controller is forced in stand-by	
				when Co.ty value	
				reaches the threshold set in [137] h.Job.	
				8 = Totalizer of control relay worked days:	
				number of hours the control	
				relay has been in ON condition, divided by 24.	
				9 = Totalizer of control relay worked hours:	
				number of hours the control	
				relay has been in ON condition.	
				10 = Totalizer of control relay worked days with	
				threshold: number of	
				hours the control relay has been in ON condition divided by 24,	
				the controller is forced in stand-by when Co.ty	
				value reaches the	
				threshold set in [137] h.Job.	
				11 = Totalizer of control relay worked hours with	
				threshold: number of	
				hours the control relay has been in ON condition,	
				the controller is	
				forced in stand-by when Co.ty value reaches the	
				threshold set in	
				[137] h.Job.	
)	138	t.Job	Worked time (not resettable)	0 9999 days	0

cAL	cAL Group - User calibration group				
Liv	N°	Param	Description	Values	Default
С	139	AL.P	Adjust Low Point	From -1999 to (AH.P - 10) in engineering units	0
С	140	AL.o	Adjust Low Offset	-300 +300 (E.U.)	0
С	141	AH.P	Adjust High Point	From (AL.P + 10) to 9999 engineering units	999.9
С	142	AH.o	Adjust High Offset	-300 +300	0

OPERATIVE MODES

When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters.

At power ON the instrument can start in one of the following mode depending on its configuration:

Automatic Mode In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value.

Manual Mode (OPLO): In Manual mode the upper display shows the measured value while the lower display shows the power output The lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made.

Stand by Mode (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero.

We define all the above described conditions as "Standard Display".

As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected.

AUTOMATIC MODE

Keyboard function when the instrument is in Auto mode:

	Modo Operatore
	Allows entry into parameter modification procedures
	Allows you to start the "Direct set point modification" function (see below).
V	Allows you to display the "additional informations" (see below).
P	Performs the action programmed by [121] uSrb (button function during RUN TIME) parameter

Additional information

This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available.

- 1. When the instrument is showing the "standard display" push button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action
- 2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below:
 - where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2)..
- 3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter:

P843

- 4. Push button again. When the wattmeter function is running the lower display will show U followed by the measured energy..
- 5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time.
- 6. Push button. The instrument returns to the "standard display".

Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display.

Direct set point modification

This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress.

- 1. Push volution. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value.
- 2. By and buttons, assign to this parameter the desired value
- 3. Do not push any button for more than 5 second or push the button. In both cases the instrument memorize the new value and come back to the "standard display".

Manual mode

This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the \triangle and ∇ buttons.

In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H100 (100% output power with reverse action) to C100 (100% output power with direct action).

Notes:

- During manual mode, the alarms are operative.
- If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode.
- If you set manual modes during self-tune execution, the self- tune function will be aborted.
- During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally..

STAND-BY MODE

This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY".

Notes:

- During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting.
- If you set stand by mode during program execution, the program will be aborted.
- If you set stand by mode during self-tune execution, the self- tune function will be aborted.
- During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.
- When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed).

AUTOTUNE (EVOTUNE)

Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press Dutton for 3 seconds.

ERROR MESSAGES

The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications:

Over-range: Under-range

The sensor break will be signalled as an out of range:

Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively.

To check the out of span Error condition, proceed as follows:

- 1. Check the input signal source and the connecting line.
- 2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration.
- 3. If no error is detected, send the instrument to your supplier to be checked.

List of possible errors

ErAT Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message.

ouLd Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate..

NoAt Auto-tune not finished within 12 hours.

ErEP Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier.

RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier.

Errt Possible problem of the calibration memory. When this error is detected, send the instrument to your supplier.

FACTORY RESET

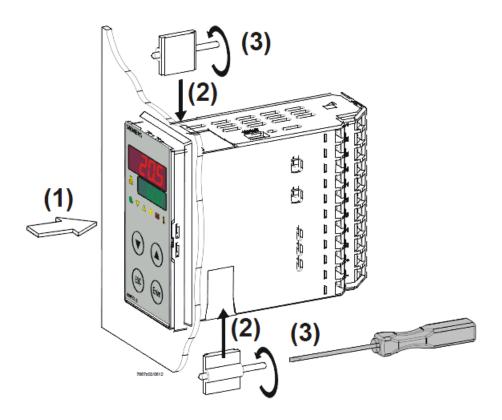
Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON).

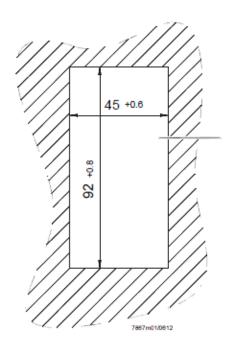
The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows:

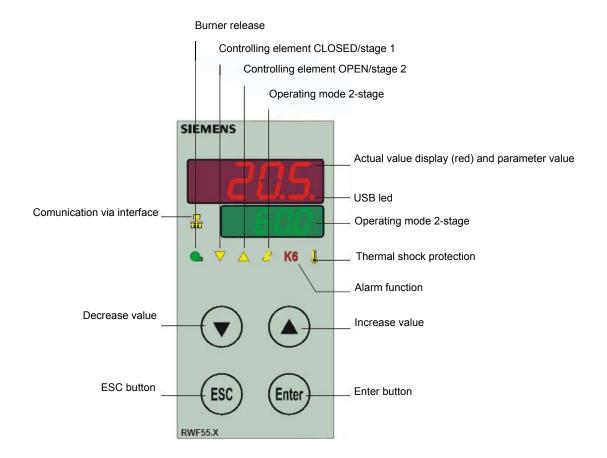
- 1. Press the button for more than 5 seconds. The upper display will show PASS while the lower display shows 0;
- 2. Using \triangle and ∇ buttons set the value -481;
- 3. Push Dutton:
- 4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON.

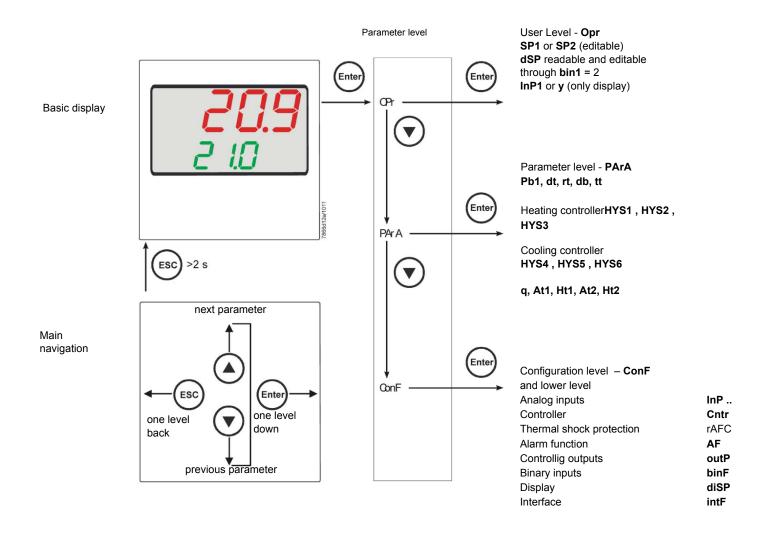
The procedure is complete.

Note: The complete list of the default parameters is available in Chapter "Configuration".


RWF55.5X & RWF55.6X


User manual


DEVICE INSTALLATION


Fixing system

Drilling dimensions:

RWF55 is preset good for 90% of applications. However, you can set or edit parameters as follow:

Set-point: set or modification:

When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the Enter button: on the lower display (green) Opr appears; push Enter again and in the same display SP1 appears. Push Enter again and the lower display (green SP1) flashes. Using the up and down arrows change the set-point on the upper display (red). Push Enter to confirm and push ESC more times to get the home position.

PID parameters set and modifications (PArA):

Push **Enter** button, on the green display **Opr** appears; using the **down arrow**, scroll until group **PArA** is reached and push **Enter**. On the green display **Pb1** e appears and on the red one the set parameter. Push is sequence the **down or up** arrow the menu is scrolled. Push **Enter** to select and the **arrows** to choose the desired value. **Enter** to confirm

Parameter	Display	Range	Factory setting	Remarks
Proportional band	Pb1	1 9999 digit	10	Typical value for temperature
erivative action	dt	0 9999 sec.	80	Typical value for temperature
Integral action	rt	0 9999 sec.	350	Typical value for temperatureT
Dead band (*)	db	0 999,9 digit	1	Typical value
Servocontrol running time	tt	10 3000 sec.	15	Set servocontrol running time
Switch-on differential (*)	HYS1	0,01999 digit	-5	Value under setpoint below which the burner switches back on (1N-1P closes)
Switch-off differential 2° stage (*)	HYS2	0,0 HYS3	3	(enable only with parameter bin1 = 4)
Upper switch-off differential (*)	HYS3	0,0 9999 digit	5	Value over setpoint above which the burner switches off (1N-1P opens)
Switch-on differential on cooling controller (*)	HYS4	0,0 9999 digit	5	Do not used (enable only with parameter CACt = 0)
Switch-off differential 2° stage on cooling controller (*)	HYS5	HYS60,0 digit	5	Do not used (enable only with parameter CACt = 0 and parameter bin1 =0)
Upper switch-off differential on cooling controller (*)	HYS6	0,01999 digit	5	Do not used (enable only with parameter CACt = 0)
Delay modulation	q	0,0 999,9 digit	0	Do not alter
T Outside temperature Curve point 1 (*)	At1	-40120 digit	-10	First point of external temperature for climatic curve
Boiler temperature Curve point 1 (*)	Ht1	SPLSPH	60	Set-point temperature for the external temperature 1
TT Outside temperature Curve point 2 (*)	At2	-40120 digit	20	Second point of external temperature for climatic curve
Boiler temperature Curve point 2 (*)	Ht2	SPLSPH	50	Set-point temperature for the external temperature 2

^(*) Parameters affected by setting of decimal place (ConF > dISP parameter dECP)

Setting the kind of sensor to be connected to the device:

Push the **Enter** button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **Conf**. Push **Enter** to confirm. Now on the green display the group **InP** appears. Push **Enter** and **InP1** is displaied. Enter to confirm. You are inside **InP1**; the green display shows **Sen1** (sensor type), while the red display shows the chosen sensor code Push **Enter** to enter the **Sen1** parameter, then choose the desired sensor using the **arrows**. Push **Enter** to confirm and **ESC** to escape.

Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below:

ConF > InP >InP1

Parameter	Value	Description
SEn1	1	Pt100 3 wire
type of sensor for analog	2	Pt100 2 wire
input 1	3	Pt1000 3 wire
	4	Pt1000 2 wire
	5	Ni1000 3 wire
	6	Ni1000 2 wire
	7	0 ÷ 135 ohm
	8	Cu-CuNi T
	9	Fe-CuNi J
	10	NiCr-Ni K
	11	NiCrSi-NiSi N
	12	Pt10Rh-Pt S
	13	Pt13Rh-Pt R
	14	Pt30Rh-Pt6Rh B
	15	0 ÷ 20mA
	16	4 ÷ 20mA
	17	0 ÷ 10V
	18	0 ÷ 5V
	19	1 ÷ 5V
OFF1	-1999 0 +9999	Correction value measured by the sensor
Sensor offset		
SCL1	-1999 0 +9999	minimum scale value(for input ohm, mA, V)
scale low level		
SCH1	-1999 100 +9999	maximum scale value(for input ohm, mA, V)
scale high level		, , , , , , , , , , , , , , , , , , , ,
dF1	0 0,6 100	Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off)
digital filter		
Unit	1	1 = degrees Celsius
	2	2 = degrees Fahrenheit
temperature unit		, in the second

ConF > InP >InP2

Input 2: this input can be used to specify an external setpoint or carry out setpoint shifting

Parameter	Value	Description
FnC2	0	0= no function
	1	1= external setpoint (display SPE)
	2	2 =setpoint shifting (display dSP)
	3	3 = angular positioning feedback
SEn2	1	0 ÷ 20mA
tisensor type input 2	2	4 ÷ 20mA
31 1	3	0 ÷ 10V
	4	0 ÷ 5V
	5	1 ÷ 5V
	1	0 ÷ 20mA
OFF2	-1999 0 +9999	Correction value measured by the sensor
Sensor offset		
SCL2	-1999 0 +9999	minimum scale value(for input ohm, mA, V)
scale low level		
SCH2	-1999 100 +9999	maximum scale value(for input ohm, mA, V)
scale high level		
dF2	0 2 100	Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off)
digital filter		

(**bold** = factory settings)

ConF > InP >InP3

Input 3: this input is used to acquire the outside temperature

Parameter	Value	Description
SEn3	0	0 =
sensor type input 3sensor	1	1 = wire
type input 2	2	2 = wire
OFF3	-1999 0 +9999	Correction value measured by the sensor
Sensor offset		
dF3	0 1278 1500	Is used to adapt the digital 2nd order input filter (time in s; 0 s = filter off)
digital filter		

ConF > Cntr

Here, the type of controller, operating action, setpoint limits and presettings for self-optimization are selected

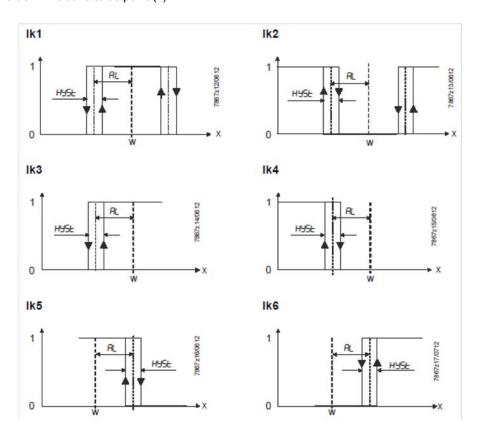
Parameter	Value	Description
CtYP	1	1 = 3-position controller (open-stop-close)
controller type	2	2 = continuative action controller (0 ÷10V or 4 ÷ 20mA)
CACt	1	1 = heating controller
control action	0	0 = cooling controller
SPL	-1999 0 +9999	minimum set-point scale
least value of the set-point range		
SPH	-1999 100 +999	maximum set-point scale
maximum value of the set- point range		
	0	0 = Free
Self-optimization	1	1 = Locked
		Self-optimization can only be disabled or enabled via the ACS411 setup program.
		Self-optimization is also disabled when the parameter level is locked
oLLo	-1999 +9999	ower working range limit
set-point limitation start, operation limit low		
oLHi	-1999 +9999	upper working range limit
set-point limitation end, operation limit high		

(**bold** = factory settings)

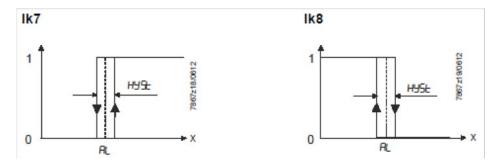
ConF > rAFC

Activation boiler shock termic protetion:

RWF55.. can activate the thermal shock protection only on sites where the set-point is lower than 250°C and according to **rAL** parameter


Parameter	Value	Description
FnCT		tchoose type of range degrees/time
type of contol	0	0 = deactived
	1	1 = Kelvin degrees/minute
	2	2 = Kelvin degrees/hour
rASL		Slope of thermal shock protection (only with functions 1 and 2)
ramp rate	0,0 999,9	
toLP	2 x (HYS1) = 109999	width of tolerance band (in K) about the set-point
tolerance band ramp		0 = tolerance band inactive
rAL	0 250	Ramp limit. When this value is lower than the temperature set-point, the
ramp limit	u 230	Ramp limit. When this value is lower than the temperature set-point, the RWF controls the output increasing the temp set point step by step according to rASL . If this is over the temp set point, the control is performed in cooling

Alarm functionAF


The alarm function can be used to monitor the analog inputs. If the limit value is exceeded, multifunctional relay K6 (terminals **6N** and **6P**) is activated (depending on the switching characteristic)

The alarm function can have different switching functions (lk1 to lk8) and can be set to a deviation from the active setpoint or to a fixed limit value

Limit value **AL** relative to setpoint (x)

Fixed limit value AL

ConF > AF

Parameter	Value	Description
FnCt	0	0 = Without function
type of control	1	lk1 = monitored input InP1
	2	lk2 = monitored input InP1
	3	lk3 = monitored input InP1
	4	lk4 = monitored input InP1
	5	lk5 = monitored input InP1
	0	lk6 = monitored input InP1
	/ R	lk7 = monitored input InP1
	9	lk8 = monitored input InP1
	10	lk7 = monitored input InP2
	11	lk8 = monitored input InP2
	12	lk7 = monitored input InP3
		lk8 = monitored input InP3
Alarm value	-1999	Limit value or deviation from setpoint to be monitored (see alarm functions
AL	0	lk1 to lk8: limit value AL)
	1999	Limit value range for lk1 and lk2 09999
HySt	0	Switching differential for limit value AL
switching differential	1	
	9999	
ACrA	0	Switched-off
response by out of range	1	ON
		Switching state in the case of measuring range overshoot or undershoot (Out of Range)

(**bold** = factory settings)

ConF > OutP

For fuel-air ratio control purposes, the RWF55 has the binary outputs K2, K3 (terminals KQ,K2, K3) and the analog output (terminals A+, A-). The burner is released via relay K1 (terminals 1N, 1P).

The binary outputs of the RWF55 offer no setting choices

The RWF55 has an analog output.

The analog output offers the following setting choices:

Parameter	Value	Description
FnCt	1	1 = analog input 1 doubling with possibility to convert
type of control	2	2 = analog input 2 doubling with possibility to convert
	3	3 = analog input 3 doubling with possibility to convert
	4	4 = Controller's angular positioning is delivered (modulating controller)
SiGn		physical output signal (terminals A+, A-)
type of output signal	0	0 = 0÷20mA
	1	1 = 4÷20mA
	2	2 = 0÷10V DC
rOut	0 101	signal (in percent) when measurement range is crossed
value when out of input		
range		
oPnt	-1999 0 +9999	A value range of the output variable is assigned to a physical output signal (for
zero point		FnCt = 1, 2, 3)
End	-1999 100 +9999	A value range of the output variable is assigned to a physical output signal (for
end point		FnCt = 1, 2, 3)

ConF > binF

This setting decides on the use of the binary inputsD1, D2, DG

b

Parameter	Value	Description
bin1	0	0 = without function
binary imput 1 (terminals DG	1	1 = set-point changeover (SP1 / SP2)
- D1)	2	2 = Iset-point shift (Opr > dSP parameter = value of set-point modify)
	3	3 = input alarm
bin2	4	changeover of operating mode
binary imput 2 (terminalsк		DG-D2 open = modulating operation
DG – D2)		DG-D2 close = 2 stage operation

(**bold** = factory settings)

ConF > dISP

.Both displays can be customized to suit your needs by configuring the displayed value, decimal, time out and blocking

Parameter	Value	Description
diSU		Display value for upper display:
pper display (red)	0	0 = display power-off
	1	1 = analog input 1 (InP1) value
	2	2 = analog input 2 (InP2) value
	3	3 = analog input 3 (InP3) value
	4	4 = controller's angular positioning
	0 7	6 = set-point valueв
	,	7 = end value with thermal shock protection
diSL		Display value for lower display3:
lower display (green)	0	0 = display power-off
	1	1 = analog input 2 (InP2) value
	2	2 = analog input 2 (InP2) value
	3	3 = analog input 2 (InP2) value
	4 6	4 = controller's angular positioning
	0 7	6 = set-point valueв
	1	7 = end value with thermal shock protection
tout	0 180 250	time (s) on completion of which the controller returns automatically to the
timeout		basic display, if no button is pressed
dECP	0	0 = no decimal place
decimal point	1	1 = one decimal place
	2	2 = two decimal place
CodE	0	0 = no lockout
level lockout	1	1 = configuration level lockout (ConF)
	2	2 = parameter and configuration level lockout (PArA & ConF)
	3	3 = keyboard lockout

ConF > IntF

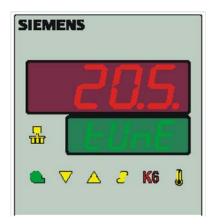
The controller can be integrated into a data network using an optional RS-485 (terminals R+ and R-) interface or an optional Profibus DP interface(only modelRWF55.6x terminalsC1-C2-C3-C4)

Parameter	Value	Description
bdrt	0	0 = 4800 baud
baudrate	1	1 = 9600 baud
	2	2 = 19200 baud
	3	3 = 38400 baud
Adr	0	Address in the data network
Device address Modbus	1	
	254	
dP	0 125	only withRWF55.6x
Device address Profibus		
dtt	0	0 = swiched-off
Remote detection time	30	
	7200s	

(bold = factory settings)

Manual control:

In order to manual change the burner load, while firing keep pushing the **ESC** button for more than 5 s; on the lower green display **Hand** appears.

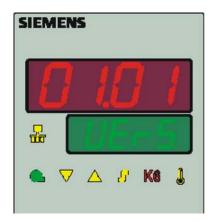

using the UP and DOWN arrows, the load varies.

Keep pushing the ESC button for getting the normal operation again.

NB: every time the device shuts the burner down (start led switched off - contact 1N-1P open), the manual control is not active.

Device self-setting (auto-tuning):

If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request

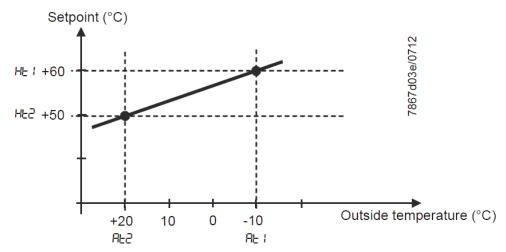

Follow the below instructions:

push the **UP** and **DOWN** arrows for more than 5 s; on the green lower display **tUnE** appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates **PID** parameters (**Pb1**, **dt** and **rt**). After the calculations, the **tUnE** is automatically deactivated and the device has already stored them.

In order to stop the Auto-tuning function while it works, push again the **UP** and **DOWN** arrows for more than 5 s. The calculated **PID** parameters can be manually modified following the previously described instructions.

Display of software version:

The software version is shown by pushing Enter + UP arrow on the upper display.


Weather-compensated setpoint shifting(climatic regulation):

The RWF55 can be configured so that weather-compensated setpoint shifting is activated when an LG-Ni1000 outside sensor or a Pt1000 is connected (see parameter InP3).

To take into account the time response of a building, weather-compensated setpoint shifting uses the attenuated outside temperature rather than the current outside temperature

The minimum and maximum setpoints can be set using the lower setpoint limit **SPL** and the upper setpoint limit **SPH** of the menù **Crtr**. The system also prevents the lower working range limit **oLLo** and upper working range limit **oLHi** from exceeding/dropping below the system temperature limits.

The heating curve describes the relationship between the boiler temperature setpoint and the outside temperature. It is defined by 2 curve points. For 2 outside temperatures, the user defines the boiler temperature setpoint that is required in each case. The heating curve for the weather-compensated setpoint is calculated on this basis. The effective boiler temperature setpoint is limited by the upper setpoint limit **SPH** and the lower setpoint limit **SPL**.

For setting climatic regulation function set:

PArA > parametersAt1, Ht1, At2, Ht2

ConF > InP > InP3 parametersSEn3, FnC3 = 1 (Weather-compensated setpoint).

Modbus interface

The tables that follow in this chapter specify the addresses of the readable and writable words that the customer is able to access. The customer may read and/or write the values using SCADA programs, PLCs, or similar.

The entries under Access have the following meanings:

R/O Read Only, value can only be read

R/W Read/Write, value can be read and written

The number of characters specified under Data type in the case of character strings includes the final \0.

Char10 means that the text is up to 9 characters long. The final \0 character is then added to this

User level

Address	Access	Data type	Signal reference	Parameter
0x0000	R/O	Float	X1	Analog input InP1
0x0002	R/O	Float	X2	Analog input InP2
0x0004	R/O	Float	X3	Analog input InP2
0x0006	R/O	Float	WR	Actual setpoint
0x0008	R/W	Float	SP1	Setpoint 1
0x000A	R/W	Float	SP2 (= dSP)	Setpoint 2
0x1035	R/O	Float		Analog input InP3 (unfiltered)
0x1043	R/O	Float		Actual angular positioning
0x1058	R/O	Word	B1	Burner alarm

Parameter level

Address	Access	Data type	Signal reference	Parameter	
0x3000	R/W	Float	Pb1	Proportional range 1	
0x3004	R/W	Float	dt	Derivative action time	
0x3006	R/W	Float	rt	Integral action time	
0x300C	R/W	Float	db	Dead band	
0x3012	R/W	Word	tt	Controlling element running time	
0x3016	R/W	Float	HYS1	Switch-on threshold	
0x3018	R/W	Float	HYS2	Switch-off threshold down	
0x301A	R/W	Float	HYS3	Switch-off threshold up	
0x301C	R/W	Float	HYS4	Switch-on threshold (cooling)	
0x301E	R/W	Float	HYS5	Switch-off threshold down (cooling)	
0x3020	R/W	Float	HYS6	Switch-off threshold up (cooling)	
0x3022	R/W	Float	q	Reaction threshold	
0x3080	R/W	Float	At1	Outside temperature 1	
0x3082	R/W	Float	Ht2	Boiler temperature 1	
0x3084	R/W	Float	At2	Outside temperature 2	
0x3086	R/W	Float	Ht2	Boiler temperature 2	

Configuration level

Address	Access	Data type	Signal reference	Parameter
0x3426	R/W	Float	SCL1	Start of display input 1
0x3428	R/W	Float	SCH1	End of display input 1
0x3432	R/W	Float	SCL2	Start value input 2
0x3434	R/W	Float	SCH2	End value input 2
0x3486	R/W	Float	SPL	Start of setpoint limitation
0x3488	R/W	Float	SPH	End of setpoint limitation
0x342A	R/W	Float	OFFS1	Offset input E1
0x3436	R/W	Float	OFFS2	Offset input E2
0x343A	R/W	Float	OFFS3	Offset input E3
0x1063	R/W	Word	FnCt	Ramp function
0x1065	R/W	Float	rASL	Ramp slope
0x1067	R/W	Float	toLP	Tolerance band ramp
0x1069	R/W	Float	rAL	Limit value
0x1075	R/W	Float	dtt	Remote Detection Timer
0x1077	R/W	Float	dF1	Filter constant input 1
0x1079	R/W	Float	dF2	Filter constant input 2
0x107B	R/W	Float	dF3	Filter constant input 3
0x107D	R/O	Float	oLLo	Lower working range limit
0x107F	R/O	Float	oLHi	Upper working range limit
0x106D	R/W	Word	FnCt	Alarm relay function
0x106F	R/W	Float	AL	Alarm relay limit value (limit value alarm)
0x1071	R/W	Float	HYSt	Alarm relay hysteresis

Remote operation

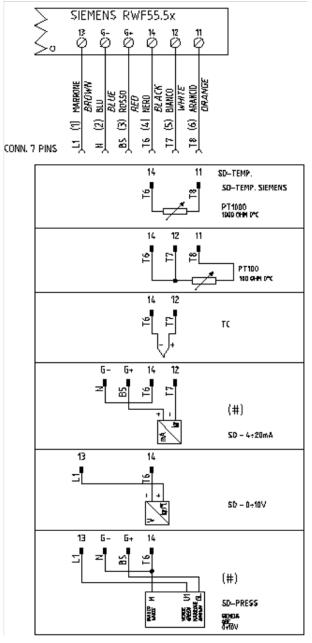
Address	Access	Data type	Signal reference	Parameter	
0x0500	R/W	Word	REM	Activation remote operation *	
0x0501	R/W	Word	rOFF	Controller OFF in remote setpoint **	
0x0502	R/W	Float	rHYS1	Switch-on threshold remote	
0x0504	R/W	Float	rHYS2	Switch-off threshold down remote	
0x0506	R/W	Float	rHYS3	Switch-off threshold up remote	
0x0508	R/W	Float	SPr	Setpoint remote	
0x050A	R/W	Word	RK1	Burner release remote operation	
0x050B	R/W	Word	RK2	Relay K2 remote operation	
0x050C	R/W	Word	RK3	Relay K3 remote operation	
0x050D	R/W	Word	RK6	Relay K6 remote operation	
0x050E	R/W	Word	rStEP	Step-by-step control remote operation	
0x050F	R/W	Float	rY	Angular positioning output remote operation	
0x0511	R/W	Float	rHYS4	Switch-on threshold remote (cooling)	
0x0513	R/W	Float	rHYS5	Switch-off threshold down remote (cooling)	
0x0515	R/W	Float	rHYS6	Switch-off threshold up remote (cooling)	

Legend

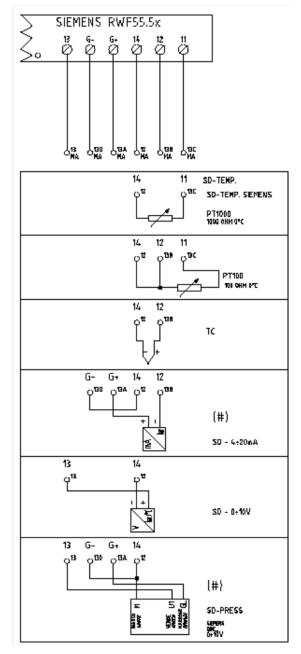
^{* =} Local

^{** =} Controller OFF

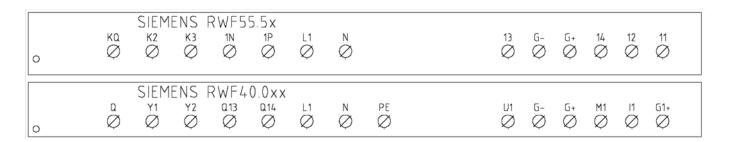
Dati dell'apparecchio


Address	Access	Data type	Signal reference	Parameter
0x8000	R/O	Char12		Software version
0x8006	R/O	Char14		VdN number

Stato dell'apparecchio


Address	Access	Data type	Signal reference	Parameter
0x0200	R/O	Word		Outputs and states
			Bit 0	Output 1
			Bit 1	Output 3
			Bit 2	Output 2
			Bit 3	Output 4
			Bit 8	Hysteresis limitation
			Bit 9	Control system
			Bit 10	Self-optimization
			Bit 11	Second setpoint
			Bit 12	Measuring range overshoot InP1
			Bit 13	Measuring range overshoot InP2
			Bit 14	Measuring range overshoot InP3
			Bit 15	Calibration mode
0x0201	R/O	Word		Binary signals and hardware detection
			Bit 0	Operation mode 2-stage
			Bit 1	Manual mode
			Bit 2	Binary input D1
			Bit 3	Binary input D2
			Bit 4	Thermostat function
			Bit 5	First controller output
			Bit 6	Second controller output
			Bit 7	Alarm relay
			Bit 13	Analog output available
			Bit 14	Interface available

Electric connections:


With 7 pins connector version

With terminals version

Corrispondences bornes entre RWF55.5x y RWF40.0x0Matches terminals betweenRWF55.5x and RWF40.0x0

18

Parameters summarising for RWF55.xx:

			Con	F			ConF								
Navigation menù	Inp														
			Inp1		Cntr		diSP					PArA		Opr	
Types of probe	SEn1	OFF1	SCL	SCH	Unit	SPL	SPH	dECP	Pb. 1	dt	rt	tt	HYS1 (*)	HYS3 (*)	SP1 (*)
Siemens QAE2120	6	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80 °C
Siemens QAM2120	6	0	needless	needless	1	0	80	1	10	80	350	(#)	-2,5	2,5	40°C
Pt1000 (130°C max.)	4	0	needless	needless	1	30	95	1	10	80	350	(#)	-5	5	80°C
Pt1000 (350°C max.)	4	0	needless	needless	1	0	350	1	10	80	350	(#)	-5	10	80°C
Pt100 (130°C max.)	1	0	needless	needless	1	0	95	1	10	80	350	(#)	-5	5	80°C
Pt100 (350°C max)	1	0	needless	needless	1	0	350	1	10	80	350	(#)	-5	10	80°C
Probe4÷20mA / 0÷1,6bar	16	0	0	160	needless	0	160	0	5	20	80	(#)	0	20	100 kPa
Probe4÷20mA / 0÷3bar	16	0	0	300	needless	0	300	0	5	20	80	(#)	0	20	200 kPa
Probe 4÷20mA / 0÷10bar	16	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa
Probe 4÷20mA / 0÷16bar	16	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa
Probe 4÷20mA / 0÷25bar	16	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa
Probe 4÷20mA / 0÷40bar	16	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa
Probe 4÷20mA / 0÷60PSI	16	0	0	600	needless	0	600	0	5	20	80	(#)	0	30	300 (30PSI)
Probe4÷20mA / 0÷200PSI	16	0	0	2000	needless	0	2000	0	5	20	80	(#)	0	75	600 (60PSI)
Probe4÷20mA / 0÷300PSI	16	0	0	3000	needless	0	3000	0	5	20	80	(#)	0	120	600 (60PSI)
Siemens QBE2002 P4	17	0	0	400	needless	0	400	0	5	20	80	(#)	0	20	200 kPa
Siemens QBE2002 P10	17	0	0	1000	needless	0	1000	0	5	20	80	(#)	0	50	600 kPa
Siemens QBE2002 P16	17	0	0	1600	needless	0	1600	0	5	20	80	(#)	0	80	600 kPa
Siemens QBE2002 P25	17	0	0	2500	needless	0	2500	0	5	20	80	(#)	0	125	600 kPa
Siemens QBE2002 P40	17	0	0	4000	needless	0	4000	0	5	20	80	(#)	0	200	600 kPa
Signal 0÷10V	17	0	needless	needless	needless	needless	needless	needless	5	20	80	(#)			
Signal 4÷20mA	16	0	needless	needless	needless	needless	needless	needless	5	20	80	(#)			

NOTE:

(#) tt - servo control run time

SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (secondi)

(*)These values are factory set - values must be set during operation at the plant based on the real working temperature/pressure value.

WARNING:

With pressure probes in bar the parameters SP1, SCH, SCL, HYS1, HYS3 must be set and displayed in kPa (kilo Pascal); 1bar = 100,000Pa = 100kPa. With pressure probes in PSI the parameters SP1, SCH, SCL, HYS1, HYS3 must be set and displayed in PSI x10 (example: 150PSI > I display 1500).

APPENDIX: PROBES CONNECTION

To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location.

Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements.

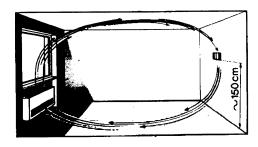
Ambient probes (or ambient thermostats)

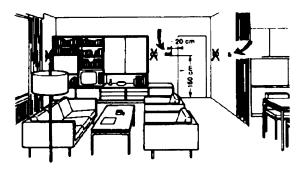
Installation

The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by foreign factors.

It's good to be admired ...even better to be effective

Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system.

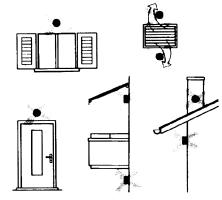



Location

On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold).

Installation position to be avoided

near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them.


Outside probes (weather)Installation

In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance.

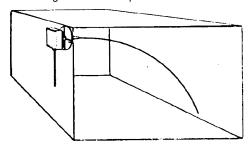
General rule: en on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade.

Positions to be avoidedH

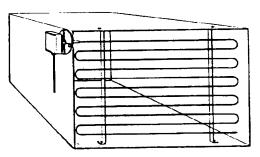
Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever

The sensor must not be painted (measurement error) .

Duct or pipe sensors


Installing temperature sensors

For measuring outlet air:


"after delivery fan or

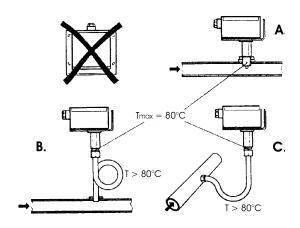
"after coil to be controlled, at a distance of at least 0,5 m For measuring room temperature:

"before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator.

Bend 0.4m sensor by hand (never use tools) as illustrated .

Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors

Installing combined humidity sensors


As max. humidity limit sensor on outlet (steam humidifiers) .

Installing pressure sensors

- A installation on ducts carrying fluids at max. temperature 80°C
- B installation on ducts at temperature over 80°C and for refrigerants
- C installation on ducts at high temperatures :
 - · "increase length of siphon

"place sensor at side to prevent it being hit by hot air coming from the pipe.

Installing differential pressure sensors for water

Installation with casing facing down not allowed.

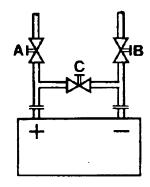
With temperature over 80°C, siphons are needed.

To avoid damaging the sensor, you must comply with the following instructions :

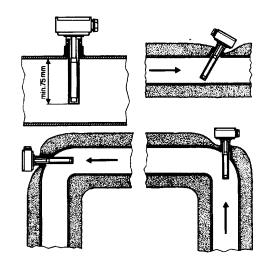
when installing: make sure pressure difference is not greater than the value permitted by the sensor

when there are high static pressures, make sure you insert shutoff valves A-B-C.

Putting into operation


Start disable

1=open C1=open C


2=open A2=close B

3=open B3=close A

4= close C

Immersion or strap-on sensors

Immersion probes installation

Sensors must be installed on the stretch of pipe in which fluid circulates all the time.

The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow.

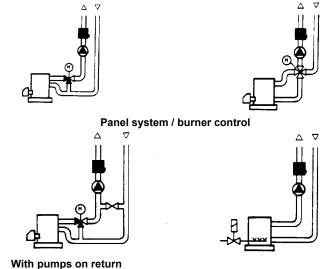
Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid.

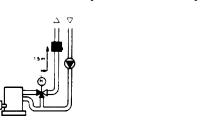
Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.) .

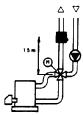
Installing QAD2.. strap-on sensors

Make sure fluid is circulating in the chosen location.

Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe.


Sensors come with straps for pipes up to 100 mm in diameter .


Placing the probes (QAD22.../QAE21.../QAP21.../RCA...)


With pumps on outlet

with 3 ways valves / with 4 ways valves

with 3 ways valves / with 4 ways valves

Strap-on or immersion sensors?

QAD2.. strap-on sensors

Advantages:

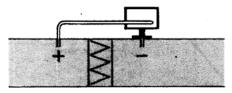
- 10 sec. time constant
- Installed with system running (no plumbing work)
- Installation can be changed easily if it proves incorrect

ΠLimits:

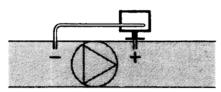
- Suitable for pipe diameters max. 100 mm
- Can be affected by currents of air etc.

QAE2... immersion sensors

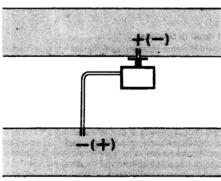
Advantages:


- Measure "mean" fluid temperature
- No external influence on measurement such as: currents of air, nearby pipes etc.

Limits:

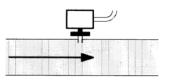

- Time constant with sheath: 20 sec.
- Hard to change installation position if it proves incorrect

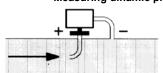
Duct pressure switches and sensors


Installing differential pressure probes for air

A - Control a filter (clogging)

B - Control a fan (upstream/downstream)


C - Measurement of difference in pressure between two ducts


D - Measurement of difference in pressure between two rooms or of inside of duct and outside

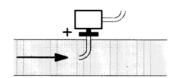
Basic principles

Measuring static pressure(i.e. pressure exerted by air on pipe walls)

Measuring dinamic pressure

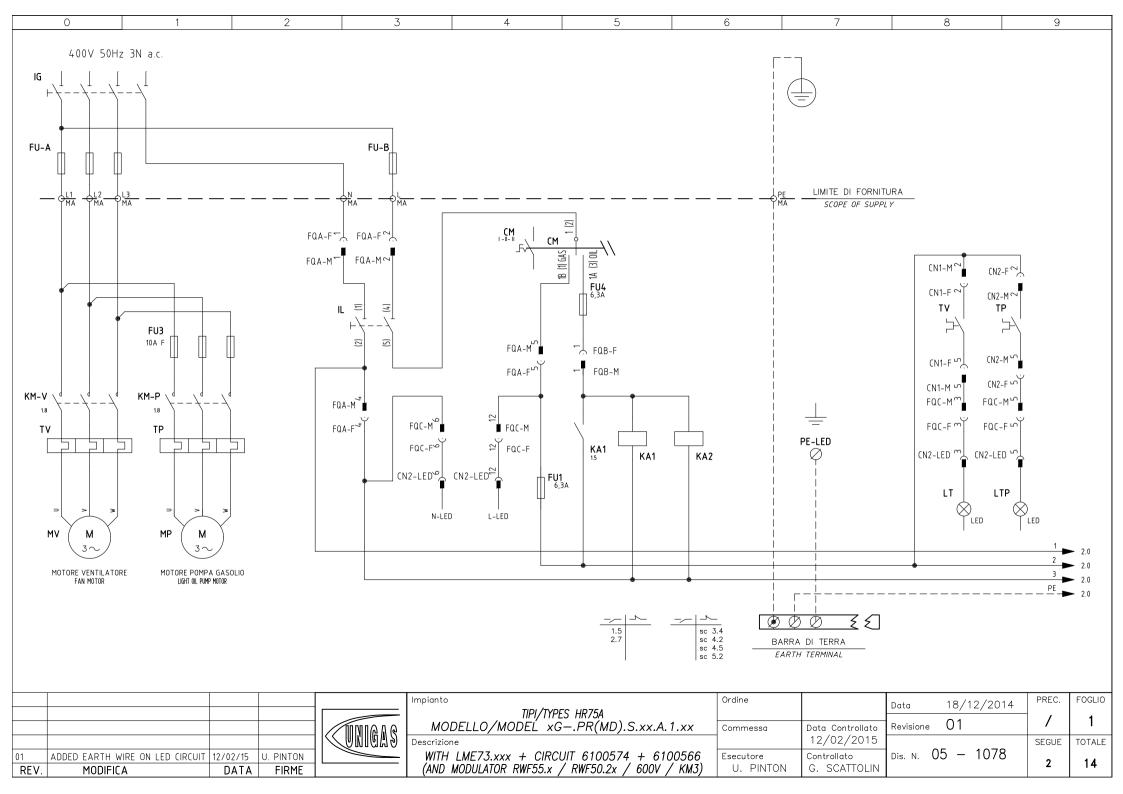
$$Pd = \frac{y \vartheta^2}{2g}$$

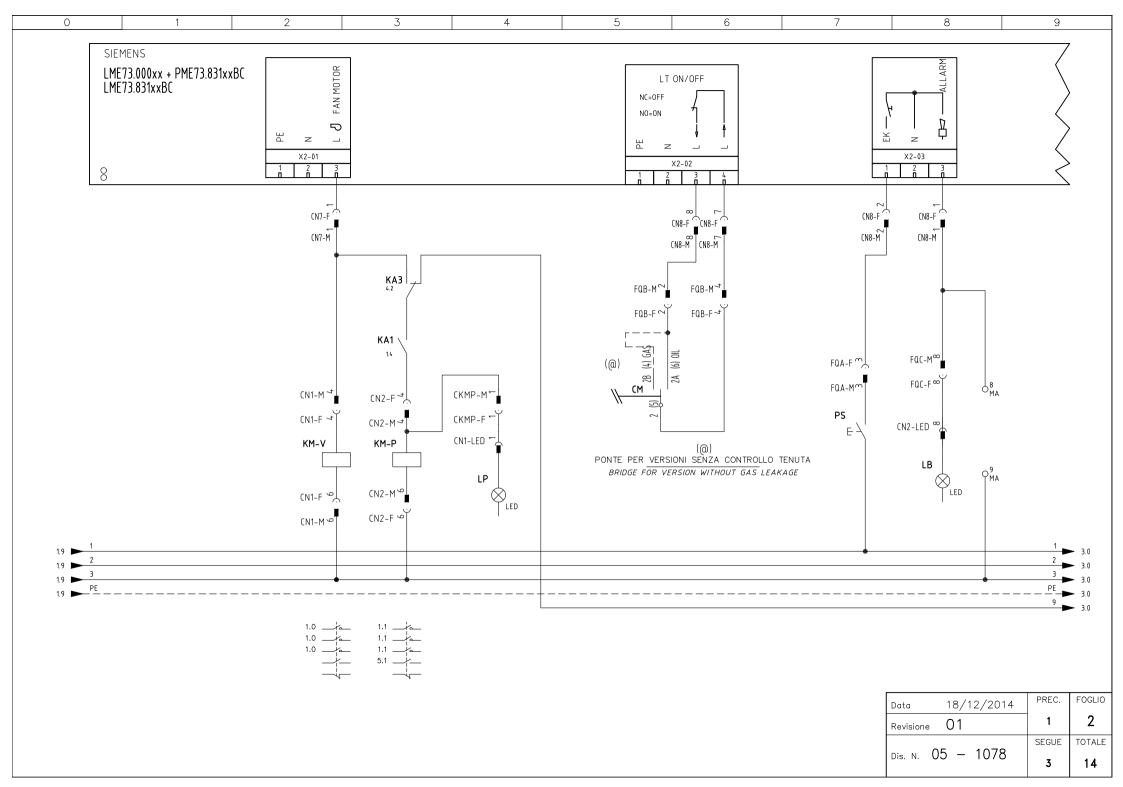
Legend

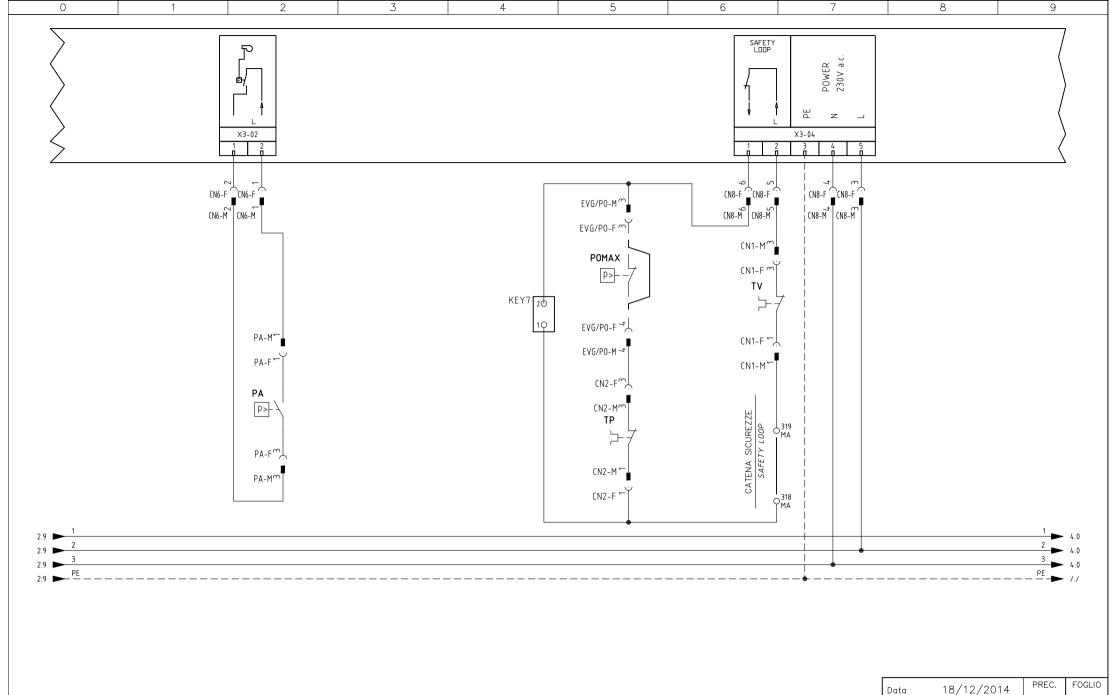

y Kg/m3, specific weight of air

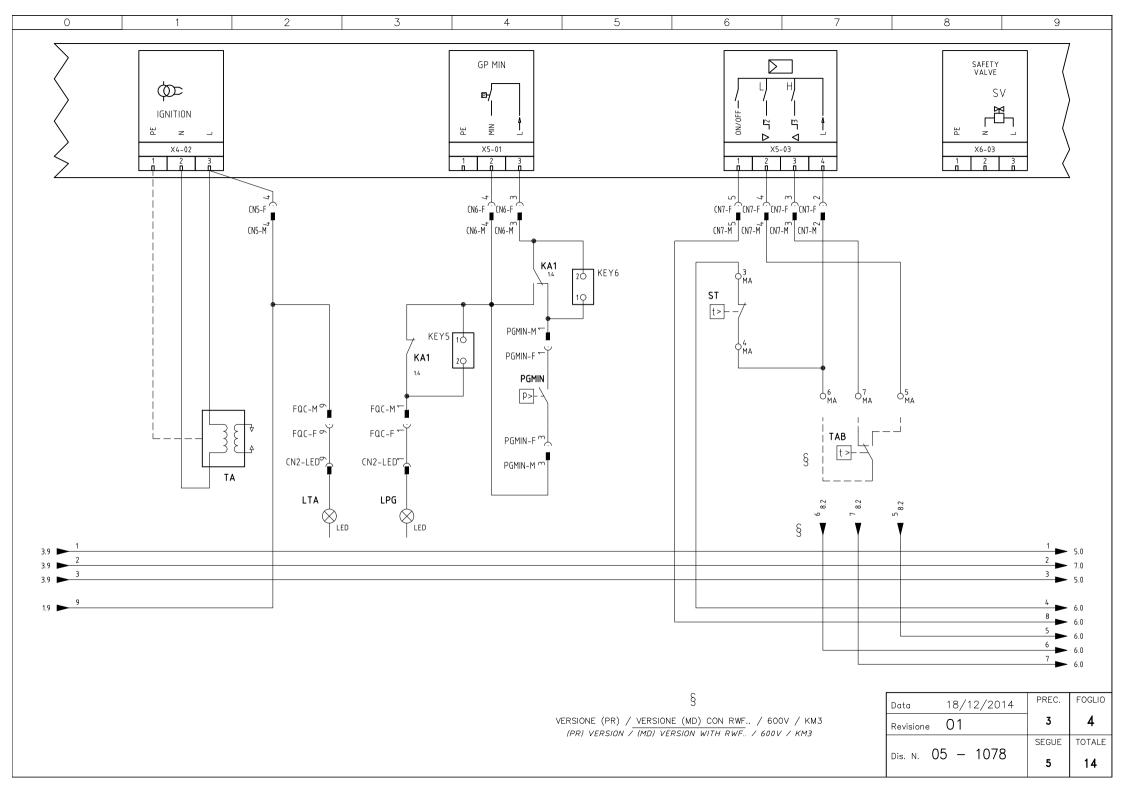
q m/s, air speed

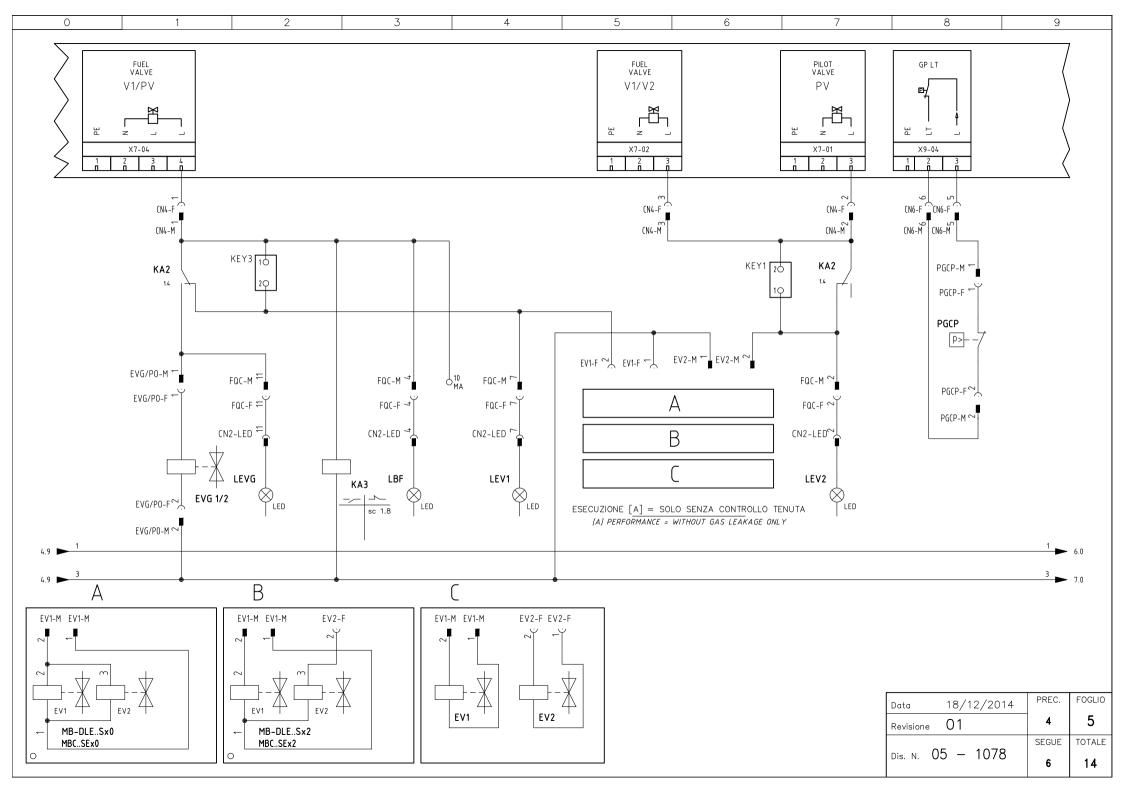
g 9.81 m/s2 gravity acceleration

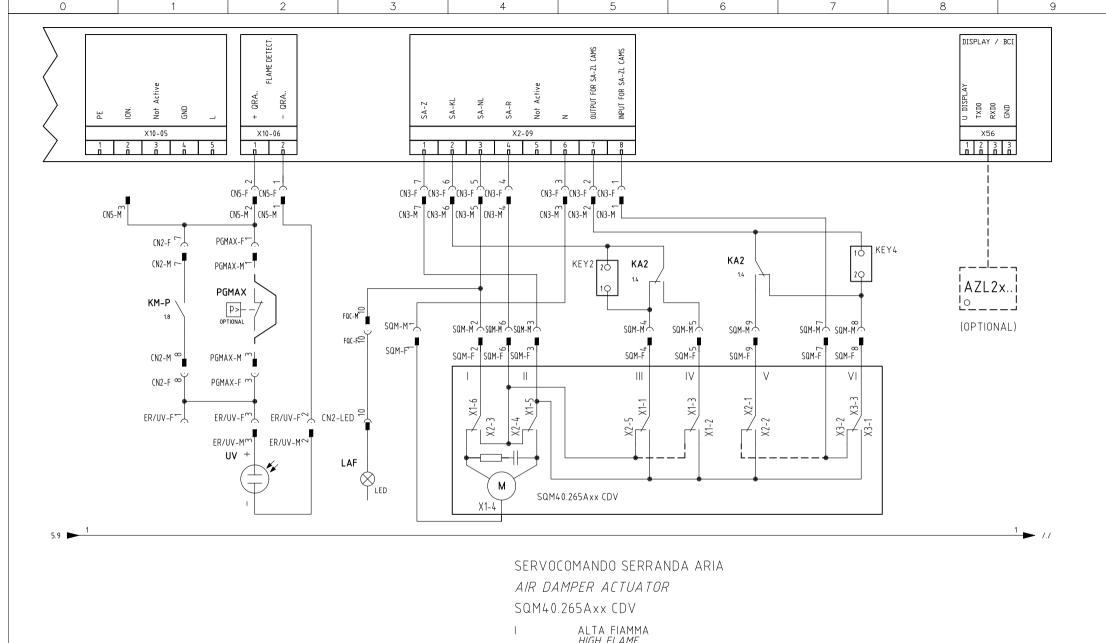

Pd mm C.A., dynamic pressure


Measuring total pressure

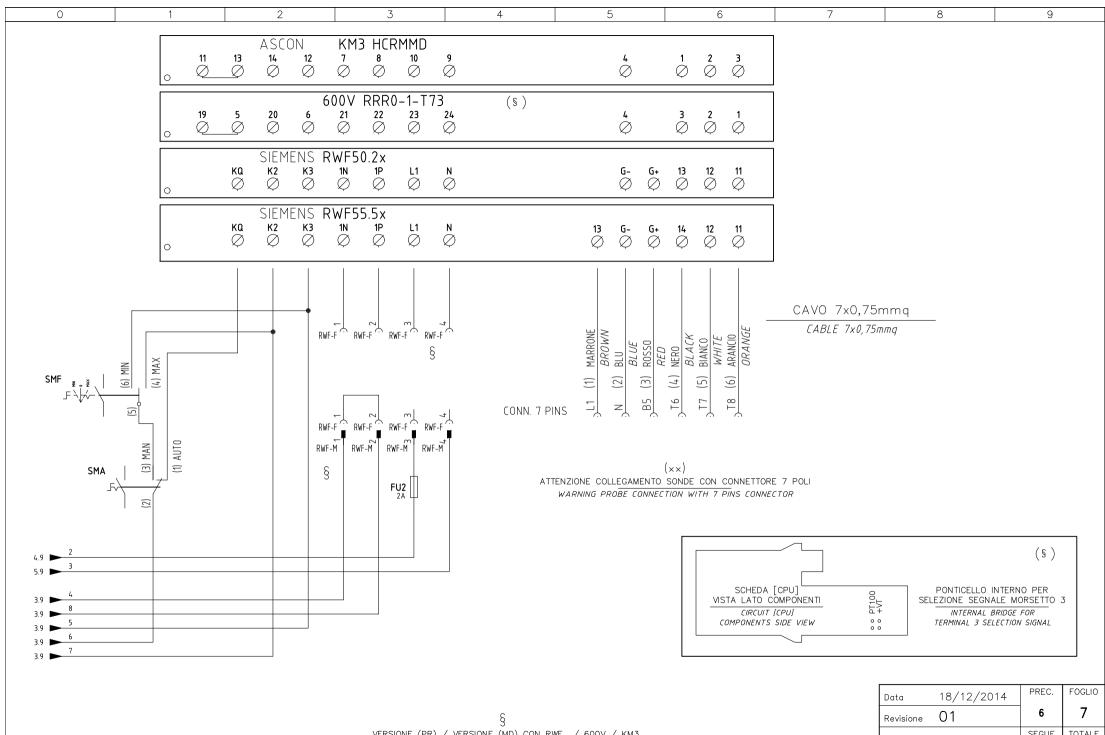








Data	18/12/2014	PREC.	FOGLIO
Revisione	01	2	3
	1070	SEGUE	TOTALE
Dis. N. U	5 – 1078	4	14

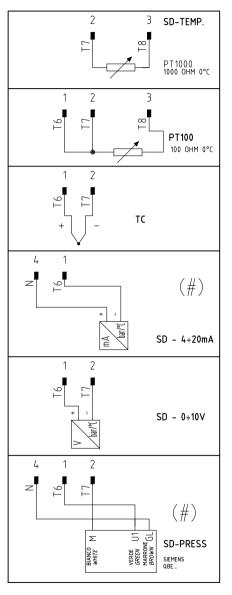


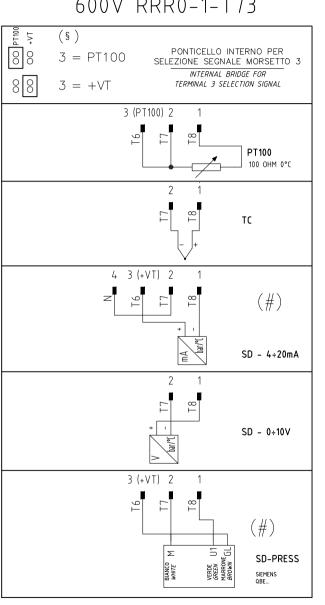
ALTA FIAMMA HIGH FLAME HIGH FLAME
SOSTA
STAND-BY
BASSA FIAMMA GAS
GAS LOW FLAME
BASSA FIAMMA GASOLIO
LIGHT OIL LOW FLAME
ACCENSIONE GASOLIO
LIGHT OIL IGNITION
ACCENSIONE GAS
GAS IGNITION Ш

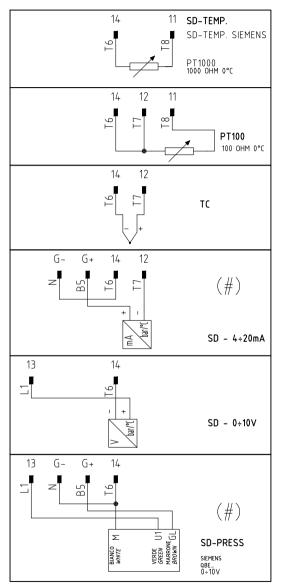
IV V VΙ

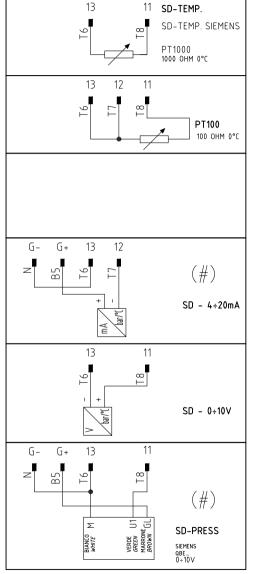
Data	18/12/2014	PREC.	FOGLIO
Revisione	01	5	6
	F 4070	SEGUE	TOTALE
Dis. N. O	5 – 1078	7	14

VERSIONE (PR) / VERSIONE (MD) CON RWF.. / 600V / KM3 (PR) VERSION / (MD) VERSION WITH RWF.. / 600V / KM3

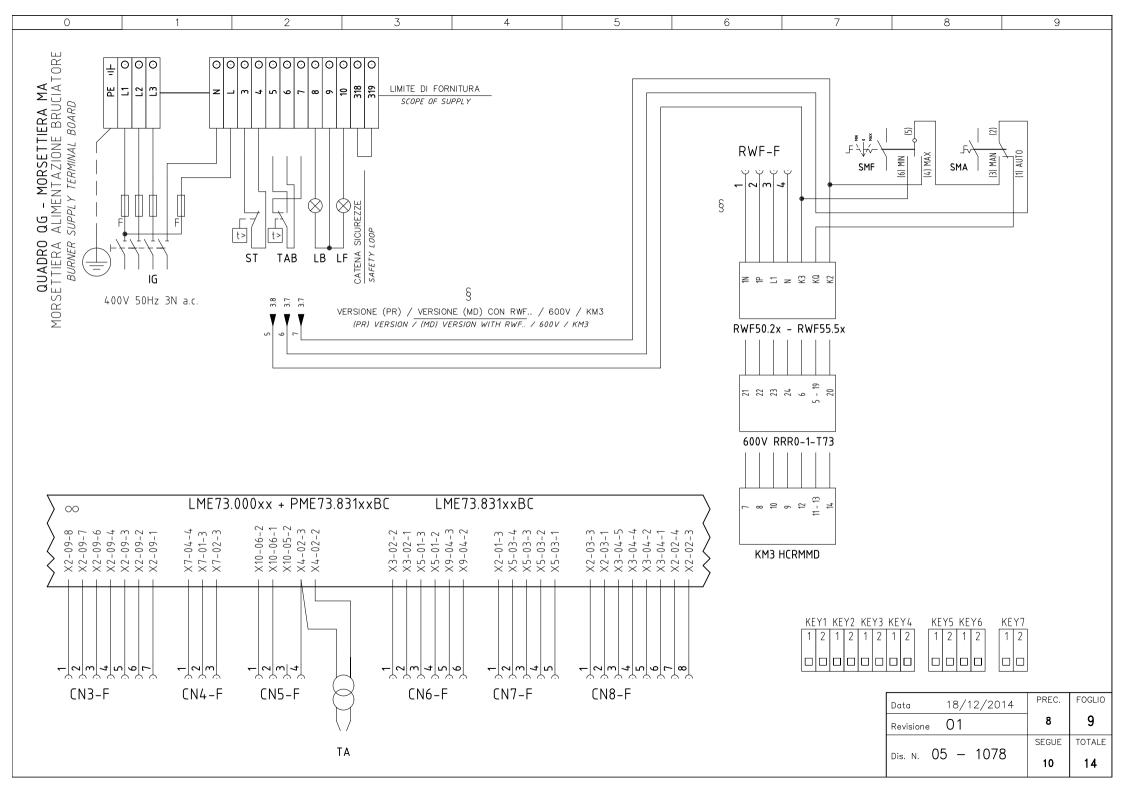

SEGUE TOTALE Dis. N. 05 - 107814

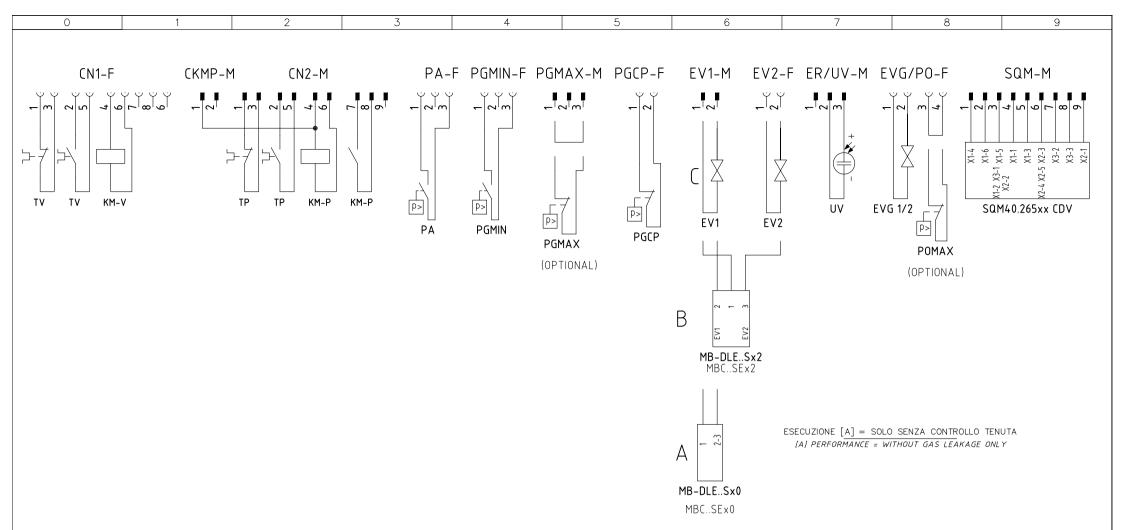



KM3 HCRMMD


600V RRR0-1-T73

RWF50.2x





(#)	
COLLEGAMENTO SOL TRASDUTTORI PA	
TRASDUCER PASSI CONNECTION ONLY	

Data	18/12/2014	PREC.	FOGLIO
Revisione	01	7	8
0	r 4070	SEGUE	TOTALE
Dis. N. U	5 – 1078	9	14

SERVOCOMANDO SERRANDA ARIA AIR DAMPER ACTUATOR

I ALTA FIAMMA

HIGH FLAME

II SOSTA

STAND-BY

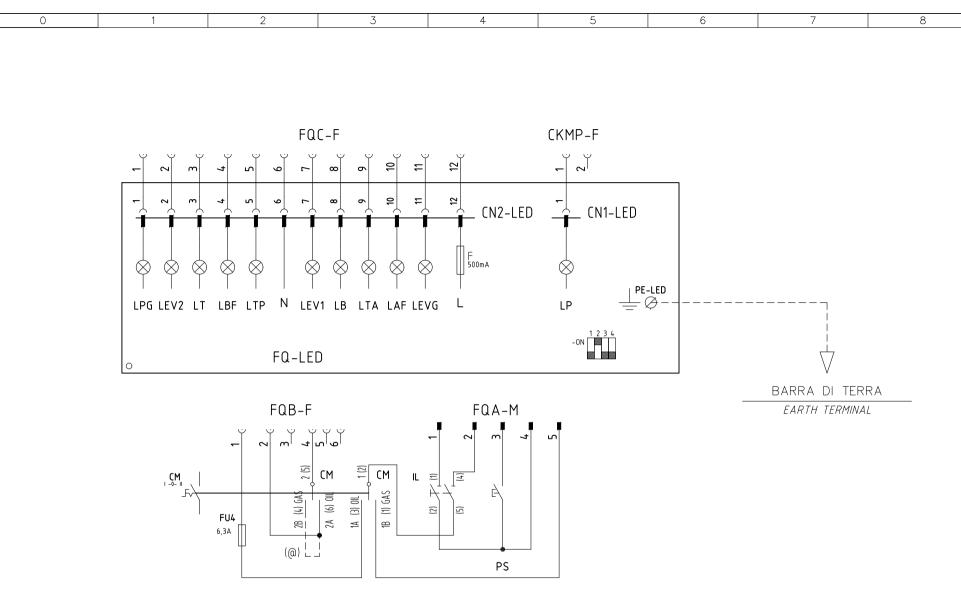
III BASSA FIAMMA GAS

GAS LOW FLAME

IV BASSA FIAMMA GASOLIO

LIGHT OIL LOW FLAME

V ACCENSIONE GASOLIO

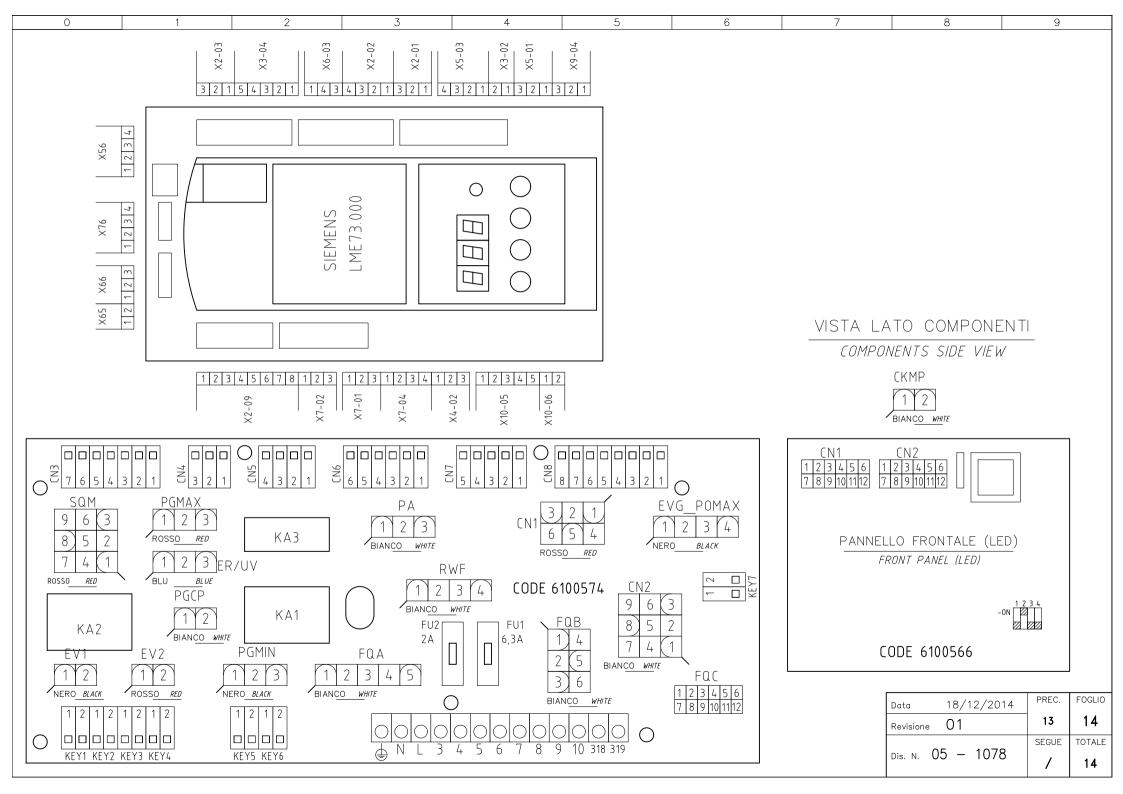

LIGHT OIL JONTION

VI ACCENSIONE GAS

GAS IGNITION

SQM40.265Axx CDV

Data	18/12/2014	PREC.	FOGLIO
Revisione	01	9	10
		SEGUE	TOTALE
Dis. N. U	5 – 1078	11	14


Data	18/12/2014	PREC.	FOGLIO
Revisione 01		10	11
	1070	SEGUE	TOTALE
Dis. N. C)5 – 1078	12	14

Sigla/Item	Foglio/Sheet	Funzione	Function
600V RRR0-1-T73	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
AZL2x	6	INTERFACCIA UTENTE	USER INTERFACE
CM	1	SELETTORE MANUALE GAS -0- GASOLIO	MANUAL SWITCH GAS -0- LIGHT OIL
EV1	5	ELETTROVALVOLA GAS LATO RETE	UPSTREAM GAS SOLENOID VALVE
EV2	5	ELETTROVALVOLA GAS LATO BRUCIATORE	DOWNSTREAM GAS SOLENOID VALVE
EVG 1/2	5	ELETTROVALVOLE GASOLIO	LIGHT OIL ELECTRO VALVE
FQ-LED	11	PANNELLO FRONTALE (LED)	FRONT PANEL (LED)
FU1	1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
FU2	7	FUSIBILE	FUSE
FU3	1	FUSIBILI LINEA POMPA	PUMP LINE FUSES
FU4	1	FUSIBILE AUSILIARIO	AUXILIARY FUSE
FU-A	1	FUSIBILI DI LINEA	LINE FUSES
FU-B	1	FUSIBILE DI LINEA	LINE FUSE
G	1	INTERRUTTORE GENERALE	MAINS SWITCH
L	1	INTERRUTTORE LINEA AUSILIARI	AUXILIARY LINE SWITCH
KA1	1	RELE" AUSILIARIO	AUXILIARY RELAY
KA2	1	RELE" AUSILIARIO	AUXILIARY RELAY
KA3	5	RELE" AUSILIARIO	AUXILIARY RELAY
KM3 HCRMMD	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
KM-P	2	CONTATTORE MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR CONTACTOR
KM-V	2	CONTATTORE MOTORE VENTILATORE	FAN MOTOR CONTACTOR
LAF	6	LAMPADA SEGNALAZIONE ALTA FIAMMA BRUCIATORE	BURNER IN HIGH FLAME INDICATOR LIGHT
LB	2	LAMPADA SEGNALAZIONE BLOCCO BRUCIATORE	INDICATOR LIGHT FOR BURNER LOCK-OUT
_BF	5	LAMPADA SEGNALAZIONE BASSA FIAMMA BRUCIATORE	BURNER IN LOW FLAME INDICATOR LIGHT
LEV1	5	LAMPADA SEGNALAZIONE APERTURA [EV1]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV1]
_EV2	5	LAMPADA SEGNALAZIONE APERTURA [EV2]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EV2]
_EVG	5	LAMPADA SEGNALAZIONE APERTURA [EVG]	INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG]
ME73.000xx + PME73.831xx	30 2	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
ME73.831xxBC	2	APPARECCHIATURA DI COMANDO	CONTROL SCHEME
_P	2	LAMPADA SEGNALAZIONE FUNZIONAMENTO POMPA	INDICATOR LIGHT FOR PUMP OPERATION
LPG	4	LAMPADA SEGNALAZIONE PRESENZA GAS IN RETE	INDICATOR LIGHT FOR PRESENCE OF GAS IN THE NETWORK
LT	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE VENTILATORE	INDICATOR LIGHT FOR FAN MOTOR OVERLOAD THERMAL CUTOUT

Data	18/12/2014	PREC.	FOGLIO
Revisione 01		11	12
	1070	SEGUE	TOTALE
Dis. N. C	05 – 1078	13	14

Sigla/Item	Foglio/Sheet	Funzione	Function
LTA	4	LAMPADA SEGNALAZIONE TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER INDICATOR LIGHT
LTP	1	LAMPADA SEGNALAZIONE BLOCCO TERMICO MOTORE POMPA	INDICATOR LIGHT FOR PUMP MOTOR OVERLOAD THERMAL CUTOUT
MB-DLESx0	5	GRUPPO VALVOLE GAS	GAS VALVES GROUP
MB-DLESx2	5	GRUPPO VALVOLE GAS	GAS VALVES GROUP
MBCSEx0	5	GRUPPO VALVOLE GAS (ALTERNATIVO)	GAS VALVES GROUP (ALTERNATIVE)
MBCSEx2	5	GRUPPO VALVOLE GAS (ALTERNATIVO)	GAS VALVES GROUP (ALTERNATIVE)
MP	1	MOTORE POMPA GASOLIO	LIGHT OIL PUMP MOTOR
MV	1	MOTORE VENTILATORE	FAN MOTOR
PA	3	PRESSOSTATO ARIA	AIR PRESSURE SWITCH
PGCP	5	PRESSOSTATO GAS CONTROLLO PERDITE (OPTIONAL)	GAS LEAKAGE PRESSURE SWITCH (OPTIONAL)
PGMAX	6	PRESSOSTATO GAS DI MASSIMA PRESSIONE (OPTIONAL)	MAXIMUM PRESSURE GAS SWITCH (OPTIONAL)
PGMIN	4	PRESSOSTATO GAS DI MINIMA PRESSIONE	MINIMUM GAS PRESSURE SWITCH
POMAX	3	PRESSOSTATO DI MASSIMA PRESSIONE OLIO (OPTIONAL)	MAXIMUM OIL PRESSURE SWITCH (OTIONAL)
PS	2	PULSANTE SBLOCCO FIAMMA	FLAME UNLOCK BUTTON
PT100	8	SONDA DI TEMPERATURA	TEMPERATURE PROBE
RWF50.2x	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
RWF55.5x	7	REGOLATORE MODULANTE (ALTERNATIVO)	BURNER MODULATOR (ALTERNATIVE)
SD-PRESS	8	SONDA DI PRESSIONE	PRESSURE PROBE
SD-TEMP.	8	SONDA DI TEMPERATURA	TEMPERATURE PROBE
SD - 0÷10V	8	TRASDUTTORE USCITA IN TENSIONE	TRANSDUCER VOLTAGE OUTPUT
SD - 4÷20mA	8	TRASDUTTORE USCITA IN CORRENTE	TRANSDUCER CURRENT OUTPUT
SMA	7	SELETTORE MANUALE/AUTOMATICO	MANUAL/AUTOMATIC SWITCH
SMF	7	SELETTORE MANUALE FUNZIONAMENTO MIN-0-MAX	MIN-0-MAX MANUAL OPERATION SWITCH
SQM40.265Axx CDV	6	SERVOCOMANDO SERRANDA ARIA	AIR DAMPER ACTUATOR
ST	4	SERIE TERMOSTATI/PRESSOSTATI	SERIES OF THERMOSTATS OR PRESSURE SWITCHES
TA	4	TRASFORMATORE DI ACCENSIONE	IGNITION TRANSFORMER
TAB	4	TERMOSTATO/PRESSOSTATO ALTA-BASSA FIAMMA	HIGH-LOW THERMOSTAT/PRESSURE SWITCHES
TC	8	TERMOCOPPIA	THERMOCOUPLE
TP	1	TERMICO MOTORE POMPA	PUMP MOTOR THERMAL
TV	1	TERMICO MOTORE VENTILATORE	FAN MOTOR THERMAL
UV	6	SONDA UV RILEVAZIONE FIAMMA	UV FLAME DETECTOR

Data 18/12/2014		PREC.	FOGLIO
Revisione 01		12	13
0.1	05 - 1078	SEGUE	TOTALE
Dis. N. Ut		14	14

