TG1030 TG1050 TG1080 Light oil burners **MANUAL OF INSTALLATION - USE - MAINTENANCE** BURNERS - BRUCIATORI - BRULERS - BRENNER - QUEMADORES - ГОРЕЛКИ #### DANGERS, WARNINGS AND NOTES OF CAUTION THIS MANUAL IS SUPPLIED AS AN INTEGRAL AND ESSENTIAL PART OF THE PRODUCT AND MUST BE DELIVERED TO THE USER. INFORMATION INCLUDED IN THIS SECTION ARE DEDICATED BOTH TO THE USER AND TO PERSONNEL FOLLOWING PRODUCT INSTALLATION AND MAINTENANCE. THE USER WILL FIND FURTHER INFORMATION ABOUT OPERATING AND USE RESTRICTIONS, IN THE SECOND SECTION OF THIS MANUAL. WE HIGHLY RECOMMEND TO READ IT. CAREFULLY KEEP THIS MANUAL FOR FUTURE REFERENCE. #### 1) GENERAL INTRODUCTION - The equipment must be installed in compliance with the regulations in force, following the manufacturer's instructions, by qualified personnel. - Qualified personnel means those having technical knowledge in the field of components for civil or industrial heating systems, sanitary hot water generation and particularly service centres authorised by the manufacturer. - Improper installation may cause injury to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Remove all packaging material and inspect the equipment for integrity. In case of any doubt, do not use the unit - contact the supplier. The packaging materials (wooden crate, nails, fastening devices, plastic bags, foamed polystyrene, etc), should not be left within the reach of children, as they may prove harmful. - Before any cleaning or servicing operation, disconnect the unit from the mains by turning the master switch OFF, and/or through the cutout devices that are provided. - Make sure that inlet or exhaust grilles are unobstructed. - In case of breakdown and/or defective unit operation, disconnect the unit. Make no attempt to repair the unit or take any direct action. Contact qualified personnel only. Units shall be repaired exclusively by a servicing centre, duly authorised by the manufacturer, with original spare parts. Failure to comply with the above instructions is likely to impair the unit's safety To ensure equipment efficiency and proper operation, it is essential that maintenance operations are performed by qualified personnel at regular intervals, following the manufacturer's instructions. - When a decision is made to discontinue the use of the equipment, those parts likely to constitute sources of danger shall be made harmless. - In case the equipment is to be sold or transferred to another user, or in case the original user should move and leave the unit behind, make sure that these instructions accompany the equipment at all times so that they can be consulted by the new owner and/or the installer - For all the units that have been modified or have options fitted then original accessory equipment only shall be used. - This unit shall be employed exclusively for the use for which it is meant. Any other use shall be considered as improper and, therefore, dangerous. The manufacturer shall not be held liable, by agreement or otherwise, for damages resulting from improper installation, use and failure to comply with the instructions supplied by the manufacturer. The occurrence of any of the following circustances may cause explosions, polluting unburnt gases (example: carbon monoxide CO), burns, serious harm to people, animals and things: - Failure to comply with one of the WARNINGS in this chapter - Incorrect handling, installation, adjustment or maintenance of the burner - Incorrect use of the burner or incorrect use of its parts or optional supply #### 2) SPECIAL INSTRUCTIONS FOR BURNERS - The burner should be installed in a suitable room, with ventilation openings complying with the requirements of the regulations in force, and sufficient for good combustion. - Only burners designed according to the regulations in force should be used. - This burner should be employed exclusively for the use for which it was designed. - Before connecting the burner, make sure that the unit rating is the same as delivery mains (electricity, gas oil, or other fuel). - Observe caution with hot burner components. These are, usually, near to the flame and the fuel pre-heating system, they become hot during the unit operation and will remain hot for some time after the burner has stopped. When the decision is made to discontinue the use of the burner, the user shall have qualified personnel carry out the following operations: - a Remove the power supply by disconnecting the power cord from the mains - b) Disconnect the fuel supply by means of the hand-operated shut-off valve and remove the control handwheels from their spindles. #### Special warnings - Make sure that the burner has, on installation, been firmly secured to the appliance, so that the flame is generated inside the appliance firebox. - Before the burner is started and, thereafter, at least once a year, have qualified personnel perform the following operations: - a set the burner fuel flow rate depending on the heat input of the appliance: - b set the flow rate of the combustion-supporting air to obtain a combustion efficiency level at least equal to the lower level required by the regulations in force; - c check the unit operation for proper combustion, to avoid any harmful or polluting unburnt gases in excess of the limits permitted by the regulations in force; - d make sure that control and safety devices are operating properly; - e make sure that exhaust ducts intended to discharge the products of combustion are operating properly; - on completion of setting and adjustment operations, make sure that all mechanical locking devices of controls have been duly tightened; - g make sure that a copy of the burner use and maintenance instructions is available in the boiler room. - In case of a burner shut-down, reser the control box by means of the RESET pushbutton. If a second shut-down takes place, call the Technical Service, without trying to RESET further. - The unit shall be operated and serviced by qualified personnel only, in compliance with the regulations in force. #### 3) GENERAL INSTRUCTIONS DEPENDING ON FUEL USED #### 3a) ELECTRICAL CONNECTION - For safety reasons the unit must be efficiently earthed and installed as required by current safety regulations. - It is vital that all saftey requirements are met. In case of any doubt, ask for an accurate inspection of electrics by qualified personnel, since the manufacturer cannot be held liable for damages that may be caused by failure to correctly earth the equipment. - Qualified personnel must inspect the system to make sure that it is adequate to take the maximum power used by the equipment shown on the equipment rating plate. In particular, make sure that the system cable cross section is adequate for the power absorbed by the unit. - No adaptors, multiple outlet sockets and/or extension cables are permitted to connect the unit to the electric mains - An omnipolar switch shall be provided for connection to mains, as required by the current safety regulations. - The use of any power-operated component implies observance of a few basic rules, for example: - do not touch the unit with wet or damp parts of the body and/or with #### bare feet; - do not pull electric cables; - do not leave the equipment exposed to weather (rain, sun, etc.) unless expressly required to do so; - do not allow children or inexperienced persons to use equipment; - The unit input cable shall not be replaced by the user. In case of damage to the cable, switch off the unit and contact qualified personnel to replace. When the unit is out of use for some time the electric switch supplying all the power-driven components in the system (i.e. pumps, burner, etc.) should be switched off. ## 3b) FIRING WITH GAS, LIGHT OIL OR OTHER FUELS GENERAL - The burner shall be installed by qualified personnel and in compliance with regulations and provisions in force; wrong installation can cause injuries to people and animals, or damage to property, for which the manufacturer cannot be held liable. - Before installation, it is recommended that all the fuel supply system pipes be carefully cleaned inside, to remove foreign matter that might impair the burner operation. - Before the burner is commissioned, qualified personnel should inspect the following: - a the fuel supply system, for proper sealing; - b the fuel flow rate, to make sure that it has been set based on the firing rate required of the burner; - c the burner firing system, to make sure that it is supplied for the designed fuel type; - d the fuel supply pressure, to make sure that it is included in the range shown on the rating plate; - e the fuel supply system, to make sure that the system dimensions are adequate to the burner firing rate, and that the system is equipped with all the safety and control devices required by the regulations in force. - When the burner is to remain idle for some time, the fuel supply tap or taps should be closed. #### SPECIAL INSTRUCTIONS FOR USING GAS Have qualified personnel inspect the installation to ensure that: - the gas delivery line and train are in compliance with the regulations and provisions in force; - b all gas connections are tight; - c the boiler room ventilation openings are such that they ensure the air supply flow required by the current regulations, and in any case are sufficient for proper combustion. - Do not use gas pipes to earth electrical equipment. - Never leave the burner connected when not in use. Always shut the gas valve off. - In case of prolonged absence of the user, the main gas delivery valve to the burner should be shut off. #### Precautions if you can smell gas - do not operate electric switches, the telephone, or any other item likely to generate sparks; - b immediately open doors and windows to create an air flow to purge the room: - c close the gas valves; - d contact qualified personnel. - Do not obstruct the ventilation openings of the room where gas
appliances are installed, to avoid dangerous conditions such as the development of toxic or explosive mixtures. #### **DIRECTIVES AND STANDARDS** #### Gas burners #### European directives - -2009/142/EC (Gas Directive) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Light oil burners #### **European directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267-2011(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### **National Standard** -UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods) #### Heavy oil burners #### **European Directives** - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Norme nazionali / National Standard -UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods. #### Gas - Light oil burners #### **European Directives** - -2009/142/EC (Gas Directive) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -UNI EN 267(Automatic forced draught burners for liquid fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### Norme nazionali / National Standard -UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods. #### Gas - Heavy oil burners #### **European directives:** - -2009/142/EC (Gas Directive) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -UNI EN 676 (Automatic forced draught burners for gaseous fuels) - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -CEI EN 60335-1 (Specification for safety of household and similar electrical appliances); - -CEI EN 60335-2-102 (Household and similar electrical appliances. Safety. Particular requirements for gas, oil and solid-fuel burning appliances having electrical connections). - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); #### **National Standard** - UNI 7824 (Atomizing burners of the monobloc type. Characteristics and test methods. #### Industrial burners #### **European directives** - -2009/142/EC (Gas Directive) - -2014/35/UE (Low Tension Directive) - -2014/30/UE (Electromagnetic compatibility Directive) - -2006/42/EC (Machinery Directive) #### Harmonized standards - -EN 55014-1 (Electromagnetic compatibility- Requirements for house hold appliances, electric tools and similar apparatus) - -EN 746-2 (Industrial thermoprocessing equipment Part 2: Safety requirements for combustion and fuel handling systems) - -UNI EN ISO 12100:2010 (Safety of machinery General principles for design Risk assessment and risk reduction); - -EN 60204-1:2006 (Safety of machinery Electrical equipment of machines.) - -EN 60335-2 (Electrical equipment of non-electric appliances for household and similar purposes. Safety requirements) #### Burner data plate For the following information, please refer to the data plate: - burner type and burner model: must be reported in any communication with the supplier - burner ID (serial number): must be reported in any communication with the supplier - date of production (year and month) - information about fuel type and network pressure | Гуре | | |--------------|---| | /lodel | | | /ear | | | S.Number | - | | Dutput | | | Oil Flow | | | uel | | | Category | | | Gas Pressure | | | /iscosity | | | El.Supply | | | El.Consump. | | | an Motor | | | Protection | | | Drwaing n° | - | | P.I.N. | | #### SYMBOLS USED WARNING! Failure to observe the warning may result in irreparable damage to the unit or damage to the environment ## DAN DANGER! Failure to observe the warning may result in serious injuries or death. **WARNING!** Failure to observe the warning may result in electric shock with lethal consequences Figures, illustrations and images used in this manual may differ in appearance from the actual product. #### **PART I: INSTALLATION MANUAL** #### **GENERAL FEATURES** This series of industrial burners is designed for all those applications that require big-sized air fans or air-flue heat exchangers to be installed in sound-proof areas to reduce noise. They can be provided with built-in or separately-mounted control panel (console or wall-mounted. Fig. 1 - 1 Combustion head - 2 Blast tube - 3 Burner flange - 4 Adjusting cam - 5 Actuator - 6 Air inlet flange - 7 Oil gun - 8 Pilot gas train The fuel coming from the supply line, is pushed by the pump to the nozzle and then into the combustion chamber, where the mixture between fuel and air takes place and consequently the flame. In the burners, the mixture bertween fuel and air, to perform clean and efficient combustion, is activated by atomisation of oil into very small particles. This process is achieved making pressurised oil passing through the nozzle. The pump main function is to transfer oil from the tank to the nozzle in the desired quantity and pressure. To adjust this pressure, pumps are provided with a pressure regulator (except for some models for which a separate regulating valve is provided). Other pumps are provided with two pressure regulators: one for the high and one for low pressure (in double-stage systems with one nozzle). In the double-stage burners, the electric actuator (5), that moves the air damper, allows the optimisation of the gas flue values, as to get an efficient combustion. The position of the combustion head determines the burner's output. The air (comburent) and fuel (light oil) are forced into the combustion chamber, as to let the flame light up. #### How to choose the burner To check if the burner is suitable for the boiler to which it must be installled, the following parameters are needed: - fue - furnace input, in kW or kcal/h (kW = kcal/h / 860); - boiler type; - combustione head type (reverse flame or three phase)' - temperature or pressure of the thermal carrier fluid - Comburent air temperature - Air duct positioning - Pressure in the combustion chamber - Elevation (altitude) of burner installation - Gas train (only for gas burners) - Pumping unit (only for light-oil or heavy-oil burners) - Air fan - Bilt-in or separated control panel - backpressure (data are available on the boiler ID plate or in the user's manual). Burners provided with built-in control panel are designed for IP40 index of protection. For other values of IP, please contact the CIB UNIGAS Technical Dpt. #### Data requested: - furnace input; - air temperature - altitude - generator pressure or temperature #### Example: furnace input: 9600kWair temperature: 15°C altitude: 0m Fig. 2 See the diagram in Fig. 2, as to find the burners that better suite the power range requested in the exmple (9600kW). Once the models are founded out, the choice regards technical and economical features. Technical features can be summarised in a higher modulation ratio (fewer start-ups, less consumption, fewer swigings in the generator temperature and pressure values. #### Burner model identification Burners are
identified by burner type and model. Burner model identification is described as follows. | Type TG1030 | Model | G. | PR. | S. | *. | G. | |--------------------|---------|------|-----|-----|--------|---------------------------------------| | (1) | | (2) | (3) | (4) | (5) | (6) | | (1) BURNER T | YPE | | | | TG1 | 030 - TG1050 - TG1080 | | (2) FUEL | | | | | G - | light oil | | (3) OPERATIO | N | | | | PR - | Progressive MD - Fully-modulating | | (4) BLAST TUE | 3E | | | | S - s | standard | | (5) DESTINATI | ON COUN | ITRY | | | * - Se | ee data plate | | (6) BURNER V | ERSION | | | | | Remote control panel and junction box | | | | | | | | Only junction box | | | | | | | Y - S | Special | #### **Specifications** Note: Output values are valid for comburent air temperature lower than 50°C. | | | TG1030 | TG1050 | TG1080 | | | |--|-------------------|--------------------------------|--------------------------------|--------------------------------|--|--| | Output | minmax. kW | 2550 - 13300 | 3500 - 15500 | 4500 - 19000 | | | | Fuel | | Light oil | Light oil | Light oil | | | | Oil viscosity | °cSt @ 40 °C | 2 - 7.4 | 2 - 7.4 | 2 - 7.4 | | | | Oil density | kg/m ³ | 840 | 840 | 840 | | | | Light oil rate | minmax. kg/h | 215 - 1121 | 295 - 1307 | 379 - 1602 | | | | Power supply | | 400V 3Na.c. 50Hz | 400V 3Na.c. 50Hz | 400V 3Na.c. 50Hz | | | | Fan power | kW | see fan ID plate | | | | | | Total power (fan motor excluded) | kW | 6 | 6 | 6 | | | | Pump motor | kW | 5.5 | 5.5 | 5.5 | | | | Pilot pump motor (version with light oil pilot onbly)(| kW | 0.75 | 0.75 | 0.75 | | | | Index of protection | | IP40 | IP40 | IP40 | | | | Operation | | Progressive - Fully modulating | Progressive - Fully modulating | Progressive - Fully modulating | | | | Operating temperature | °C | -10 / +50 | -10 / +50 | -10 / +50 | | | | Storage temperature | °C | -20 / +60 | -20 / +60 | -20 / +60 | | | | Working service * | | Intermittent | Intermittent | Intermittent | | | ^{*} NOTE ON THE BURNER WORKING SERVICE: for safety reasons, one controlled shutdown must be performed every 24 hours of continuous operation. WARNING: the pilot operates with natural gas or LPG and its working service is intermittent. For further information, see paragraph "Pilot gas train". Boiler recommended drilling template and burner flange | | A(*S) | A(*L) | AA | AD | B(*S) | B (*L) | C | CC | D | Е | F | G | Н | 3 | K | KK | Ш | M | Z | 0 | 00 | Р | RR | SS | W | Υ | Ζ | |--------|-------|-------|-----|----|-------|--------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|----|------|-----|-----| | TG1030 | 1936 | 2480 | 795 | 25 | 350 | 544 | 1586 | 383 | 1180 | 598 | 582 | 489 | 539 | 175 | 660 | 665 | 840 | M16 | 651 | 460 | 1000 | 460 | 265 | 80 | 1170 | 405 | 330 | | TG1050 | Χ | Χ | 795 | 25 | Х | Х | 1586 | 383 | 1180 | 599 | 583 | Χ | 539 | 175 | 660 | 665 | 840 | M16 | 651 | 460 | 1000 | 460 | 265 | 80 | 1170 | Χ | 330 | | TG1080 | 1970 | Х | 795 | 25 | 384 | Х | 1586 | 383 | 1180 | 599 | 583 | 671 | 731 | 175 | 660 | 665 | 840 | M16 | 651 | 460 | 1000 | 460 | 265 | 80 | 1170 | 412 | 330 | ^{*}S: measure referred to burner provided with standard blast tube ^{*}L: measure referred to burner provided with extended blast tube #### MOUNTING AND CONNECTING THE BURNER #### **Packing** The burners are dispatched in wooden packages whose dimensions are: 2270mm x 1720mm x 1410mm (L x P x H) Packing cases of this kind are affected by humidity and are not suitable for stacking. In each packing case, you will find: - burner; - control panel (if required); - pumping unit (if required); - flexible hoses: - gasket to be inserted between the burner and the boiler; - envelope containing documents. To get rid of the burner's packing, follow the procedures laid down by current laws on disposal of materials. #### Handling the burner ATTENTION! the Ifting and moving operations must be carried out by specialised and trained personnel. If these operations are not carried out perfectly, there is the residual risk of the burner to overturn and fall down. As for moving the burner, use means suited for the weight to sustain (see paragraph "Technical specifications"). The burner is provided with eyebolts, for handling operations. The burner is designed to work positioned according to the picture below. For different installations, please contact the Technical Department. #### Fitting the burner to the boiler - 1 To perform the installation, it is necessary to drill the boiler door as described on paragraph "Overall dimensions"; - 2 screw the studbolts (5) on the boiler door, according to the drilling plate (see paragraph "Overall dimensions"); - 3 move the burner towards the boiler: lift the burner by means of the eyebolts placed on its top side; - 4 remove the balst tube, by loosening the three screws beside the burner flange; - 5 place the the ceramic fibre plait on the burner flange; - 6 replace the blast tube: before fastening completely the screws, avoid any misalignement between the blast tube axis and the combustion head axis; - 7 install the burner to the boiler; - 8 fix the burner to the stud bolts, by means of the fixing nuts, according to Fig. 3. - 9 After fitting the burner to the boiler, ensure that the gap between the blast tube and the refractory lining is sealed with appropriate insulating material (ceramic fibre cord or refractory cement). #### Keys - 1 Burner - 2 Fixing nut - 3 Washer - 4 Ceramic fibre plait - 5 Stud bolt - 7 Blast tube #### Fan installation Pay attention when designing the air duct: dimensioning must be performed according to the flow rate, the temperature, the distance between the fan and the burner and according to the fan features as well. **ATTENTION!** The bellows unit provided is made of canvas and is provided with blocking spacers to avoid breaking it during installation: **first** place the bellows unit between flanges, **then** remove the spacers. Canvas has to be stretched after the installation, but not stressed. #### Matching the burner to the boiler The burners described in this manual have been tested with combustion chambers that comply with EN676 regulation and whose dimensions are described in the diagram. In case the burner must be coupled with boilers with a combustion chamber smaller in diameter or shorter than those described in the diagram, please contact the supplier, to verify that a correct matching is possible, with respect of the application involved. To correctly match the burner to the boiler verify the necessary input and the pressure in combustion chamber are included in the burner performance curve; otherwise the choice of the burner must be revised consulting the burner manufacturer. To choose the blast tube lenght follow the instructions of the boiler manufacturer. In absence of these consider the following: - Cast-iron boilers, three pass flue boilers (with the first pass in the rear part): the blast tube must protrude no more than 100 mm into the combustion chamber. - Pressurised boilers with flame reversal: in this case the blast tube must penetrate at least 50 100 mm into combustion chamber in respect to the tube bundle plate. The length of the blast tubes does not always allow this requirement to be met, and thus it may be necessary to use a suitably-sized spacer to move the burner backwards or to design a blast tube tha suites the utilisation (please, contact the manifacturer). #### Pilot gas train Execute the pilot gas train connections as follows: #### Legenda - 1 Gas valve - 2 Gas filter - 3 Manual cutoff valve - 4 Pressure reducer - 5 Tank **Gas supply:** LPG **Gas pressure:** 100 mbar Once the gas train in installed, execute the electrical connections for all its items (gas valves group, pressure switch). **ATTENTION:** once the gas train is mounted according to the diagram on picture above, the gas proving test mus be performed, according to the procedure set by the laws in force. #### Ligh oil pilot (option) #### **Pump Suntec AS47 A** | Viscosity | 2 ÷ 12 mm²/s (cSt) | |-------------------------|----------------------------| | Fuel temperature | 0 ÷ 60 °C | | Maximum inlet pressure | 2 bar | | Minimum inlet pressure | - 0.45 bar to avoid gasing | | Maximum Return pressure | 2 bar | | Maximum speed | 3600 rpm | #### Oil circuit The fuel is pushed into the pump 1 to the nozzle 3 at the delivery pressure set by the pressure governor. The solenoid valve 2 stops the fuel immission into the combustion chamber. The fuel flow rate that is not burnt goes back to the tank through the return circuit. The spill-back nozzle is feeded at constant pressure, while the return line pressure is adjusted by means of the pressure governor controlled by an actuator coupled to an adjusting cam. The fuel amount to be burnt is adjusted by means of the burner actuator according to the adjustments set (see prevoius paragraph). ### Hydraulic diagrams for light oil supplying circuits Key **NOTE:** in plants where gravity or ring feed systems are provided, install an automatic interception device (see n. 4-Fig. 11). #### Installation diagram of light oil pipes ### $m{ \bigwedge}$ please read carefully the "warnings" chapter at the beginning of this manual. Fig. 11 - Double-pipe system The burner is supplied with filter and flexible hoses, all the parts upstream the filter and downstream the return flexible hose, must be installed by the customer. As far as the hoses connection, see the related paragraph. #### Key - 1 Burner - Flexible hoses (fitted) - 3 Light oil filter (fitted) - Automatic interceptor (*) 4 - 5 One-way valve (*) - 6 Gate valve - Quick-closing gate-valve (outside the tank or boiler rooms) (*) Only for installations with gravity, siphon or forced circulation feed systems. If the device installed is a solenoid valve, a timer must be installed to delay the valve closing. The direct connection of
the device without a timer may cause pump breaks. #### Hydraulic system The pumps that are used can be installed both into single-pipe and double-pipe systems. Single-pipe system: a single pipe drives the oil from the tank to the pump's inlet. Then, from the pump, the pressurised oil is driven to the nozzle: a part comes out from the nozzle while the othe part goes back to the pump. In this system, the by-pass pulg, if provided, must be removed and the optional return port, on the pump's body, must be sealed by steel plug and washer. Double-pipe system: as for the single pipe system, a pipe that connects the tank to the pump's inlet is used besides another pipe that connects the pum's return port to the tank, as well. The excess of oil goes back to the tank: this installation can be considered self-bleeding. If provided, the inside by-pass plug must be installed to avoid air and fuel passing through the pump. Burners come out from the factory provided for double-stage systems. They can be suited for single-pipe system (recommended in the case of gravity feed) as decribed before. The bypass plug inserted beween high pressure and shaft seal is only intended to change the pump rotation, check the presence of this plug with a 4 mm Allen key in the pressure outlet of the pump. To change from a 1-pipe system to a 2-pipe-system, insert the by-pass plug G (as for ccw-rotation- referring to the pump shaft). Caution: Changing the direction of rotation, all connections on top and side are reversed. #### Key - Α Oil under suction - В Oil under pressure - 1 To the pressure adjustment valve - 2 Vacuum gauge port - 3 Pressure gauge port - 5 Suction (from the tank) - 6 By-pass plug inserted #### **Bleed** Bleeding in two-pipe operation is automatic: it is assured by a bleed flat on the piston. In one-pipe operation, the plug of a pressure gauge port must be loosened until the air is evacuated from the system. | Suntec T | | |--------------------------|------------------------------| | Viscosity | 3 - 75 cSt | | Oil temperature | 0 - 150 °C | | Minimum suction pressure | - 0.45 bar to prevent gasing | | Maximum suction pressure | 5 bar | | Rated speed | 3600 rpm max. | | Vov | <u>-</u> | #### Key - 1 Inlet G3/4 - 2 Pressure gauge port G1/4 - 3 Vacuum gauge port to measure the inlet vacuum G1/4 - 4 To pressure adjusting valve G3/4 "Note: pump with "C" rotation. #### Suntec TV Pressure governor #### Pressure adjustment Remove cap-nut 1 and the gasket 2, unscrew the lock nut 4. To increase pressure, twist adjusting screw 3 clockwise. To decrease the pressure, twist screw counterclockwise. Tight the lock nut 4, refit the gasket 2 and the cap nut 1. #### Key - 1 Cap nut - 2 Gasket - 3 Adjusting screw - 4 Lock nut - 5 Gasket Fig. 12 #### Connecting the burner to the oil pumping unit Suntec T+TV Follow the scheme in the picture below to connect the burner to the oil pumping unit. The pump sends the oil coming from the tank to the burner. The pressure governor makes the oil reach the nozzle at the required pressure, while the excess of oil goes back to the tank. To change the delivery pressure act on the VRM adjusting screw of the pressure governor, reading the oil pressure at the nozzle (put a pressure gauge on the oil lance manifold). **CAUTION**: caps are not sealing type but used for shipment only. The flexible hoses between the pump and the burner are the ones called (on the label) "Oil high pressure flexible hose". The flexible hose called "Oil low pressure flexible hose" is the one to be connected upstraem the oil filter. #### About the use of fuel pumps - Make sure that the by-pass plug is not used in a single pipe installation, because the fuel unit will not function properly and damage to the pump and burner motor could result. - Do not use fuel with additives to avoid the possible formation over time of compounds which may deposit between the gear teeth, thus obstructing them. - After filling the tank, wait before starting the burner. This will give any suspended impurities time to deposit on the bottom of the tank, thus avoiding the possibility that they might be sucked into the pump. - On initial commissioning a "dry" operation is foreseen for a considerable length of time (for example, when there is a long suction line to bleed). To avoid damages inject some lubrication oil into the vacuum inlet. - Care must be taken when installing the pump not to force the pump shaft along its axis or laterally to avoid excessive wear on the joint, noise and overloading the gears. - Pipes should not contain air pockets. Rapid attachment joint should therefore be avoided and threaded or mechanical seal junctions preferred. Junction threads, elbow joints and couplings should be sealed with removable sg component. The number of junctions should be kept to a minimum as they are a possible source of leakage. - Do not use PTFE tape on the suction and return line pipes to avoid the possibility that particles enter circulation. These could deposit on the pump filter or the nozzle, reducing efficiency. Always use O-Rings or mechanical seal (copper or aluminium gaskets) junctions if possible. - An external filter should always be installed in the suction line upstream of the fuel unit. #### Electrical connections RESPECT THE BASIC SAFETY RULES. MAKE SURE OF THE CONNECTION TO THE EARTHING SYSTEM. DO NOT REVERSE THE PHASE AND NEUTRAL CONNECTIONS. FIT A DIFFERENTIAL THERMAL MAGNET SWITCH ADEQUATE FOR CONNECTION TO THE MAINS. STRICTLY OBSERVE THE DATA PLATE. As far as electrical connections, see the "ELECTRICAL WIRING DIAGRAMS" chapter. #### Fan and pump motors rotation Once the burner electrical connection is accomplished, remember to check the rotation of the motors. Motors must rotate in the direction showed on their casing. In the event of wrong rotation, reverse the three-phase supply and check again the motor rotation. #### ADJUSTING AIR AND LIGHT OIL FLOW RATE The light oil flow rate can be adjusted choosing a by-pass nozzle that suits the boiler/utilisation output and setting the delivery and return pressure values according to the ones quoted on the chart below and the following diagrams (as far as reading the pressure values, see next paragraphs). | | NOZZLE SUPPLY | HIGH FLAME | LOW FLAME | |--------------|---------------|-----------------|-----------------| | NOZZLE | PRESSURE | RETURN PRESSURE | RETURN PRESSURE | | | bar | bar | bar | | BERGONZO B/C | 25 | 18-21 | 7 (recommended) | | UNIGAS M3/G3 | 25 | 18-21 | 7 (recommended) | Fig. 13 Fig. 14 Fig. 15 Fig. 16 #### **ADJUSTMENTS** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". Be sure that the mains switch is closed. Before starting up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break. .ATTENTION: During commissioning operations, do not let the burner operate with insufficient air flow (danger of formation of carbon monoxide); if this should happen, make the fuel decrease slowly until the normal combustion values are achieved. IMPORTANT! the combustion air excess must be adjusted according to the in the following chart: | Recommended combustion parameters | | | | | | | |-----------------------------------|---------------------------------|--------------------------------|--|--|--|--| | Fuel | Recommended (%) CO ₂ | Recommended (%) O ₂ | | | | | | Light oil | 11.5 ÷ 13 | 2.9 ÷ 4.9 | | | | | Prior to start up the burner, make sure that the return pipe to the tank is not obstructed. Any obstruction would cause the pump seal to break. #### Adjusting the gas pilot To change the pilot gas valve flow rate, proceed as follows: - 1 remove the protection on the bottom of the valve, moving it counterclockwise (see next picture); - 2 rotate clockwise the nut 1 as shown in to close the valve or counterclockwise to open. To perform a finest adjustment, act directly on the pressure stabiliser as follows (see next picture): remove the cap **T**: to increase the gas pressure at the outlet use a screwdriver on the screw **TR** as shown in picture. Screw to increase the pressure, unscrew to decrease; once the regulation is performed, replace cap **T**. TR #### Adjustments - brief description Adjust the air and fuel flow rates at the maximum output ("high flame") first, by means of the air damper and the adjusting cam respectively. - Check that the combustion parameters are in the suggested limits. - Check the nozzle flow rate. - Then, adjust the combustion values corresponding to the points between maximum and minimum: set the shape of the adjusting cam foil. The adjusting cam sets the air/fuel ratio in those points, regulating the opening-closing of the fuel governor. - Set, now, the low flame output, acting on the low flame microswitch of the actuator in order to avoid the low flame output increasing too much or that the flues temperature gets too low to cause condensation in the chimney. #### Adjustment procedure - 1 Check the fan motor rotation (see page 17). - With the electrical panel open, prime the oil pump acting directly on the related **CP** contactor (see next picture): check the pump motor rotation and keep pressed for some seconds until the oil circuit is charged; 3 bleed the air from the M pressure gauge port (Fig. 17) by loosing the cap without removing it, then release the contactor and screw the cap again. Fig. 17 - 1 Before starting the burner up, drive the high flame actuator microswitch matching the low flame one (in order to let the burner operates at the lowest output) to achieve safely the high flame stage; - 2 cam IV (stroke limitation cam) must be set a little higher than the cam III to limit the output during the first seconds the flame appears; - NOTE: cam IV must shift according to cam III (it increases or decreases accordingly). - 3 Turn the
burner on by means of its main switch: if the burner locks press the RESET button on the control panel see chapter "OPERATION" on page 27. - 4 start the burner up by means of the thermostat series and wait until the pre-purge time comes to an end and the burner starts up; - drive the burner to high flame stage, by means fo the thermostat **TAB** (high/low flame thermostat see Wiring diagrams), as far as fully-modulating burners, see related paragraph. - Then move progressively the microswitch to higher values until it reaches the high flame position; always check the combustion values and eventually adjust the oil pressure (see next step). ## Actuator cams I High flame Stand-by and Ignition III Low flame IV Stroke limitation Siemens SQM40 The nozzle supply pressure is already factory-set and must not be changed. Only if necessary, adjust the supply pressure as follows (see related paragraph); insert a pressure gauge into the port shown on Fig. 18 and act on on the pump adjusting screw VR (see Fig. 17 and page 15) as to get the nozzle pressure at 25bar (Fluidics/bergonzo nozzles - see diagram on page 22). - In order to get the maximum oil flow rate, adjust the pressure (reading its value on the **PG** pressure gauge): always checking the combustion parameters, the adjustment is to be performed by means of the **SV** adjusting cam screw (see picture above) when the cam has reached the high flame position. - To adjust the **air flow rate in the high flame stage**, loose the **RA** nut and screw **VRA** as to get the desired air flow rate: moving the rod **TR** towards the air damper shaft, the air damper opens and consequently the air flow rate increases, moving it far from the shaft the air damper closes and the air flow rate decreases. Note: once the procedure is performed, be sure that the blocking nut RA is fasten. Do not change the position of the air damper rods. Only if necessary, change the combusiton head position: to let the burner operate at a lower output, loose the **VB** screw and move progressively back the combustion head towards the MIN position, by turning clockwise the **VRT** ring nut. Fasten **VB** screw when the adjustment is accomplished. Attention! if it is necessary to change the head position, repeat the air and gas adjustments described above. - the air and oil rate are now adjusted at the maximum output stage, go on with the point to point adjustement on the **SV** (Fig. 19) adjusting cam as to reach the minimum output point. - 11 As for the point-to-point regulation in order to set the cam foil shape, move the low flame microswitch (cam III) a little lower than the maximum position (90°); - 12 set the **TAB** thermostat to the minimum in order that the actuator moves progressively towards the low flame position; - 13 move cam III (low flame) towards the minimum to move the actuator towards the low flame until the two bearings find the adjusting screw that refers to a lower position: screw **V** to increase the rate, unscrew to decrease, in order to get the pressure as showed on diagrams on page 16, according to the nozzle provided and the requested rate. - 14 Move again cam III towards the minimum to meet the next screw on the adjusting cam and repeat the previous step; go on this way as to reach the desired low flame point. - NOTE: remembern that cam IV must shift according to cam III (see step 2). - 15 The low flame position must never match the ignition position that is why cam **III** must be set 20°- 30° more than the ignition position - 16 Turn the burner off; then start it up again. If the adjustment is not correct, repeat the previous steps. Now adjust the air pressure switch (see next paragraph). #### Calibration of air pressure switch To calibrate the air pressure switch, proceed as follows: - Remove the transparent plastic cap. - Once air and fuel setting have been accomplished, startup the burner. - During the pre-purge phase o the operation, turn slowly the adjusting ring nut **VR** in the clockwise direction (to increase the adjusting pressure) until the burner lockout, then read the value on the pressure switch scale and set it to a value reduced by 15%. - Repeat the ignition cycle of the burner and check it runs properly. - Refit the transparent plastic cover on the pressure switch. #### Maximum oil pressure switch The oil pressure switch on the return line, checks that the pressure does not exceed a default value. This value must not be higher than the maximum acceptable pressure on the return line (this value is reported on the specification table). A pressure change on the return line could affect the combustion parameters: for this reason, the pressure switch must be set, say, at 20% over the pressure recorded during the combustion adjustment. The factory setting is 4 bar. It is recommended to verify that the combustion parameters are within the range of acceptable values even against a pressure variation that gets close to the limit of the pressure switch This check should be carried out along the whole range of the burner output. In case of inacceptable values, reduce from 20% to 15% the overpressure; later on, repeat the adjustments described above. #### Minimum oil pressure switch (when provided) The minimum oil pressure switch on the inlet line, checks that the pressure does not drop below a default value. The pressure switch must be set, say, at 10% under the pressure at the nozzle. #### Oil pressure switch adjustment Follow the below instruction, according to the pressure switch installed. #### Fully modulating burners To adjust the fully-modulating burners, use the **CMF** switch on the burner control panel (see next picture), instead of the **TAB** thermostat as described on the previous paragraphs about the progressive burners. Go on adjusting the burner as described before, paying attention to use the CMF switch intead of **TAB**. The **CMF** position sets the oprating stages: to drive the burner to the high-flame stage, set CMF=1; to drive it to the low-flame stage, set CMF=2. To move the adjusting cam set CMF=1 or 2 and then CMF=0. CMF = 0 stop at the current position CMF = 1 high flame operation CMF = 2 low flame operation CMF = 3 automatic operation For further details, see the burner modulator reference guide. #### **PART II: OPERATION** #### LIMITATIONS OF USE THE BURNER IS AN APPLIANCE DESIGNED AND CONSTRUCTED TO OPERATE ONLY AFTER BEING CORRECTLY CONNECTED TO A HEAT GENERATOR (E.G. BOILER, HOT AIR GENERATOR, FURNACE, ETC.), ANY OTHER USE IS TO BE CONSIDERED IMPROPER AND THEREFORE DANGEROUS. THE USER MUST GUARANTEE THE CORRECT FITTING OF THE APPLIANCE, ENTRUSTING THE INSTALLATION OF IT TO QUALIFIED PERSONNEL AND HAVING THE FIRST COMMISSIONING OF IT CARRIED OUT BY A SERVICE CENTRE AUTHORISED BY THE COMPANY MANUFACTURING THE BURNER. A FUNDAMENTAL FACTOR IN THIS RESPECT IS THE ELECTRICAL CONNECTION TO THE GENERATOR'S CONTROL AND SAFETY UNITS (CONTROL THERMOSTAT, SAFETY, ETC.) WHICH GUARANTEES CORRECT AND SAFE FUNCTIONING OF THE BURNER. THEREFORE, ANY OPERATION OF THE APPLIANCE MUST BE PREVENTED WHICH DEPARTS FROM THE INSTALLATION OPERATIONS OR WHICH HAPPENS AFTER TOTAL OR PARTIAL TAMPERING WITH THESE (E.G. DISCONNECTION, EVEN PARTIAL, OF THE ELECTRICAL LEADS, OPENING THE GENERATOR DOOR, DISMANTLING OF PART OF THE BURNER). NEVER OPEN OR DISMANTLE ANY COMPONENT OF THE MACHINE. OPERATE ONLY THE MAIN SWITCH, WHICH THROUGH ITS EASY ACCESSIBILITY AND RAPIDITY OF OPERATION ALSO FUNCTIONS AS AN EMERGENCY SWITCH, AND ON THE RESET BUTTON. IN CASE OF A BURNER SHUT-DOWN, RESET THE CONTROL BOX BY MEANS OF THE RESET PUSHBUTTON. IF A SECOND SHUT-DOWN TAKES PLACE, CALL THE TECHNICAL SERVICE, WITHOUT TRYING TO RESET FURTHER. WARNING: DURING NORMAL OPERATION THE PARTS OF THE BURNER NEAREST TO THE GENERATOR (COUPLING FLANGE) CAN BECOME VERY HOT, AVOID TOUCHING THEM SO AS NOT TO GET BURNT. #### **OPERATION** ATTENTION: before starting the burner up, be sure that the manual cutoff valves are open and check that the pressure upstream the gas train complies the value quoted on paragraph "Technical specifications". - 1 Set to the ON position the main switch on the burner control panel. - 2 Check the control box is not in the lockout position; in such a case reset it by the reset pushbutton. - 3 Check that the series of thermostats (or pressure switches) enable the burner to operate. - 4 The startup sequence begins: the control box ignites the fan and pump motors and energises the ignition transformer as well. - 5 At the end of the pre-purge stage, the light oil solenoid valve EVG is energised and the burner is on. - 6 The ignition transformer is energized for few seconds after the ignition of the flame (post-ignition time) and at the end of this time is de-energised. - 7 After the ignition the actuator moves to the high flame position for some seconds, then the operation begins and the burner switches to high flame or to low flame, according to the plant demand. #### **PART III: MAINTENANCE** At least once a year carry out the maintenance operations listed below. In the case of seasonal servicing, it is recommended to carry out the maintenance at the end of each heating season; in the case of continuous operation the maintenance is carried out every 6 months. WARNING: ALL OPERATIONS ON THE BURNER MUST BE CARRIED OUT WITH THE MAINS DISCONNECTED AND THE FUEL MANAUL CUTOFF VALVES CLOSED! ATTENTION: READ CAREFULLY THE "WARNINGS" CHAPTER AT THE BEGINNIG OF THIS MANUAL. #### **ROUTINE MAINTENANCE** - Check and clean the ignitor gas filter cartdrige, replace if necessary. - Check and clean the fuel filter cartdrige, replace if necessary. - Check and clean the filter inside the light oil pump: filter must be thoroughly cleaned at least once in a season to ensure correct working of the fuel unit. To remove the filter, unscrew the four screws on the cover. When reassemble, make sure that the filter is mounted with the feet toward the pump body. If the gasket between cover and pump
housing should be damaged, it must be replaced. An external filter should always be installed in the suction line upstream of the fuel unit. - Check the fuel hoses for possible leaks. - Remove, clean and check the combustion head (see Fig. 22). - Check and clean the ignition electrode on the pilot burner, adjust and, if necessary, replace it (page 30). - Check and clean the detection photoresistor, adjust and, if necessary, replace it (Fig. 25). - Remove and clean the fuel nozzle (Important: cleaning must be performed using solvent, not metal tools!). At the end of maintenance operations after the burner reassembly, light the flame and check its shape, replacing the nozzle whenever a questionable flame shape appears. Whenever the burner is used intensely, we recommend preventively replacing the nozzle at the start of each heating season. - Clean and grease levers and rotating parts. #### Maintenance of the governor with filter (ignitor gas train) Before disassmbling the device, be sure that there is no pressurised gas inside it. To check the filtering part (1) on threaded bodies (see): - remove the bottom cover, unscrewing the fixing screws; - remove the filtering part (1), clean it with water and soap, blow it with compressed air or replace it if necessary; - reassemble the filtering part in its initial position checking that it is placed in its own slots (see); - reassemble the bottom cover (3), being sure that the main bolt is centered in the bottom cover slot. Fig. 20 #### Light oil filter maintenance For correct and proper servicing, proceed as follows: - 1 shut off fuel in the line section being serviced; - 2 unscrew the tray; - 3 remove the filter cartridge from its support and wash it with petrol or replace if necessary; check seal O-Ring, replace if necessary; - 4 reassemble the tray and restore fuel flow. Fig. 21 #### Removing the combustion head - 1 Remove the cover **H**. - 2 Slide the photoresistance out of its housing. - unscrew the revolving connectors (E in Fig. 22) on the fuel pipes (use 2 spanners to avoid loosening the connections attached to the distributor block)loosen the screw VRT to free the threaded rod AR, then screw out the 2 screws V holding the washer R and the screw VRT in position - 4 remove the whole assembly as shown in Fig. 22 - 5 Clean the combustion head by means fo a vacuum cleaner; scrape off the scale by means fo a metallic brush. Note: to remount the burner, floow the same procedure in the reversed order. Fig. 22 #### Key - 1 Inlet - 2 Return - 3 Gun opening - E Oil piping connections - H Cover - L Oil gun #### Removing the oil gun - 1 Remove the combustion head, as described on the previous paragraph; - 2 slacken the screw VB - 3 remove the lance with the nozzle holder - 4 to replace the combustion head reverse the procedure described above. Fig. 23 #### Electrode position setting **ATTENTION:** avoid the ignition electrode to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrode position after any intervention on the combustion head. To guarantee a good ignition, the masures below (in mm) must be observed (Fig. 24). Fig. 24 #### Replacing the ignition electrode **ATTENTION:** avoid the ignition electrode to contact metallic parts (blast tube, head, etc.), otherwise the boiler's operation would be compromised. Check the electrode position after any intervention on the combustion head. To replace the ignition electrode, proceed as follows: - 1 remove the burner cover - 2 disconnect the electrode cable - 3 remove the combustion head (see par. "Removing the combustion head"); - 4 loose the screw that fasten the ignition electrode to the burner pilot; - 5 remove the electrode and replace it, referring to the values quoted on Fig. 24. #### Cleaning and replacing the detection photoresistor To clean/replace the photoresistive detector, remove it from its slot. To clean the photoresistor, use a clean cloth, not cleaning sprays. #### Checking the detection current To measure the detection signal follow the diagram in Fig. 25. If the signal is not in the advised range, check the electrical contacts, the cleaning of the combustion head, the position of the photoresistor and if necessary replace it. Minimum current intensity with flame LAL25: $8\mu A$ #### Seasonal stop To stop the burner in the seasonal stop, proceed as follows: - 1 turn the burner's main switch to 0 (Off position) - 2 disconnect the power mains - 3 close the fuel cock of the supply line #### Burner disposal In case of disposal, follow the instructions according to the laws in force in your country about the "Disposal of materials". ### **TROUBLESHOOTING** | | THE BURNER
DOESN'T START | THE BURNER
REPEATS PRE-
PURGE | NOISY FUEL PUMP | THE BURNER
DOESN'T START
AND STOPS | THE BURNER
STARTS AND
STOPS | THE BURNER
DOESN'T SWITCH
TO HIGH FLAME | THE BURNER
STOPS DURING
OPERATION | THE BURNER STOPS
AND REPEATS THE
CYCLE DURING OPE-
RATION | |--|-----------------------------|-------------------------------------|-----------------|--|-----------------------------------|---|---|--| | MAIN SWITCH OPEN | • | | | | | | | | | LINE FUSE INTERVENTION | • | | | | | | | | | MAX. PRESSURE SWITCH FAULT | • | | | | | | | • | | FAN THERMAL CUTOUT INTERVENTION | • | | | | | | | | | AUXILIARY RELAIS FUSES INTERVENTION | • | | | | | | | | | CONTROL BOX FAULT | • | • | | • | • | | • | | | ACTUATOR FAULT | | | | | | • | | | | SMOKEY FLAME | | | | | • | | • | | | IGNITION TRANSFORMER FAULT | | | | • | | | | | | IGNITION ELECTRODE DIRTY OR BADLY POSITIONED | | | | • | | | | | | DIRTY NOZZLE | | | | • | | | • | | | FUEL SOLENOID VALVE DEFECTIVE | | | | • | | | • | | | PHOTORESISTOR DIRTY OR DEFECTIVE | | | | | • | | • | | | HI-LO FLAME THERMOSTAT DEFECTIVE | | | | | | • | | | | WRONG POSITION OF ACTUATOR CAMS | | | | | | • | | | | FUEL PRESSURE TOO LOW | | | | • | | | | | | DIRTY FUEL FILTERS | | | • | • | | | • | | #### **WIRING DIAGRAMS** Refer to the attached wiring diagrams. ### WARNING - 1 Electrical supply 400V 50Hz 3N a.c. - 2 Do not reverse phase with neutral 3 Ensure burner is properly earthed #### **APPENDIX** #### SIEMENS LAL.. CONTROL BOX #### Use - Control and supervision of oil atomization burners - For burners of medium to high capacity - For intermittent operation (at least one controlled shutdown every 24 hours) - Universally applicable for multistage or modulating burners #### Housing and plug-in base - Made of impact-proof and heat-resistance black plastic - Lockout reset button with viewing window; located behind it: - Lockout warning lamp - Lockout indicator coupled to the spindle of the sequence switch and visible in the transparent lockout reset button - uses easy-to-remember symbols to indicate the type of fault and the point in time lockout occurred Base and plug-in section of the LAL... are designed such that only burner controls of the LAL... family can be plugged in. - 24 connection terminals - Auxiliary terminals «31» and «32» - 3 earth terminals terminating in a lug for earthing the burner - 3 neutral conductor terminals prewired to terminal 2 - 14 knockout holes for cable entry by means of cable glands - 8 at the side - 6 in the bottom of the base - 6 lateral threaded knockout holes for cable entry glands Pg11 or M20 #### Operation Flame detector and flame simulation test are made automatically during burner off times and the prepurge time «t1». If loss of flame occurs during operation, the burner control will initiate lockout. If automatic repetition of the startup sequence is required, the clearly marked wire link on the plugin section of the LAL... must be cut away. #### Pre-conditions for burner startup - Burner control is not in the lockout position - Sequence switch is in its start position (with LAL2 voltage is present at terminals 11 and 12. - Air damper is closed; end switch «z» for the CLOSED position must feed power from terminal 11 to terminal8. - Contact of the limit thermostat or pressure switch «W» and the contacts of any other switching devices in the control loop between terminals 4 and 5 must be closed e.g. a control contact for the oil preheater's temperature - Normally closed contact of the air pressure switch must be closed. #### Startup sequence Start command by «R»: «R» closes the start control loop between terminals 4 and 5 - The sequence switch starts to run - Only prepurging, fan motor at terminal 6 receives power - Pre- and postpurging, fan motor or flue gas fan at terminal 7 receives power on completion of «t7» - On completion of «t16», the control command for opening the air damper is delivered via terminal 9 - Terminal 8 receives no power during the positioning time - The sequence switch continues to run only after the air damper has fully closed. - t1 Prepurge time with air damper fully open: - The correct functioning of the flame supervision circuit is checked during «t1» - The burner control will initiate lockout if correct functioning is not ensured. #### With LAL2: Shortly after the beginning of «t1», the air pressure switch must change over from terminal 13 to terminal 14 otherwise, the burner control will initiate lockout start of the air pressure check. - t3 Short preignition time: - «Z» must be connected to terminal 16, release of fuel via terminal 18. - t3' Long preignition time: «Z» connected to terminal 15. - t3n Postignition time: - «Z» must be connected to terminal 15 - With short preignition, «Z» remains on until «TSA» has elapsed connection to terminal 16. - t4 Interval «BV1 BV2» or «BV1 LR»: On completion of «t4», voltage is present at terminal 19. The voltage is required to power «BV2» connected to auxiliary switch «v»
in the actuator. - t5 Interval: On completion of «t5», terminal 20 receives power. At the same time, control outputs 9 to 11 and input 8 are galvanically separated from the LAL...'s control section. - LAL... is now protected against reverse voltages from the load control circuit. With the release of «LR» at terminal 20, the startup sequence of the LAL... ends. After a few idle steps (steps with no contact position changes), the sequence switch switches itself off. - B Operating position of the burner - B-C Burner operation: during burner operation, «LR» drives the air damper to the nominal load or low-fire position, depending on heat demand; the release of the nominal load takes place via auxiliary switch «v» in the actuator and in the event of loss of flame during operation, the LAL... will initiate lockout. For automatic start repetition, the clearly marked wire link «B» on the plugin section of the LAL... must be cut away. - C Controlled shutdown: in the case of controlled shutdown, «BV...» will immediately be closed. At the same time, the sequence switch is started to program «t6» - C-D Sequence switch travels to start position «A» - t6 Postpurge time: fan «M2» connected to terminal 7. Shortly after the start of «t6», terminal 10 receives power and the air damper is driven to the MIN position. Full closing of the air damper starts only shortly before «t6» has elapsed initiated by the control signal at terminal 11. During the following burner off time, terminal 11 is live. - t13 Permissible afterburn time: during «t13», the flame signal input may still receive a flame signal. - D-A End of control program: start position As soon as the sequence switch has reached the start position – having thereby switched itself off – the flame detector and flame simulation test will start again. During burner off times, the flame supervision circuit is live. #### Lockout and indication of the stop position Whenever a fault occurs, the sequence switch stops and with it the lockout indicator. The symbol appearing above the reading mark indicates the type of fault: No start. One of the contacts is not closed (also refer to «Preconditions for burner startup»): #### Extraneous light: Lockout during or after completion of the control program Examples: nonextinguished flame, leaking fuel valves faulty flame supervision circuit. - Interruption of startup. No OPEN signal at terminal 8 from the changeover end switch «a». Terminals 6, 7 and 15 are live until fault has been corrected - **P** Lockout. No air pressure indication at the beginning of the air pressure check. Air pressure failure after the air pressure check. - Defect in the flame supervision circuit. - Interruption of the startup sequence. No positioning signal at terminal 8 from the auxiliary switch «m» for the low-fire position. Terminals 6, 7 and 15 are live until fault has been corrected. - Lockout. No flame signal at the end of the safety time. - Flame signa has been lost during operation. - A Consenso all'avviamento (ad esempio tramite il termostato o il pressostato R dell'impianto - B Operating position of the burner - B-C Burner operation: during burner operation, «LR» drives the air damper to the nominal load or low-fire position, depending on heat demand; the release of the nominal load takes place via auxiliary switch «v» in the actuator and in the event of loss of flame during operation, the LAL... will initiate lockout. For automatic start repetition, the clearly marked wire link «B» on the plugin section of the LAL... must be cut away. - C Controlled shutdown: in the case of controlled shutdown, «BV...» will immediately be closed. At the same time, the sequence switch is started to program «t6» - C-D Sequence switch travels to start position «A». During burner off times, the flame supervision circuit is live. #### Lockout indication a-b Startup sequence b-b' Idle step (with no contact confirmation) b(b')-a Postpurge program Burner control can immediately be reset after lockout: Do not press the lockout reset button for more than 10 seconds The sequence switch always travels to the start position first After resetting After rectification of a fault that led to shutdown After each power failure During this period of time, power is only fed to terminals 7 and 9...11. Then, the LAL.... will program a new burner startup sequence **Specifications** Power supply AC 230 V -15 / +10 % for LAL2... on request AC 100 V -15 %...AC 110 V +10 % Frequency 50 Hz -6 %...60 Hz +6 % Absorption AC 3.5 VA Mounting position optional Protection IP 40 Perm. input current at terminal 1 AC 5 A max., 20 A peak Perm. current rating of control terminals 3, 6, 7, 9...11, 15...20 Internal fuse External fuse Weight 4 A max., 20 A peak T6,3H250V according to IEC 127 max. 10 A Device 1000 g Plug-in base 165 g #### Sequence diagram #### Control output at terminal | Key | | |-----|--| | t1 | Prepurge time with air damper fully open | | t2 | Safety time | t3 Preignition time, short («Z» connected to terminal 16) T3' Preignition time, long («Z» connected to terminal 15) t3n Postignition time («Z» connected to terminal 15) t4 Interval between voltage at terminals 18 and 19 («BV1-BV2») t5 Interval between voltage at terminals 19 and 20 («BV2» load controller) | Postpurge time (with «M2») | |--| | Interval between start command and voltage at terminal 7 (start delay time for «M2») | | Duration of startup sequence (excluding «t11» and «t12») | | Interval from startup to the beginning of the air pressure check | | Air damper running time to the OPEN position | | Air damper running time to the low-fire position (MIN) | | Permissible afterburn time | | Interval to the OPEN command for the air damper | | For self-shutdown of the sequence switch | | | C.I.B. UNIGAS S.p.A. Via L.Galvani, 9 - 35011 Campodarsego (PD) - ITALY Tel. +39 049 9200944 - Fax +39 049 9200945/9201269 web site: www.cibunigas.it - e-mail: cibunigas@cibunigas.it Note: specifications and data subject to change. Errors and omissions exceptd. # **CIB UNIGAS 600V** CONTROLLER # **USER'S MANUAL** COD. M12925CA Rel 1.2 08/2014 SOFTWARE VERSION 1.0x T73 code 80379 / Edition 01 - 06/2012 CE # 1 · INSTALLATION # · Dimensions and cut-out; panel mounting For correct and safe installation, follow the instructions and observe the warnings contained in this manual. #### Panel mounting: To fix the unit, insert the brackets provided into the seats on either side of the case. To mount two or more units side by side, respect the cut-out dimensions shown in the drawing. CE MARKING: The instrument conforms to the European Directives 2004/108/CE and 2006/95/CE with reference to the generic standards: EN 61000-6-2 (immunity in industrial environment) EN 61000-6-3 (emission in residential environment) EN 61010-1 (safety). MAINTENANCE: Repairs must be done only by trained and specialized personnel. Cut power to the device before accessing internal parts. Do not clean the case with hydrocarbon-based solvents (Petrol, Trichlorethylene, etc.). Use of these solvents can reduce the mechanical reliability of the device. Use a cloth dampened in ethyl alcohol or water to clean the external plastic case. **SERVICE:** GEFRAN has a service department. The warranty excludes defects caused by any use not conforming to these instructions. EMC conformity has been tested with the following connections | FUNCTION | CABLE TYPE | LENGTH | |--------------------|---------------------------------|--------| | Power supply cable | 1 mm ² | 1 m | | Relay output cable | 1 mm ² | 3,5 m | | TC input | 0,8 mm ² compensated | 5 m | | Pt100 input | 1 mm² | 3 m | | | | | | 2 · TECHNICA | L SPECIFICATIONS | |---|--| | Display | 2x4 digit green, high display 10 and 7mm | | Keys | 4 of mechanical type (Man/Aut, INC, DEC, F) | | Accuracy | 0.2% f.s. ±1 digit ambient temperature 25°C | | Main input (settable digital filter) | TC, RTD, PTC, NTC
60mV,1V Ri≥1MΩ; 5V,10V Ri≥10KΩ; 20mA Ri=50Ω
Tempo di campionamento 120 msec. | | Type TC Thermocouples (ITS90) | Type TC Thermocouples: J,K,R,S,T (IEC 584-1, CEI EN 60584-1, 60584-2); custom linearization is available / types B,E,N,L GOST,U,G,D,C are available by using the custom linearization. | | Cold junction error | 0,1° / °C | | RTD type (scale configurable within indicated range, with or without decimal point) (ITS90) | DIN 43760 (Pt100), JPT100 | | Max line resistance for RTD | 20Ω | | PTC type / NTC Type | 990Ω, 25°C / 1KΩ, 25°C | | Safety | detection of short-circuit or opening of probes, LBA alarm | | °C / °F selection | configurable from faceplate | | Linear scale ranges | -1999 to 9999 with configurable decimal point positio | | Controls | PID, Self-tuning, on-off | | pb - dt - it | 0,0999,9 % - 0,0099,99 min - 0,0099,99 min | | Action | Heat / Cool | | Control outputs | on / off | | Maximum power limit heat / cool | 0,0100,0 % | | Cycle time | 0200 sec | | Main output type | relay, logic, continuous (010V Rload \ge 250KΩ, 0/420mA Rload \le 500Ω) | | Softstart | 0,0500,0 min | | Fault power setting | -100,0100,0 % | | Automatic blanking | Displays PV value, optional exclusion | | Configurable alarms | Up to 3 alarm functions assignable to an output, configurable as: maximum, minimum, symmetrical, absolute/deviation, LBA | | Alarm masking | - exclusion during warm up
- latching reset from faceplate or external contact | | Type of relay contact | NO (NC), 5A, 250V/30Vdc cosφ=1 | | Logic output for static relays | 24V ±10% (10V min at 20mA) | | Transmitter power supply | 15/24Vdc, max 30mA short-circuit protection | | Power supply (switching
type) | (std) 100 240Vac ±10%
(opt.) 1127Vac/dc ±10%;
50/60Hz, 8VA max | | Faceplate protection | IP65 | | Working / Storage temperature range | 050°C / -2070°C | | Relative humidity | 20 85% non-condensing | | Environmental conditions of use | for internal use only, altitude up to 2000m | | Installation | Panel, plug-in from front | | Weight | 160g for the complete version | # 5 · "EASY" PROGRAMMING and CONFIGURATION #### Prot # 6 · PROGRAMMING and CONFIGURATION N.B.: Once a particular configuration is entered, all unnecessary parameters are no longer displayed # · InFo Display #### · CFG vote. Our and har only display configuration extent # • Hrd # • Lin # · U.CAL | U.CA | User calibration | | Val | Function | |------|------------------|---|-----|-----------------------------| | | | | 1 | - | | | | | 2 | Input 1 - custom 10V / 20mA | | | | | 3 | Input 1 - custom 60mV | | | | | 4 | Custom PT100 / J PT100 | | | | 1 | 5 | Custom PTC | | | | | 6 | Custom NTC | | | | | 7 | - | | | | _ | | | Obtain burner consent by configuring alarm 1 as inverse deviation with positive hysteresis Hy.P and negative hysteresis Hy.n # 8 · PRE-HEATING FUNCTION Enable the pre-heating function by setting parameters GS.0, Ht.0, GS.1 other than zero. It consists of three phases that are activated sequentially at firing: - Ramp 0 phase Enabled by setting GS.0 > 0. Starting from setpoint = PV (initial state), it reaches pre-heating set SP.0 with gradient GS.0 - Maintenance phase Enabled by setting Ht.0 > 0. Maintains pre-heating setpoint SP.0 for time Ht.0 - Ramp 1 phase Enabled by setting GS.1 > 0. Starting from pre-heating setpoint SP.0, it reaches active $_SP$ set with gradient GS.1 In case of selftuning, the pre-heating function is not activated #### 9 · ADJUSTMENT WITH MOTORIZED VALVE In an adjustment process the adjustment valve has the function of varying fuel delivery (frequently corresponding to the thermal energy introduced into the process) in relation to the signal coming from the controller. For this purpose it is provided with an actuator able to modify its opening value, overcoming the resistances produced by the fluid passing inside it. The adjustment valves vary the delivery in a modulated manner, producing finite variations in the fluid passage inner area corresponding to finite variations of the actuator input signal, coming from the controller. The servomechanism, for example, comprises an electric motor, a reducer and a mechanical transmission system which actions the valve. Various auxiliary components can be present such as the mechanical and electrical safety end travels, manual actioning systems. CONTROL EXAMPLE FOR V0 VALVE The controller determines, on the basis of the dynamics of the process, the control output for the valve corresponding to the opening of the same in such a way so as to maintain the desired value of the process variable. #### Characteristic parameters for valves control - Actuator time (Ac.t) is the time employed by the valve to pass from entirely open to entirely closed (or vice-versa), and can be set with a resolution of one second. It is a mechanical feature of the valve+actuator unit. NOTE: if the actuator's travel is mechanically limited it is necessary to proportionally reduce the Ac.t value. - Minimum impulse (t.Lo) expressed as a % of the actuator time (resolution 0.1%). Represents the minimum change in position corresponding to a minimum change in power supplied by the instrument below which the actuator will not physically respond to the command. This represents the minimum variation in position due to which the actuator does not physically respond to the command. The minimum duration of the movement can be set in t.Lo, expressed as a % of actuator time. - Impulsive intervention threshold (t.Hi) expressed as a % of the actuator time (resolution 0.1%) represents the position displacement (requested position – real position) due to which the manoeuvre request becomes impulsive. You can choose between 2 types of control: - 1) ON time of movement = t.on and OFF time proportional to shift and greater than or equal to t.Lo (we recommend setting t.on = t.Lo) (set t.oF = 0). - 2) ON time of movement = t.on and OFF time = t.oF. A value set for t.oF < t.on is forced to t.on. To activate this type, set t.oF <> 0. The type of movement approach allows fine control of the reverse drive valve (from potentiometer or not), especially useful in cases of high mechanical inertia. Set t.Hi = 0 to exclude modulation in positioning. This type of modulated approach allows precise control of the feedback actioned valve, by a potentiometer or not, and is especially useful in cases of high mechanical inertia. Setting t.Hi = 0 excludes modulation in positioning. - Dead zone(dE.b) is a displacement band between the adjustment setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF). It is expressed as a percentage of the bottom scale and is positioned below the setpoint. The dead zone is useful in an operative process to avoid straining the actuator with repeated commands and an insignificant effect on the adjustment. Setting dE.b = 0 the dead zone is excluded. Graph of behavior inside the band with integral time $\neq 0$. With integral time = 0, movement ON time is always equal to OFF time. t0 = t.Lo #### Valve control modes With the controller in manual, the setting of parameter At.y ≥ 8 allows direct control of the valve open and close commands through the keyboard Increments and Decrements on the front seats. #### V0 - for floating valve without potentiometer Model V0 have similar behaviour: every manoeuvre request greater than the minimum impulse t.Lo is sent to the actuator by means of the OPEN/CLOSE relays; every action updates the presumed position of the virtual potentiometer calculated on the basis of the actuator travel declared time. In this way there is always a presumed position of the valve which is compared with the position request of the controller. Having reached a presumed extreme position (entirely open or entirely closed determined by the "virtual potentiometer") the controller provides a command in the same direction, in this way ensuring the real extreme position is reached (minimum command time = t.on). The actuators are usually protected against the OPEN command in the entirely open position or CLOSE command in the entirely closed position. #### V3 - for floating valve, PI control When the difference between the position calculated by the controller and the only proportional component exceeds the value corresponding to the minimum impulse t.Lo the controller provides an OPEN or CLOSE command of the duration of the minimum impulse itself t.Lo. At each delivery the integral component of the command is set to zero (discharge of the integral). The frequency and duration of the impulses is correlated to the integral time (h.it or c.it). #### Non-movement behavior t.Hi = 0: with power = 100% or 0.0%, the corresponding open or close outputs always remain enabled (safety status). #### Movement behavior t.Hi <> 0: with position attained corresponding to 100% or 0.0%, the corresponding open or close outputs are switched off. If t.oF = 0, current function is maintained If t.oF ≠ 0 movement mode will be as shown on the graph ## 10 · CONTROL ACTIONS #### Proportional Action: action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint). Derivative Action: action in which contribution to output is proportional to rate of variation input deviation. Integral Action: action in which contribution to output is proportional to integral of time of input deviation. #### Influence of Proportional, Derivative and Integral actions on response of process under control - * An increase in P.B. reduces oscillations but increases deviation. - * A reduction in P.B. reduces the deviation but provokes oscillations of the controlled variable (the system tends to be unstable if P.B. value is too low). - * An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation and prevents oscillation up to a critical value of Derivative Time, beyond which deviation increases and prolonged oscillations occur. - * An increase in Integral Action corresponds to a reduction in Integral Time, and tends to eliminate deviation between the controlled variable and the setpoint when the system is running at rated speed. If the Integral Time value is too long (Weak integral action), deviation between the controlled variable and the setpoint may persist. Contact GEFRAN for more information on control actions. #### 11 · MANUAL TUNING - A) Enter the setpoint at its working value. - B) Set the proportional band at 0.1% (with on-off type setting). - C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure: D) The PID parameters are calculated s follows: Proportional band (V max - V min) is the scale range. Integral time: $It = 1.5 \times T$ Derivative time: dt = It/4 **E)** Switch the unit to manual, set the calculated parameters. Return to PID action by setting the appropriate relay output cycle time, and switch back to Automatic. **F)** If possible, to optimize parameters, change the setpoint and check temporary response. If an oscillation persists, increase the proportional band. If the response is too slow, reduce it #### 12 · SET GRADIENT SET GRADIENT: if set to $\neq 0$, the setpoint is assumed equal to PV at power-on and auto/man switchover. With gradient set, it reaches the local setpoint. Every variation in setpoint is subject to a gradient. The set gradient is inhibited at power-on when self-tuning is engaged. If the set gradient is set to $\neq 0$, it is active even with variations of the local setpoint. The control setpoint reaches the set value at the speed defined by the gradient. # 13 ·
SOFTWARE ON / OFF SWITCHING FUNCTION How to switch the unit OFF: hold down the "F" and "Raise" keys simultaneously for 5 seconds to deactivate the unit, which will go to the OFF state while keeping the line supply connected and keeping the process value displayed. The SV display is OFF. All outputs (alarms and controls) are OFF (logic level 0, relays de-energized) and all unit functions are disabled except the switch-on function and digital communication. How to switch the unit ON: hold down the "F" key for 5 seconds and the unit will switch OFF to ON. If there is a power failure during the OFF state, the unit will remain in OFF state at the next power-up (ON/OFF state is memorized). The function is normally enabled, but can be disabled by setting the parameter Prot = Prot + 16. #### 14 · SELF-TUNING The function works for single output systems (heating or cooling). The self-tuning action calculates optimum control parameter values during process startup. The variable (for example, temperature) must be that assumed at zero power (room temperature). The controller supplies maximum power until an intermediate value between starting value and setpoint is reached, after which it zeros power. PID parameters are calculated by measuring overshoot and the time needed to reach peak. When calculations are finished, the system disables automatically and the control proceeds until the setpoint is reached. #### How to activate self-tuning: #### A. Activation at power-on - 1. Set the setpoint to the required value - 2. Enable selftuning by setting the Stun parameter to 2 (CFG menu) - 3. Turn off the instrument - 4. Make sure the temperature is near room temperature - 5. Turn on the instrument again #### B. Activation from keyboard - 1. Make sure that key M/A is enabled for Start/Stop selftuning (code but = 6 Hrd menu) - 2. Bring the temperature near room temperature - 3. Set the setpoint to the required value - 4. Press key M/A to activate selftuning (Attention: selftuning interrupts if the key is pressed again) The procedure runs automatically until finished, when the new PID parameters are stored: proportional band, integral and derivative times calculated for the active action (heating or cooling). In case of double action (heating or cooling), parameters for the opposite action are calculated by maintaining the initial ratio between parameters (ex.: CPb = HPb * K; where K = CPb / HPb when self-tuning starts). When finished, the Stun code is automatically cancelled. #### Notes: - -The procedure does not start if the temperature is higher than the setpoint (heating control mode) or if the temperature is lower than the setpoint (cooling control mode). In this case, the Stu code is not cancelled. - -It is advisable to eneable one of the configurable LEDs to signal selftuning status. By setting one of parameters LED1, LED2, LED3=4 or 20 on the Hrd menu, the respective LED will be on or flashing when selftuning is active. # 15 · ACCESSORIES # Interface for instrument configuration Kit for PC via the USB port (Windows environment) for GEFRAN instruments configuration: Lets you read or write all of the parameters - · A single software for all models - · Easy and rapid configuration - · Saving and management of parameter recipes - · On-line trend and saving of historical data Component Kit: - Connection cable PC USB ... port TTL - Connection cable PC USB ... RS485 port - Serial line converter - CD SW GF Express installation | · ORDERING CODE | | | | |-----------------|-------------|--|--| | GF_eXK-2-0-0 | cod F049095 | | | # 16 · ORDER CODE #### WARNINGS WARNING: this symbol indicates danger. It is placed near the power supply circuit and near high-voltage relay contacts. Read the following warnings before installing, connecting or using the device: · follow instructions precisely when connecting the device. - · always use cables that are suitable for the voltage and current levels indicated in the technical specifications. - the device has no ON/OFF switch: it switches on immediately when power is turned on. For safety reasons, devices permanently connected to the power supply require a twophase disconnecting switch with proper marking. Such switch must be located near the device and must be easily reachable by the user. A single switch can control several units. - if the device is connected to electrically NON-ISOLATED equipment (e.g. thermocouples), a grounding wire must be applied to assure that this connection is not made directly through the machine structure. - if the device is used in applications where there is risk of injury to persons and/or damage to machines or materials, it MUST be used with auxiliary alarm units. You should be able to check the correct operation of such units during normal operation of the device. - before using the device, the user must check that all device parameters are correctly set in order to avoid injury to persons and/or damage to property. - the device must NOT be used in infiammable or explosive environments. It may be connected to units operating in such environments only by means of suitable interfaces in conformity to local safety regulations. - the device contains components that are sensitive to static electrical discharges. Therefore, take appropriate precautions when handling electronic circuit boards in order to prevent permanent damage to these components. Installation: installation category II, pollution level 2, double isolation The equipment is intended for permanent indoor installations within their own enclosure or panel mounted enclosing the rear housing and exposed terminals on the back. - · only for low power supply: supply from Class 2 or low voltage limited energy source - · power supply lines must be separated from device input and output lines; always check that the supply voltage matches the voltage indicated on the device label. • install the instrumentation separately from the relays and power switching devices - · do not install high-power remote switches, contactors, relays, thyristor power units (particularly if "phase angle" type), motors, etc... in the same cabinet. - · avoid dust, humidity, corrosive gases and heat sources. - do not close the ventilation holes; working temperature must be in the range of 0...50°C. - · surrounding air: 50°C - use 60/75°C copper (Cu) conductor only, wire size range 2x No 22 14AWG, Solid/Stranded - · use terminal tightening torque 0.5N m If the device has faston terminals, they must be protected and isolated; if the device has screw terminals, wires should be attached at least in pairs. - · Power: supplied from a disconnecting switch with fuse for the device section; path of wires from switch to devices should be as straight as possible; the same supply should not be used to power relays, contactors, solenoid valves, etc.; if the voltage waveform is strongly distorted by thyristor switching units or by electric motors, it is recommended that an isolation transformer be used only for the devices, connecting the screen to ground; it is important for the electrical system to have a good ground connection; voltage between neutral and ground must not exceed 1V and resistance must be less than 6Ohm; if the supply voltage is highly variable, use a voltage stabilizer for the device; use line filters in the vicinity of high frequency generators or arc welders; power supply lines must be separated from device input and output lines; always check that the supply voltage matches the - · Input and output connections: external connected circuits must have double insulation; to connect analog inputs (TC, RTD) you have to: physically separate input wiring from power supply wiring, from output wiring, and from power connections; use twisted and screened cables, with screen connected to ground at only one point; to connect adjustment and alarm outputs (contactors, solenoid valves, motors, fans, etc.), install RC groups (resistor and capacitor in series) in parallel with inductive loads that work in AC (Note: all capacitors must conform to VDE standards (class x2) and support at least 220 VAC. Resistors must be at least 2W); fit a 1N4007 diode in parallel with the coil of inductive loads that operate in GEFRAN spa will not be held liable for any injury to persons and/or damage to property deriving from tampering, from any incorrect or erroneous use, or from any use not conforming to the device specifications. # Set-up for 600V RRR0-1-T73 regulator #### Set up for temperature probe Pt100 (ex Siemens QAE2120 130°C max.) The regulator comes out of the factory preset with the corresponding values of the Siemens RWF40.000 and RWF50.2x #### Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 5 (hysteresis positive for output 1, terminals 21-22 (ex Q13-Q14) | |------|---| | Hy.n | -5 hysteresis negative for output ,1 terminals 21-22 (ex Q13-Q14) | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG
S.tun | | |--------------|------| | S.tun | 0 | | hPb | 1,2 | | hlt | 5,83 | | hdt | 1,33 | | | | | InP | | | |--------------|-------------------------------------|--| | | | | | tyP | 30 (Pt100) | | | | | | | dP_S
Lo.S | 1 (decimals num.) | | | | 0 (min. sensor scale) | | | Hi.S | 850,0 (max sensor scale) | | | oFS | 0 (offset of input correction) | | | Lo.L | 30,0 (lower set-point range limit) | | | Hi.L | 130,0 (upper set-point range limit) | | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (operating mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL |
0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | | | | PAS | 99 then push and keep pushed F until visualization of Hrd | | | |-------|---|--|--| | | | | | | Hrd | | | | | | | | | | CtrL | 6 (PID warm) | | | | AL.nr | 1 | | | | but | 1 | | | | diSP | 0 | | | | Ld.1 | 1 | | | | Ld.2 | 28 | | | | Ld.3 | 20 | | | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. #### Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. #### Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. #### Set up for temperature probe Pt100 for high temperature (350°C max.) #### Verify wiring of the sensor #### Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) | |------|---| | Hy.n | -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14) | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG | | | |------------|------|--| | S.tun | 0 | | | hPb
hIt | 1,2 | | | hlt | 5,83 | | | hdt | 1,33 | | | | | | | InP | | | |--------------|-------------------------------------|--| | | | | | tyP | 30 (Pt100) | | | | | | | dP_S
Lo.S | 1 (decimals num.) | | | Lo.S | 0 (min. sensor scale) | | | Hi.S | 850,0 (max sensor scale) | | | oFS | 0 (offset of input correction) | | | Lo.L | 0,0 (lower set-point range limit) | | | Hi.L | 350,0 (upper set-point range limit) | | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; | | | SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | PAS | 99 then push and keep pushed F until visualization of Hrd | |-------|---| | | | | Hrd | | | | | | CtrL | 6 (PID warm) | | AL.nr | 1 | | but | 1 | | diSP | 0 | | Ld.1 | 1 | | Ld.2 | 28 | | Ld.3 | 20 | Keep pushed F until you visualize PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) from 128, through the arrows, bring it back to 12, and keep F pushed until you come back to set-point value. #### Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. ## Software switch off: By keeping pushed keys **Arrow up** + **F** for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. #### Set up for pressure transmitter 2 wires signal 4÷20mA With pressure transmitters first we need to enable their power supply: remove the part as shown below, then, on the CPU unit, move the bridge from Pt100 to +Vt #### Verify wiring of the sensor #### Impostazione set-point | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | |-------------|--------|--------|-------|-------|-------|-------| | Set-point | 1bar | 1,5bar | 6bar | 6bar | 6bar | 6bar | To modify it directly use "up" and "down" arrows. #### By pushing **F** you go to parameter: | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | |-------------|--------|--------|--------|--------|---------|-------| | Hy.P | 0,2bar | 0,5bar | 0,5bar | 0,8bar | 1,25bar | 2bar | | Hy.n | 0bar | 0bar | 0bar | 0bar | 0bar | 0bar | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG | | |-------|------| | S.tun | 0 | | hPb | 5 | | hlt | 1,33 | | hdt | 0,33 | | | | | InP | | |------|-------------------| | | | | tyP | 44 (4÷20mA) | | | | | dP S | 2 (decimals num.) | | Transmitter | 1,6bar | 3bar | 10bar | 16bar | 25bar | 40bar | | |-------------|--------|------|-------|-------|-------|-------|----------------------------| | Lo.S | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | min. sensor scale | | Hi.S | 1,60 | 3,00 | 10,00 | 16,00 | 25,00 | 40,00 | max sensor scale | | oFS | 0 | 0 | 0 | 0 | 0 | 0 | offset of input correction | | Lo.L | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | lower set-point setting | | Hi.L | 1,60 | 3,00 | 10,00 | 16,00 | 25,00 | 40,00 | upper set-point setting | | Out | | |------|--| | A1.r | 0 | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | rL.1 | 2 (AL1) | | rL.2 | 18 (open) | | rL.3 | 19 (close) | | rEL | 0 | | A.ty | 9 (type of servocontrol command) | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30) | | t_Lo | 2 | | t_Hi | 0.0 | | t.on | 2 | | t.oF | 0.0 | | dE.b | 0,1 (dead zone in % of end scale) | | PAS | 99 then push and keep pushed F until visualization of Hrd | |-------|---| | | | | Hrd | | | | | | CtrL | 6 (PID warm) | | AL.nr | 1 | | but | 1 | | diSP | 0 | | Ld.1 | 1 | | Ld.2 | 28 | | Ld.3 | 20 | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. #### Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close" outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. #### Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # Set -up for thermocouples type **K** or **J** #### Verify wiring of the sensor Regulation of the set-point = 80 It can be modified by using arrows "up" and "down". By pushing **F** you go to parameters: | Hy.P | 10 (hysteresis positive for output 1 terminals 21-22 (ex Q13-Q14) | |------|---| | Hy.n | -5 (hysteresis negative for output 1 terminals 21-22 (ex Q13-Q14) | Keep pushing F until you see PASS, release F and through the arrows set 99, push F and visualize Pro (protection code) default is 12, through the arrows set 128 and push F, keep it pushed until all parameters InF, CFG, InP, Out, PASS are visualized. | CFG
S.tun | | |--------------|------| | S.tun | 0 | | hPb | 1,2 | | hlt | 5,83 | | hdt | 1,33 | | | | | InP | | |------|---| | | | | tyP | 2 (thermocouple K 0÷1300°C) / 0 (thermocouple J 0÷1000°C) | | | | | dP_S | 0 (no decimal) / 1 (1 decimal) | | Lo.S | 0 (min. sensor scale) | | Hi.S | 1300 (max sensor scale for tc K) / 1000 (max sensor scale for tc J) | | oFS | 0 (offset of input correction) | | Lo.L | 0 (lower set-point range limit) | | Hi.L | 1300 (upper set-point range limit) per tc K / 1000 for tc J | | Out | | | |------|--|--| | A1.r | 0 | | | | | | | A1.t | 3 (mode AL1 =inverse-relative-normal) | | | | | | | rL.1 | 2 (AL1) | | | rL.2 | 18 (open) | | | rL.3 | 19 (close) | | | rEL | 0 | | | A.ty | 9 (type of servocontrol command) | | | Ac.t | 12 (servocontrol running time: SQN72.4/STA12=12; SQM40.265=30) | | | t_Lo | 2 | | | t_Hi | 0.0 | | | t.on | 2 | | | t.oF | 0.0 | | | dE.b | 0,1 (dead zone in % of end scale) | | | PAS | 99 then push and keep pushed F until visualization of Hrd | | |-------|---|--| | | | | | Hrd | | | | | | | | CtrL | 6 (PID warm) | | | AL.nr | 1 | | | but | 1 | | | diSP | 0 | | | Ld.1 | 1 | | | Ld.2 | 28 | | | Ld.3 | 20 | | Keep pushed **F** until you visualize **PASS**, release **F** and through the arrows set **99**, push **F** and visualize **Pro** (protection code) from **128**, through the arrows, bring it back to **12**, and keep **F** pushed until you come back to set-point value. #### Manual operation: Keep pushed the lower left key for at least 5 sec. The instrument will enter the "MAN" mode (see also "Ld1" switching on). Through the arrows, "Open" and "Close"
outputs are activated. To come back to normal working keep the lower left key pushed for at least 5 sec. #### Software switch off: By keeping pushed keys $Arrow\ up + F$ for more than 5 sec. the instrument switches off the software, does not command the outputs and visualize only the variable of process measured by the probe. To restore keep pushed **F** for more than 5 sec. # RWF50.2x & RWF50.3x User manual M12922CB Rel.1.0 07/2012 **DEVICE INSTALLATION**Install the device using the relevant tools as shown in the figure. To wire the device and sensors, follow the instructions on the burner wiring diagram. #### **FRONT PANEL** #### **NAVIGATION MENU** RWF5 is preset good for 90% of applications. However, you can set or edit parameters as follow: #### Set-point: set or modification: When the burner is in stand-by, (safety loop open, that is terminals 3-4/T1-T2 on the 7 pole plug open) push the **Enter** button: on the lower display (green) **Opr** appears; push **Enter** again and in the same display **SP1** appears. Push **Enter** again and the lower display (green **SP1**) flashes. Using the **up and down arrows** change the set-point on the upper display (red). Push **Enter** to confirm and push **ESC** more times to get the home position. #### PID parameters set and modifications (see table below): - Push Enter button, on the green display Opr appears; using the down arrow, scroll until group PArA is reached and push Enter. - on the green display Pb1 e appears and on the red one the set parameter. - Push is sequence the **down or up** arrow the menu is scrolled. - Push **Enter** to select and the **arrows** to choose the desired value. **Enter** to confirm. | Parameter | Display | Range | Factory setting | Remarks | |---|---------|-----------------|-----------------|---| | Proportional band | PB.1 | 1 9999 digit | 10 | Typical value for temperature | | Derivative action | dt | 0 9999 sec. | 80 | Typical value for temperature | | Integral action | rt | 0 9999 sec. | 350 | Typical value for temperature | | Dead band (*) | db | 0 999,9 digit | 1 | Typical value | | Servocontrol running time | tt | 10 3000 sec. | 15 | Set servocontrol running time | | Switch-on differential (*) | HYS1 | 0,01999 digit | -5 | Value under setpoint below which the burner switches back on (1N-1P closes) | | Switch-off differential 2° stage (*) | HYS2 | 0,0 HYS3 | 3 | (enable only with parameter bin1 = 4) | | Upper switch-off differential (*) | HYS3 | 0,0 9999 digit | 5 | Value over setpoint above which the burner switches off (1N-1P opens) | | Switch-on differential on cooling controller (*) | HYS4 | 0,0 9999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Switch-off differential 2° stage on cooling controller (*) | HYS5 | HYS60,0 digit | 5 | Do not used (enable only with parameters CACt = 0 and bin1 = 4) | | Upper switch-off
differential on cooling
controller (*) | HYS6 | 0,01999 digit | 5 | Do not used (enable only with parameter CACt = 0) | | Delay modulation | q | 0,0 999,9 digit | 0 | Do not alter | ^(*)Parameters affected by setting of decimal place (ConF > dISP parameter dECP) #### Setting the kind of sensor to be connected to the device: - push the **Enter** button: on the lower display (green) **Opr** appears. Using the **up and down arrows** find **ConF.** Push **Enter** to confirm. - Now on the green display the group InP appears. Push Enter and InP1 is displaied. Enter to confirm. - You are inside InP1; the green display shows Sen1 (sensor type), while the red display shows the chosen sensor code - Push Enter to enter the Sen1 parameter, then choose the desired sensor using the arrows. Push Enter to confirm and ESC to escape. - Once selected the sensor, you can modify all the other parameters using up and down arrows according to the tables here below. #### ConF > InP >InP1 | Parameter | Value | Description | |--------------------|------------------------|---| | SEn1 | 1 | Pt100 3 fili | | type of sensor for | 2 | Pt100 2 fili | | analog input 1 | 3 | Pt1000 3 fili | | | 4 | Pt1000 2 fili | | | 5 | Ni1000 3 fili | | | 6 | Ni1000 2 fili | | | 7 | 0 ÷ 135 ohm | | | 15 | 0 ÷ 20mA | | | 16 | 4 ÷ 20mA | | | 17 | 0 ÷ 10V | | | 18 | 0 ÷ 5V | | | 19 | 1 ÷ 5V | | OFF1 | | Using the measured value correction (offset), a measured | | sensor offset | -1999 0 +9999 | value can be corrected to a certain degree, either up or down | | SCL1 | | In the case of a measuring transducer with standard signal, the | | scale low level | | physical signal is assigned a display value here | | | -1999 0 +9999 | (for input ohm, mA, V) | | SCH1 | | In the case of a measuring transducer with standard signal, the | | scale high level | | physical signal is assigned a display value here | | | -1999 100 +9999 | (for input ohm, mA, V) | | dF1 | | Is used to adapt the digital 2nd order input filter | | digital filter | 0 0,6 100 | (time in s; 0 s = filter off) | | Unit | 1 | 1 = degrees Celsius | | temperature unit | 2 | 2 = degrees Fahrenheit | (**bold** = factory settings) #### Remark: RWF50.2 e RWF50.3 cannot be connected to thermocouples. If thermocouples have to be connected, convert the signal to a 4-20 mA one and set the RWF accordingly. #### ConF > Cntr | Parameter | Value | Description | |------------------------|------------------------|---| | CtYP | 1 | 1 = 3-position controller (open-stop-close only RWF50.2) | | controller type | 2 | 2 = continuative action controller (only RWF50.3) | | CACt | 1 | 1 = heating controller | | control action | 0 | 0 = cooling controller | | SPL | | | | least value of the | | set-point limitation prevents entry of values outside the defined | | set-point range | -1999 0 +9999 | range | | SPH | | | | maximum value of the | | set-point limitation prevents entry of values outside the defined | | set-point range | -1999 100 +9999 | range | | oLLo | | | | set-point limitation | | | | start, operation limit | | | | low | -1999 +9999 | lower working range limit | | oLHi | | | | set-point limitation | | | | end, operation limit | | | | high | -1999 +9999 | upper working range limit | (**bold** = factory settings) #### ConF > rAFC Activation boiler shock termic protetion: RWF50.. can activate the thermal shock protection only on sites where the set-point is lower than 250°C and according to rAL parameter. **Parameter** Value Description FnCT Choose type of range degrees/time function 0 = deactivated 0 1 = Kelvin degrees/minute 1 2 2 = Kelvin degrees/hour rASL Slope of thermal shock protection (only with functions 1 and 2) ramp rate **0,0** ... 999,9 toLP width of tolerance band (in K) about the set-point 0 = tolerance band inactive tolerance band ramp 0...9999 40 7866d16/0911 t Ramp limit. When this value is lower than the temperature setrAL ramp limit point, the RWF controls the output increasing the temp set 0...250 point step by step according to rASL. If this is over the temp set point, the control is performed in cooling. (**bold** = factory settings) ConF > OutP (parameter under group only for RWF50.3) | Parameter | Value | Description | |-----------------------|------------------------|---| | FnCt | | 1 = analog input 1 doubling with possibility to convert | | tipo di controllo | 1 | (depending on par SiGn) | | | 4 | 4 = modulation controller | | SiGn | | physical output signal (terminals A+, A-) | | type of output signal | 0 | 0 = 0÷20mA | | | 1 | 1 = 4÷20mA | | | 2 | 2 = 0÷10V | | rOut | | | | Value when out of | | | | input range | 0 101 | signal (in percent) when measurement range is crossed | | oPnt | | value range of the output variable is assigned to a physical | | zero point | | output signal Per default, the setting corresponds to 0100% | | | | angular positioning for the controller outputs (terminals A+, A-) | | | -1999 0 +9999 | (effective only with FnCt = 1) | | End | | value range of the output variable is assigned to a physical | | End value | | output signal Per default, the setting corresponds to 0100% | | | | angular positioning for the controller outputs (terminals A+, A-) | | | -1999 100 +9999 | (effective only with FnCt = 1) | (**bold** = factory settings) # ConF > binF | Parameter | Value | Description | |---------------------|-------|--| | bin1 | | 0 = without function | | digital inputs | | 1 = set-point changeover (SP1 / SP2) | | (terminals DG - D1) | | 2 = set-point shift (Opr > dSP parameter = value of set-point | | | 0 | modify) | | | 1 | 4 = changeover of operating mode | | | 2 | open – modulating operation; | | | 4 | close – 2 stage operation. | (**bold** = factory settings) # ConF > dISP | Parameter | Value | Description | |---------------|------------------|---| | diSU | | display value for upper display: | | upper display | 0 | 0 = display power-off | | (red) | 1 | 1 = analog input value | | | 4 | 4 = Controller's angular positioning | | | 6 | 6 = set-point value | | | 7 | 7 = end value with thermal shock protection | | diSL | | display value for lower display: | | lower display | 0 | 0 = display power-off | | (green) | 1 | 1 = analog input value | | | 4 | 4 = Controller's angular positioning | | | 6 | 6 = set-point value | | | 7 | 7 = end value with thermal shock protection | | tout | | time (s) on completion of which the controller returns | | timeout | 0 180 250 | automatically to the basic display, if no button is pressed | | dECP | 0 | 0 = no decimal
place | | decimal point | 1 | 1 = one decimal place | | | 2 | 2 = two decimal places | | CodE | 0 | 0 = no lockout | | level lockout | 1 | 1 = configuration level lockout (ConF) | | | 2 | 2 = Parameter and configuration level lockout (PArA & ConF) | | | 3 | 3 = keyboard lockout | (**bold** = factory settings) #### Manual control: - in order to manual change the burner load, while firing keep pushing the ESC button for more than 5 s; on the lower green display Hand appears. - using the UP and DOWN arrows, the load varies. - Keep pushing the **ESC** button for getting the normal operation again. - NB: every ime the device shuts the burner down (start led switched off contact 1N-1P open), the manual control is not active. #### Device self-setting (auto-tuning): If the burner in the steady state does not respond properly to heat generator requests, you can activate the Device's self-setting function, which recalculates PID values for its operation, deciding which are most suitable for the specific kind of request Follow the below instructions: push the **UP** and **DOWN** arrows for more than 5 s; on the green lower display **TUNE** appears. Now the device pushes the burner to increase and decrease its output. During this time, the device calculates PID parameters (**Pb1**, **dt** and **rt**). After the calculations, the TUNE is automatically deactivated and the device has already stored them. In order to stop the Auto-tuning function while it works, push again the **UP** and **DOWN** arrows for more than 5 s. The calculated PID parameters can be manually modified following the previously described instructions. 7866204/0911 #### Display of software version: The software version is shown by pushing ${\bf Enter} + {\bf UP} \ {\bf arrow}$ on the upper display 8 #### **Electric connection:** With 7 pins connector version # With terminals version # Matches terminals between RWF50.2 and RWF40.0x0 | ка | K2
∅ | K3
∅ | 1N | SIE
1P
Ø | MENS
L1
Ø | RWF
N
Ø | 50.2 | | G- | G+ | 13 | 12 | 11 | | |----|---------|---------|----------|----------------|-----------------|---------------|-------------|----|---------|----|----|---------|-----|--| | a | Y1 | Y2 | Q13
Ø | SIEM
a14 | IENS I | RWF4 | 0.0×0
TE | U1 | G-
Ø | G+ | M1 | I1
Ø | G1+ | | # Parameters summarising for RWF50.2x: | | | | Con | f | | | Conf | | | | | | | | | |-------------------------|------|------|--------------|-------------|----------|-------------|-------------|--------------|-------|----|-----|-------|------------------|-------------|----------------| | Navigation menù | | | Inp | | | 0. | -4 | -I:OD | | | | _ | 3 A A | | 0 | | Types of probe | SEn1 | OFF1 | Inp1
SCL1 | SCH1 | Unit | SPL | ntr
SPH | diSP
dECP | Pb. 1 | dt | rt | tt | PArA
HYS1 (*) | HYS3 (*) | Opr
SP1 (*) | | Siemens QAE2120 | 6 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80 °C | | Siemens QAM2120 | 6 | 0 | needless | needless | 1 | 0 | 80 | 1 | 10 | | 350 | l ` ′ | -2,5 | 2,5 | 40°C | | Pt1000 (130°C max.) | 4 | 0 | needless | needless | 1 | 30 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt1000 (350°C max.) | 4 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | | 350 | | | 10 | 80°C | | Pt100 (130°C max.) | 1 | 0 | needless | needless | 1 | 0 | 95 | 1 | 10 | 80 | 350 | (#) | -5 | 5 | 80°C | | Pt100 (350°C max) | 1 | 0 | needless | needless | 1 | 0 | 350 | 1 | 10 | 80 | 350 | (#) | -5 | 10 | 80°C | | Probe 4÷20mA / 0÷1,6bar | 16 | 0 | 0 | 160 | needless | 0 | 160 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 100 kPa | | Probe 4÷20mA / 0÷3bar | 16 | 0 | 0 | 300 | needless | 0 | 300 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Probe 4÷20mA / 0÷10bar | 16 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Probe 4÷20mA / 0÷16bar | 16 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Probe 4÷20mA / 0÷25bar | 16 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Probe 4÷20mA / 0÷40bar | 16 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Siemens QBE2002 P4 | 17 | 0 | 0 | 400 | needless | 0 | 400 | 0 | 5 | 20 | 80 | (#) | 0 | 20 | 200 kPa | | Siemens QBE2002 P10 | 17 | 0 | 0 | 1000 | needless | 0 | 1000 | 0 | 5 | 20 | 80 | (#) | 0 | 50 | 600 kPa | | Siemens QBE2002 P16 | 17 | 0 | 0 | 1600 | needless | 0 | 1600 | 0 | 5 | 20 | 80 | (#) | 0 | 80 | 600 kPa | | Siemens QBE2002 P25 | 17 | 0 | 0 | 2500 | needless | 0 | 2500 | 0 | 5 | 20 | 80 | (#) | 0 | 125 | 600 kPa | | Siemens QBE2002 P40 | 17 | 0 | 0 | 4000 | needless | 0 | 4000 | 0 | 5 | 20 | 80 | (#) | 0 | 200 | 600 kPa | | Segnale 0÷10V | 17 | 0 | to be fixed | to be fixed | needless | to be fixed | to be fixed | to be fixed | 5 | 20 | 80 | (#) | to be fixed | to be fixed | to be fixed | | Segnale 4÷20mA | 16 | 0 | to be fixed | to be fixed | needless | to be fixed | to be fixed | to be fixed | 5 | 20 | 80 | (#) | to be fixed | to be fixed | to be fixed | #### NOTE: SQL33; STM30; SQM40; SQM50; SQM54 = **30** (secondi) - STA12B3.41; SQN30.251; SQN72.4A4A20 = **12** (secondi) (*)These values are factory set - values <u>must be</u> set during operation at the plant based on the real working temperature/pressure value. WARNING: With pressure probes the parameters SP1, SCH, SCL, HYS1, HYS3 must be selected, and visualized in kPa (kilo Pascal). (1bar = 100.000Pa = 100kPa) ^(#) tt – servo control run time #### **APPENDIX: PROBES CONNECTION** To assure the utmost comfort, the control system needs reliable information, which can be obtained provided the sensors have been installed correctly. Sensors measure and transmit all variations encountered at their location. Measurement is taken based on design features (time constant) and according to specific operating conditions. With wiring run in raceways, the sheath (or pipe) containing the wires must be plugged at the sensor's terminal board so that currents of air cannot affect the sensor's measurements. #### Ambient probes (or ambient thermostats) #### Installation The sensors (or room thermostats) must be located in reference rooms in a position where they can take real temperature measurements without being affected by foreign factors. #### It's good to be admired ...even better to be effective Heating systems: the room sensor must not be installed in rooms with heating units complete with thermostatic valves. Avoid all sources of heat foreign to the system. #### Location On an inner wall on the other side of the room to heating unitsheight above floor 1.5 m, at least 1.5 m away from external sources of heat (or cold). #### Installation position to be avoided near shelving or alcoves and recesses, near doors or win-dows, inside outer walls exposed to solar radiation or currents of cold air, on inner walls with heating system pipes, domestic hot water pipes, or cooling system pipes running through them. # Outside probes (weather) #### Installation In heating or air-conditioning systems featuring adjustment in response to outside temperature, the sensor's positioning is of paramount importance. **General rule:** on the outer wall of the building where the living rooms are, never on the south-facing wall or in a position where they will be affected by morning sun. If in any doubt, place them on the north or north-east façade. #### Positions to be avoided Avoid installing near windows, vents, outside the boiler room, on chimney breasts or where they are protected by balconies, cantilever roofs The sensor must not be painted (measurement error). #### **Duct or pipe sensors** #### Installing temperature sensors For measuring outlet air: - after delivery fan or - after coil to be controlled, at a distance of at least 0,5 m For measuring room temperature: • before return air intake fan and near room's return airintake. For measuring saturation temperature: after mist eliminator. Bend 0.4m sensor by hand (never use tools) as illustrated. Use whole cross-section of duct, min. distance from walls 50 mm, radius of curvature 10 mm for 2m or 6m sensors. #### Installing combined humidity sensors As max. humidity limit sensor on outlet (steam humidifiers). #### Installing pressure sensors - A installation on ducts carrying fluids at max. temperature 80°C - B installation on ducts at temperature over 80°C and for refrigerants - C installation on ducts at high temperatures: - increase length of siphon - place sensor at side to prevent it being hit by hot air coming from the pipe. #### Installing differential pressure sensors for water - Installation with casing facing down not allowed.-With temperature over 80°C, siphons are needed. - To avoid damaging the sensor, you must comply with the following instructions #### when installing: - make sure pressure difference is not greater than thevalue permitted by the sensor - when there are high static pressures, make sure you insert shutoff valves A-B-C. # **Putting into operation** Start disable 1=open C1=open C 2=open A2=close B 3=open B3=close A 4= close C #### Immersion or strap-on sensors Placing the probes (QAD22.../QAE21.../QAP21.../RCA...) #### Immersion probes installation Sensors must be installed on the stretch of pipe in which fluid circulates all the time. The rigid stem (sensing element doing the measuring) must be inserted by at least 75mm and must face the direction of flow. Recommended locations: on a bend or on a straight stretch of pipe but tilted by 45° and against the flow of fluid. Protect them to prevent water from infiltrating (dripping gates, condensation from pipes etc.) #### Installing QAD2.. strap-on sensors Make sure fluid is circulating in the chosen location. Eliminate insulation and paintwork (including rust inhibitor) on a min. 100mm length of pipe. Sensors come with straps for pipes up to 100 mm in diameter #### With pumps on outlet #### with 3 ways valves / with 4 ways valves #### With pumps on return with 3 ways valves /
with 4 ways valves # Strap-on or immersion sensors? QAD2.. strap-on sensors #### Advantages: - 10 sec. time constant - Installed with system running (no plumbing work) - Installation can be changed easily if it proves incorrect. #### Limits: - Suitable for pipe diameters max. 100 mm - Can be affected by currents of air etc. #### QAE2... immersion sensors ## Advantages: - Measure "mean" fluid temperature - No external influence on measurement such as: currents of air, nearby pipes etc. #### Limits: - Time constant with sheath: 20 sec. - Hard to change installation position if it proves incorrect. #### Installing differential pressure probes for air A - Control a filter (clogging) B - Control a fan (upstream/downstream) C - Measurement of difference in pressure between two ducts D - Measurement of difference in pressure between two rooms or of inside of duct and outside #### **Basic principles** # Measuring static pressure(i.e. pressure exerted by air on pipe walls) # Measuring dinamic pressure $$Pd = \frac{y \vartheta^2}{2g}$$ #### Key y Kg/m³, specific weight of air m/s, air speed g 9.81 m/s² gravity acceleration Pd mm C.A., dynamic pressure #### Measuring total pressure # Spare parts | Description | Code | |--|---------| | Modulator RWF50.2 (uscita a 3 punti - apri, fermo, chiudi) | 2570148 | | Modulator RWF50.3 (uscita continua 0÷20mA, 4÷20mA, 0÷10V) | 2570149 | | Temperature probe Siemens QAE2120.010A (30÷130°C) | 2560101 | | Temperature probe Siemens QAM2120.040 (-15÷+50°C) | 2560135 | | Thermoresistor Pt1000 ø6mm L100mm (30÷130°C) | 2560188 | | Thermoresistor Pt1000 ø10mm L200mm (0÷350°C) | 2560103 | | Thermoresistor Pt100 ø10mm L200mm (0÷350°C) | 2560145 | | Thermoresistor Pt100 ø8mm L85mm (0÷120°C) | 25601C3 | | Pressure probe Siemens QBE2 P4 (0÷4bar) | 2560159 | | Pressure probe Siemens QBE2 P10 (0÷10bar / signal 0÷10V) | 2560160 | | Pressure probe Siemens QBE2 P16 (0÷16bar / signal 0÷10V) | 2560167 | | Pressure probe Siemens QBE2 P25 (0÷25bar / signal 0÷10V) | 2560161 | | Pressure probe Siemens QBE2 P40 (0÷40bar / signal 0÷10V) | 2560162 | | Pressure probe Danfoss MBS 3200 P 1,6 (0÷1,6bar / signal 4÷20mA) | 2560189 | | Pressure probe Danfoss MBS 3200 P 10 (0÷10bar / signal 4÷20mA) | 2560190 | | Pressure probe Danfoss MBS 3200 P 16 (0÷16bar / signal 4÷20mA) | 2560191 | | Pressure probe Danfoss MBS 3200 P 25 (0÷25bar / signal 4÷20mA) | 2560192 | | Pressure probe Danfoss MBS 3200 P 40 (0÷40bar / signal 4÷20mA) | 2560193 | | Pressure probe Siemens 7MF1565-3BB00-1AA1 (0÷1,6bar / signal 4÷20mA) | 25601A3 | | Pressure probe Siemens 7MF1565-3CA00-1AA1 (0÷10bar / signal 4÷20mA) | 25601A4 | | Sonda di pressione Siemens 7MF1565-3CB00-1AA1 (0÷16bar / signal | 25601A5 | | Pressure probe Siemens 7MF1565-3CD00-1AA1 (0÷25bar / signal 4÷20mA) | 25601A6 | | Pressure probe Siemens 7MF1565-3CE00-1AA1 (0÷40bar / signal 4÷20mA) | 25601A7 | | Pressure probe Gefran E3E B1V6 MV (0÷1,6bar / segnale 4÷20mA) | 25601C4 | | Pressure probe Danfoss E3E B01D MV (0÷10bar / segnale 4÷20mA) | 25601C5 | | Pressure probe Danfoss E3E B16U MV (0÷16bar / segnale 4÷20mA) | 25601C6 | | Pressure probe Danfoss E3E B25U MV (0÷25bar / segnale 4÷20mA) | 25601C7 | | Pressure probe Danfoss E3E B04D MV (0÷40bar / segnale 4÷20mA)) | 25601C8 | # **KM3 Modulator** **USER MANUAL** # **MOUNTING** # **DISPLAY AND KEYS** | | Operator Mode | Editing Mode | |-----|-----------------------------------|------------------------| | | Access to: | Confirm and go to | | | - Operator Commands | Next parameter | | | (Timer, Setpoint selection) | | | | - Parameters | | | | - Configuration | | | | Access to: | Increase the displayed | | | - Operator additional information | value or select the | | | (Output value, running time) | next element of the | | | | parameters list | | | Access to: | Decrease the displayed | | | - Set Point | value or select the | | | | previous element | | (P) | Programmable key: | Exit from Operator | | 74 | Start the programmed function | commands/Parameter | | | (Autotune, Auto/Man, Timer) | setting/Configuration | #### **CONNECTIONS DIAGRAM** # Probe connection: - PT1000/NTC/PTC: between terminal 3 and 2 - PT 100: between terminal 3 and 2 with terminal 1 - Passive pressure probe 0/4-20 mA: between terminal 4 (+) e 1 (-) Note: out4 must be activated (IO4F must be setted to ON) - **Powered pressure probe** 0/4-20 mA between terminal 4 (power supply), 2 (negative) e 1 (positive) Note: set IO4F to ON to activate Out4 # Power supply connection: - Neutral wire: terminal 9 - Phase: terminal 10 (100...240 Vac) - Close terminals 15-16 to switch to the set point 2 # Output connection: - Channel 1: terminal 7 and 8 (burner on off) - Channel 2: terminal 11 and 12 (servomotor opens) - Channel 3: terminal 13 and 14 (servomotor closes) # **SETPOINT AND HYSTERESIS CONFIGURATION (SP, AL1, HAL1 parameters)** Push the button to enter into the setpoint configuration: To return to normal mode, press the 🖸 key for 3 seconds or wait the 10s timeout # Operation example # LIMITED ACCESS LEVEL Proceed as follows to change some parameters that are not visible in standard user mode: | Param | Description | Values | Default | |-------|-----------------------------------|---|----------------------| | SEnS | Input type | Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K | Depends on the probe | | SP | Set point 1 | SPLL SPLH | | | AL1 | AL1 threshold | AL1L AL1H (E.U.) | | | HAL1 | AL1 hysteresis | 1 9999 (E.U.) | | | Pb | Proportional band | 1 9999 (E.U.) | | | ti | Integral time | 0 (oFF) 9999 (s) | | | td | Derivative time | 0 (oFF) 9999 (s) | See page 7 | | Str.t | Servomotor stroke time | 51000 seconds | | | db.S | Servomotor dead band | 0100% | | | SPLL | Minimum set point value | -1999 SPHL | | | SPHL | Maximum set point value | SPLL 9999 | | | dp | Decimal point position | 0 3 | | | SP 2 | Set point 2 | SPLLSPLH | 60 | | A.SP | Selection of the active set point | "SP" " nSP" | SP | To exit the parameter setting procedure press the **w** key (for 3 s) or wait until the timeout expiration (about 30 seconds) # Probe parameters configuration MODULATORE ASCON KM3 | Parameter Group | lin | | | | | | AL1 | | rEG | | | | | SP | | | |---------------------------------------|--------|-----|-------|-------|------|---------------|--------------|---------------|----------|-------------|-------------|-------|------|------|------|-------------| | Parameter | Sens | dp | SSC | FSc | unit | 104.F
(**) | AL1
(***) | HAL1
(***) | Pb (***) | ti
(***) | td
(***) | Str.t | db.S | SPLL | SPHL | SP
(***) | | Probes | | Dec | Scale | Scale | | | Off | On | b | | ō | servo | Band | SP | SP | Set | | Pt1000 (130°C max) | Pt10 | - | | 502 | ပ | o | 2 | 10 | 10 | 350 | - | * | 5 | 30 | 95 | 80 | | Pt1000 (350°C max) | PT10 | _ | | | ပ | uo | 10 | 10 | 10 | 350 | _ | * | 2 | 0 | 350 | 80 | | Pt100 (130°C max) | PT1 | 1 | | | ၁့ | uo | 5 | 10 | 10 | 350 | 1 | * | 5 | 0 | 92 | 80 | | Pt100 (350°C max) | Pt1 | 1 | | | ၁့ | on | 10 | 10 | 10 | 350 | 1 | * | 5 | 0 | 350 | 80 | | Pt100 (0÷100°C 4÷20mA) | 4.20 | 1 | 0 | 100 | | uo | 5 | 10 | 10 | 350 | 1 | * | 5 | 0 | 92 | 80 | | Thermocouple K (1200°C max) | crAL | 0 | | | ၁့ | uo | 20 | 25 | 10 | 350 | 1 | * | 5 | 0 | 1200 | 80 | | Thermocouple J (1000°C max) | l
J | 0 | | | ာ့ | uo | 20 | 25 | 10 | 350 | 1 | * | 5 | 0 | 1000 | 80 | | 4-20mA / 0-1,6barPressure probe | 4.20 | 0 | 0 | 160 | | uo | 20 | 20 | 9 | 120 | 1 | * | 5 | 0 | 160 | 100 | | 4-20mA / 0-10bar Pressure probe | 4.20 | 0 | 0 | 1000 | | uo | 20 | 20 | 9 | 120 | 1 | * | 5 | 0 | 1000 | 009 | | 4-20mA / 0-16bar Pressure probe | 4.20 | 0 | 0 | 1600 | | on | 80 | 80 | 5 | 120 | 1 | * | 5 | 0 | 1600 | 009 | | 4-20mA / 0-25bar Pressure probe | 4.20 | 0 | 0 | 2500 | | on | 125 | 125 | 5 | 120 | 1 | * | 5 | 0 | 2500 | 009 | | 4-20mA / 0-40bar Pressure probe | 4.20 | 0 | 0 | 4000 | | uo | 200 | 200 | 9 | 120 | 1 | * | 5 | 0 | 4000 | 009 | | QBE2002 / 0-25bar Pressure probe 0.10 | 0.10 | 0 | 0 | 2500 | | 0n | 125 | 125 | 5 | 120 | _ | * | 5 | 0 | 2500 | 009 | .0+0 (*) Str.t - Servomotor stroke time SQL33; STM30; SQM10; SQM40; SQM50; SQM54 = 30 (Seconds) STA12B3.41; SQN30.251; SQN72.4A4A20 = 12 (Seconds) (**) Out 4 ... on Display led °4 must be switched on, otherwise change the io4.F parameter value from "on" to "out4", confirm the value, quit the configuration mode then change again the io4.F parameter value from "out4" to "on". (***) Factory settings. These values must be adapted to machine conditions N.B. For pressure probe, SP, SPHL, SPLL parameters values are expressed in Kpa (1 bar = 100 Kpa). #### CONFIGURATION # How to access configuration level The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions). - 1. Push the Dutton for more than 5 seconds. The upper display will show PASS while the lower display will show 0. - Using \triangle and ∇ buttons set the programmed password. According to the entered password, it is possible to see a part of the parameters listed in the "configuration parameters" section. - a. Enter "30" as password to view all the configuration parameters - b. Enter "20" as password to view the parameters of the "limited access level". At this point, only the parameters with attribute Liv = A or Liv = O will be editable. Leave the password blank to edit "user level" parameters, that are identified by attribute Liv = O - 3. Push the Dutton. If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: J. In other words the upper display will show: In other words the upper display will show. The instrument is in
configuration mode. To press \square for more than 5 seconds, the instrument will return to the "standard display. # Keyboard functions during parameter changing: | | Operator Mode | |------|--| | | When the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group. When the upper display is showing a parameter and the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group. | | Δ | Allows to increase the value of the selected parameter. | | V | Allows to decrease the value of the selected parameter. | | (P) | Short presses allow you to exit the current group of parameters and select a new group. A long press terminates the configuration procedure (the instrument returns to the normal display). | | \$+← | These two keys allow to return to the previous group. Proceed as follows: Push the button and maintaining the pressure, then push the release both the buttons. | # **Configuration Parameters** | inP | GRO | UP - inpu | t confiuration | | | |-----|-----|-----------|---|---|----------------------------| | Liv | N° | Param | Description | Values | Default | | Α | 1 | SEnS | Input type | Pt1 = RTD Pt100 Pt10 = RTD Pt1000 0.20 = 020mA 4.20 = 420mA Pressure probe 0.10 = 010V 2.10 = 210V crAL= Thermocouple K | Depends
on the
probe | | Α | 2 | dp | Decimal point position | 0 3 | See page
7 | | Α | 3 | SSc | Initial scale read-out for linear inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values) | -1999 9999 | 0 | | С | 4 | FSc | Full scale read-out for linear input inputs (available only if SEnS parameter is not equal to Pt1, Pt10, crAL values) | -1999 9999 | Depends on the probe | | С | 5 | unit | Unit of measure (present only in the case of temperature probe) | °C/°F | °C | | С | 6 | Fil | Digital filter on the measured value | 0 (= OFF) 20.0 s | 1.0 | | С | 7 | inE | Selection of the Sensor Out of Range type that will enable the safety output value | or = Over range
ou = Under range
our = over e under range | or | | С | 8 | oPE | Safety output value | -100 100 | 0 | |---|----|-------|--|---|----| | С | 9 | io4.F | I/O4 function selection | on = Out4 will be ever ON (used as a transmitter power supply) ,out4 = Uscita 4 (Used as digital output 4), dG2c = Digital input 2 for contact closure, dG2U = Digital input 2 driven by 12 24 VDC | on | | С | 10 | diF1 | Digital input 1 function | oFF = Not used, 1 = Alarm reset, 2 = Alarm acknowledge (ACK), 3 = Hold of the measured value, 4 = Stand by mode, 5 = Manual mode, 6 = HEAt with SP1 and CooL with SP2, 7 = Timer RUN/Hold/Reset, 8 = Timer Run, 9 = Timer Reset, 10 = Timer Run/Hold, 11 = Timer Run/Reset with lock, 13 = Program Start, 14 = Program Reset, 15 = Program Hold, 16 = Program Run/Hold, 17 = Program Run/Hold, 18 = Sequential SP selection, 19 = SP1 - SP2 selection, 20 = SP1 SP4 binary selection, 21 = Digital inputs in parallel | 19 | | С | 12 | di.A | Digital Inputs Action (DI2 only if configured) | 0 = DI1 direct action, DI2 direct action 1 = DI1 reverse action, DI2 direct action 2 = DI1 direct action, DI2 reverse action 3 = DI1 reverse action, DI2 reverse action | 0 | | Out | GRO | UP- Outp | out parameters | | | |-----|-----|----------|--|---|---------| | Liv | N° | Param | Description | Values | Default | | С | 14 | o1F | Out 1 function | AL = Alarm output | AL | | С | 15 | o1AL | Initial scale value of the analog retransmission | -1999 Ao1H | 1 | | С | 18 | o1Ac | Out 1 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | rEUr.r | | С | 19 | o2F | Out 2 function | H.rEG = Heating output | H.rEG | | С | 21 | o2Ac | Out 2 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | dir | | С | 22 | o3F | Out 3 function | H.rEG = Heating output | H.rEG | | С | 24 | o3Ac | Out 3 action | dir = Direct action rEU = Reverse action dir.r = Direct with reversed LED ReU.r = Reverse with reversed LED | dir | | AL1 | GRO | UP - Ala | rm 1 parameters | | | |-----|-----|----------|------------------|---|---------| | Liv | N° | Param | Descrizione | Values | Default | | С | 28 | AL1t | Tipo allarme AL1 | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the | HidE | | | | | | windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | | |---|----|------|--|---|---------------| | С | 29 | Ab1 | Alarm 1 function | 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change | 0 | | С | 30 | AL1L | For High and low alarms, it is the low limit of the AL1 threshold; For band alarm, it is low alarm threshold | -1999 AL1H (E.U.) | -199.9 | | С | 31 | AL1H | For High and low alarms, it is the high limit of the AL1 threshold; For band alarm, it is high alarm threshold | AL1L 9999 (E.U.) | 999.9 | | 0 | 32 | AL1 | AL1 threshold | AL1L AL1H (E.U.) | See
page 7 | | 0 | 33 | HAL1 | AL1 hysteresis | 1 9999 (E.U.) | See
page 7 | | С | 34 | AL1d | AL1 delay | 0 (oFF) 9999 (s) | oFF | | С | 35 | AL1o | Alarm 1 enabling during Stand-by mode and out of range conditions | 0 = Alarm 1 disabled during Stand by and out of range 1 = Alarm 1 enabled in stand by mode 2 = Alarm 1 enabled in out of range condition 3 = Alarm 1 enabled in stand by mode and in overrange condition | 1 | | Liv | N° | Param | Description | Values | Default | |-----|----|-------|---|---|---------| | С | 36 | AL2t | Alarm 2 type | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | SE.br | | С | 37 | Ab2 | Alarm 2 function | 0 15 +1 = Not active at power up +2 = Latched alarm (manual reset) +4 = Acknowledgeable alarm +8 = Relative alarm not active at set point change | 0 | | С | 42 | AL2d | AL2 hysteresis | 0 (oFF) 9999 (s) | oFF | | С | 43 | AL2o | Alarm 2 enabling during Stand-by mode and out of range conditions | 0 = Alarm 2 disabled during Stand by and out of range 1 = Alarm 2 enabled in stand by mode 2 = Alarm 2 enabled in out of range condition 3 = Alarm 2 enabled in stand by mode and in overrange condition | 0 | | Liv N° | Param | Description | Values | Default | |--------|-------|--------------|---|---------| | 44 | AL3t | Alarm 3 type | nonE = Alarm not used LoAb = Absolute low alarm HiAb = Absolute high alarm LHAo = Windows alarm in alarm outside the windows LHAI = Windows alarm in alarm inside the windows SE.br = Sensor Break LodE = Deviation low alarm (relative) HidE = Deviation high alarm (relative) LHdo = Relative band alarm in alarm out of the band LHdi = Relative band alarm in alarm inside the band | nonE | | LbA Group - Loop break alarm | | | | | | |------------------------------|----|-------|-------------
-----------------------|---------| | Liv | N° | Param | Descrizione | Values | Default | | С | 52 | LbAt | LBA time | Da 0 (oFF) a 9999 (s) | oFF | | rEG | EG Group - Control parameters | | | | | |-----|-------------------------------|-------|--------------------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | С | 56 | cont | Control type | Pid = PID (heat and/or) On.FA = ON/OFF asymmetric hysteresis On.FS = ON/OFF symmetric hysteresis nr = Heat/Cool ON/OFF control with neutral zone 3Pt = Servomotor control (available only when Output 2 and Output 3 have been ordered as "M") | 3pt | | С | 57 | Auto | Autotuning selection | -4 = Oscillating auto-tune with automaticrestart at power up and after all point change -3 = Oscillating auto-tune with manual start -2 = Oscillating -tune with auto-matic start at the first power up only -1 = Oscillating auto-tune with auto-matic restart at every power up 0 = Not used 1 = Fast auto tuning with automatic restart at every power up 2 = Fast auto-tune with automatic start the first power up only 3 = FAST auto-tune with manual start 4 = FAST auto-tune with automatic restart at power up and after set point change 5 = Evo-tune with automatic restart at every power up 6 = Evo-tune with automatic start the first power up only 7 = Evo-tune with manual start 8 = Evo-tune with automatic restart at power up and after a set point change | 7 | | С | 58 | tunE | Manual start of the Autotuning | oFF = Not active on = Active | oFF | | С | 59 | SELF | Self tuning enabling | no = The instrument does not perform the self-
tuning
YES = The instrument is performing the self-
tuning | No | |---|----|-------|----------------------------------|--|---------------| | Α | 62 | Pb | Proportional band | 1 9999 (E.U.) | See
page 7 | | Α | 63 | ti | Integral time | 0 (oFF) 9999 (s) | See
page 7 | | Α | 64 | td | Derivative time | 0 (oFF) 9999 (s) | See
page 7 | | С | 65 | Fuoc | Fuzzy overshoot control | 0.00 2.00 | 1 | | С | 69 | rS | Manual reset (Integral pre-load) | -100.0 +100.0 (%) | 0.0 | | Α | 70 | Str.t | Servomotor stroke time | 51000 seconds | See
page 7 | | Α | 71 | db.S | Servomotor dead band | 0100% | 5 | | С | 72 | od | Delay at power up | 0.00 (oFF) 99.59 (hh.mm) | oFF | | SP | SP Group - Set point parameters | | | | | | |-----|---------------------------------|-------|--|--|---------------|--| | Liv | N° | Param | Description | Values | Default | | | С | 76 | nSP | Number of used set points | 1 4 | 2 | | | Α | 77 | SPLL | Minimum set point value | -1999 SPHL | See
page 7 | | | Α | 78 | SPHL | Maximum set point value | SPLL 9999 | See
page 7 | | | 0 | 79 | SP | Set point 1 | SPLL SPLH | See
page 7 | | | С | 80 | SP 2 | Set point 2 | SPLL SPLH | 60 | | | | 83 | A.SP | Selection of the active set point | "SP" " nSP" | SP | | | С | 84 | SP.rt | Remote set point type | RSP = The value coming from serial link is used as remote set point trin = The value will be added to the local set point selected by A.SP and the sum becomes the operative set point PErc = The value will be scaled on the input range and this value will be used as remote SP | trin | | | С | 85 | SPLr | Local/remote set point selection | Loc = Local
rEn = Remote | Loc | | | С | 86 | SP.u | Rate of rise for POSITIVE set point change (ramp UP) | 0.01 99.99 (inF) Eng. units per minute | inF | | | С | 87 | SP.d | Rate of rise for NEGATIVE set point change (ramp DOWN) | 0.01 99.99 (inF) Eng. units per minute | inF | | | PAn | PAn Group - Operator HMI | | | | | | |-----|--------------------------|-------|--|---|---------|--| | Liv | N° | Param | Description | Values | Default | | | С | 118 | PAS2 | Level 2 password (limited access level) | oFF (Level 2 not protected by password) 1 200 | 20 | | | С | 119 | PAS3 | Level 3 password (complete configuration level) | 3 300 | 30 | | | С | 120 | PAS4 | Password livello (livello configurazione a codice) | 201 400 | 300 | | | С | 121 | uSrb | button function during RUN TIME | nonE = No function tunE = Auto-tune/self-tune enabling. A single press (longer than 1 second) starts the auto-tune oPLo = Manual mode. The first pressure puts the instrument in manual mode (OPLO) while a second one puts the instrument in Auto mode | tunE | | | С | 122 | diSP | Display management | AAc = Alarm reset ASi = Alarm acknowledge chSP = Sequential set point selection St.by = Stand by mode. The first press puts the instrument in stand by mode while a second one puts the instrument in Auto mode. Str.t = Timer run/hold/reset P.run = Program run P.rES = Program reset P.r.H.r = Program run/hold/reset Spo = Operative set point | SPo | |---|-----|-------|--|--|------| | С | 123 | di.cL | Display colour | 0 = The display colour is used to show the actual | 2 | | | 123 | di.CL | Display Coloui | deviation (PV - SP) 1 = Display red (fix) 2 = Display green (fix) 3 = Display orange (fix) | 2 | | | | diS.t | Display Timeout | oFF (display always ON) | oFF | | | 125 | CI I | Elica de distribuit de la companya del companya de la companya del companya de la | 0.1 99.59 (mm.ss) | | | С | 126 | fiLd | Filter on the displayed value | oFF (filter disabled)
From 0.0 (oFF) to 20.0 (E.U.) | oFF | | С | 128 | dSPu | Instrument status at power ON | AS.Pr = Starts in the same way it was prior to the power down Auto = Starts in Auto mode oP.0 = Starts in manual mode with a power output equal to zero St.bY = Starts in stand-by mode | Auto | | С | 129 | oPr.E | Operative modes enabling | ALL = All modes will be selectable by the next parameter Au.oP = Auto and manual (OPLO) mode only will be selectable by the next parameter Au.Sb = Auto and Stand-by modes only will be selectable by the next parameter | ALL | | С | 130 | oPEr | Operative mode selection | If oPr.E = ALL: - Auto = Auto mode - oPLo = Manual mode - St.bY = Stand by mode If oPr.E = Au.oP: - Auto = Auto mode - oPLo = Manual mode If oPr.E = Au.Sb: - Auto = Auto mode - St.bY = Stand by mode | Auto | | Liv | N° | Param | Description | Values | Default | |-----|-----|-------
---|--|---------| | С | 131 | Add | Instrument address | oFF
1 254 | 1 | | С | 132 | bAud | baud rate | 1200 = 1200 baud
2400 = 2400 baud
9600 = 9600 baud
19.2 = 19200 baud
38.4 = 38400 baud | 9600 | | С | 133 | trSP | Selection of the value to be retransmitted (Master) | nonE = Retransmission not used (the instrument is a slave) rSP = The instrument becomes a Master and retransmits the operative set point PErc = The instrument become a Master and it retransmits the power output | nonE | | con | on Group - Consumption parameters | | | | | |-----|-----------------------------------|-------|------------------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | C | 134 | Co.tY | Count type | oFF = Not used 1 = Instantaneous power (kW) 2 = Power consumption (kW/h) 3 = Energy used during program execution. This measure starts from zero when a program runs end stops at the end of the program. A new program execution will reset the value 4 = Total worked days: number of hours the instrument is turned ON divided by 24. 5 = Total worked hours: number of hours the instrument is turned ON. 6 = Total worked days with threshold: number of hours the instrument is turned on divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 7 = Total worked hours with threshold: number of hours the instrument is turned ON, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 8 = Totalizer of control relay worked days: number of hours the control relay worked hours: number of hours the control relay worked hours: number of hours the control relay worked hours: number of hours the control relay worked days with threshold: number of hours the control relay worked days with threshold: number of hours the control relay worked hours: number of hours the control relay worked hours with threshold: number of hours the control relay has been in ON condition divided by 24, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. 11 = Totalizer of control relay worked hours with threshold: number of hours the control relay has been in ON condition, the controller is forced in stand-by when Co.ty value reaches the threshold set in [137] h.Job. | off | | С | 138 | t.Job | Worked time (not resettable) | 0 9999 days | 0 | | cAL | cAL Group - User calibration group | | | | | |-----|------------------------------------|-------|--------------------|--|---------| | Liv | N° | Param | Description | Values | Default | | С | 139 | AL.P | Adjust Low Point | From -1999 to (AH.P - 10) in engineering units | 0 | | С | 140 | AL.o | Adjust Low Offset | -300 +300 (E.U.) | 0 | | С | 141 | AH.P | Adjust High Point | From (AL.P + 10) to 9999 engineering units | 999.9 | | С | 142 | AH.o | Adjust High Offset | -300 +300 | 0 | #### OPERATIVE MODES When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory. The instrument behaviour and its performance are governed by the value of the stored parameters. At power ON the instrument can start in one of the following mode depending on its configuration: **Automatic Mode** In Automatic mode the instrument drives automatically the control output according to the parameter value set and the set point/measured value. **Manual Mode** (OPLO): In Manual mode the upper display shows the measured value while the lower display shows the power output The lower display shows the power output [preceded by H (for heating) or C (for cooling)], MAN is lit and the instrument allows you to set manually the control output power. No Automatic action will be made. **Stand by Mode** (St.bY): In stand-by mode the instrument operates as an indicator. It will show on the upper display the measured value and on the lower display the set point alternately to the "St.bY" messages and forces the control outputs to zero. We define all the above described conditions as "Standard Display". As we have seen, it is always possible to modify the value assigned to a parameter independently from the operative modes selected. #### **AUTOMATIC MODE** Keyboard function when the instrument is in Auto mode: | | Modo Operatore | |---|---| | | Allows entry into parameter modification procedures | | | Allows you to start the "Direct set point modification" function (see below). | | V | Allows you to display the "additional informations" (see below). | | P | Performs the action programmed by [121] uSrb (button function during RUN TIME) parameter | #### **Additional information** This instrument is able to show you some additional informations that can help you to manage your system. The additional informations are related to how the instrument is programmed, hence in many cases, only part of this information is available. - 1. When the instrument is showing the "standard display" push button. The lower display will show H or c followed by a number. This value is the current power output applied to the process. The H show you that the action is a Heating action while the "c" show you that the action is a Cooling action - 2. Push button again. When the programmer is running the lower display will show the segment currently performed and the Event status as shown below: - where the first character can be r for a ramp or S for a soak, the next digit show the number of the segment (e.g. S3 means Soak number 3) and the twoless significant digits (LSD) show you the status of the two event (the LSD is the Event 2).. - 3. Push button again. When the programmer is running the lower display will show the theoretical remaining time to the end of the program preceded by a "P" letter: P84.3 - 4. Push button again. When the wattmeter function is running the lower display will show U followed by the measured energy.. - 5. Push button. When the "Worked time count" is running the lower display will show "d" for days or "h" for hours followed by the measured time. - 6. Push button. The instrument returns to the "standard display". Note: The additional information visualization is subject to a time out. If no button is pressed for more than 10 second the instrument comes automatically back to the Standard display. #### Direct set point modification This function allows to modify rapidly the set point value selected by [83] A.SP (selection of the active Set point) or to the set point of the segment group (of the programmer) currently in progress. - 1. Push volution. The upper display shows the acronym of the selected set point (e.g. SP2) and the lower display will show its value. - 2. By and buttons, assign to this parameter the desired value - 3. Do not push any button for more than 5 second or push the button. In both cases the instrument memorize the new value and come back to the "standard display". #### Manual mode This operative mode allows you to deactivate automatic control and manually program the percentage power output to the process. When the instrument is in manual mode, the upper display shows the measured value while the lower display shows the power output [preceded by H (for heating action) or C (for cooling action)] The MAN LED is lit. When manual control is selected, the instrument will start to operate with the same power output as the last one supplied by automatic mode and can be modified using the \triangle and ∇ buttons. In case of ON/OFF control, 0% corresponds to the deactivated output while any value different from 0 corresponds to the activated output. As in the case of visualization, the programmable values range from H100 (100% output power with reverse action) to C100 (100% output power with direct action). #### Notes: - During manual mode, the alarms are operative. - If you set manual modes during program execution, the program will be frozen and it will restart when the instrument will come back to Auto mode. - If you set manual modes during self-tune execution, the
self- tune function will be aborted. - During manual mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally.. #### STAND-BY MODE This operative mode also deactivates the automatic control but forces the control output to zero. In this mode the instrument operates as an indicator. When the instrument is in stand by mode the upper display will show the measured value while the lower display will show alternately the set point and the message "St.bY". #### Notes: - During stand by mode, the relative alarms are disabled while the absolute alarms are operative or not according to the ALxo (Alarm x enabling during Stand-by mode) parameter setting. - If you set stand by mode during program execution, the program will be aborted. - If you set stand by mode during self-tune execution, the self- tune function will be aborted. - During stand by mode, all functions not related with the control (wattmeter, independent timer, "worked time", etc) continue to operate normally. - When the instrument is swapped from stand by to auto modes, the instrument will start automatically the alarm masking, the soft start functions and the auto-tune (if programmed). # **AUTOTUNE (EVOTUNE)** Evotune is a fast and fully automatic procedure that can be started in any condition, regardless the deviation from SP. The controller selects automatically the best tune method and computes the optimum PID parameters. To activate Evotune press button for 3 seconds. #### **ERROR MESSAGES** The upper display shows the OVER-RANGE and UNDERRANGE conditions with the following indications: Over-range: Under-range U.U.U. The sensor break will be signalled as an out of range: ---- Note: When an over-range or an under-range is detected, the alarms operate as in presence of the maximum or the minimum measurable value respectively. To check the out of span Error condition, proceed as follows: - 1. Check the input signal source and the connecting line. - 2. Make sure that the input signal is in accordance with the instrument configuration. Otherwise, modify the input configuration. - 3. If no error is detected, send the instrument to your supplier to be checked. # List of possible errors **ErAT** Fast Auto-tune cannot start. The measure value is tooclose to the set point. Push the button in order to delete the error message. **ouLd** Overload on the out 4. The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power suply. When the short circuit disappears the output restart to operate.. NoAt Auto-tune not finished within 12 hours. **ErEP** Possible problem of the instrument memory. The messages disappears automatically. When the error continues, send the instrument to your supplier. RonE Possible problem of the firmware memory. When this error is detected, send the instrument to your supplier. Errt Possible problem of the calibration memory. When this error is detected, send the instrument to your supplier. # **FACTORY RESET** Sometime, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration. This action allows to put the instrument in a defined condition (the same it was at the first power ON). The default data are those typical values loaded in the instrument prior to ship it from factory. To load the factory default parameter set, proceed as follows: - 1. Press the button for more than 5 seconds. The upper display will show PASS while the lower display shows 0; - 2. Using \(\textbf{\Quad} \) and \(\textbf{\Quad} \) buttons set the value -481; - 3. Push Dutton; - 4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON. The procedure is complete. Note: The complete list of the default parameters is available in Chapter "Configuration". | 0 | 1 | 2 | 3 | 4 | | 5 | 6 | 5 | | 7 | | |--------------------------------------|--------------|--|---------------------------------------|-----------------------------------|---|--|--------------|-------------|---------|---|--| | SIGLA/ITEM | FOGLIO/SHEET | FUNZIONE | | | FUNC | FUNCTION | | | | | | | [SQM40.265A] | 4 | SERVOCOMANDO SERRANDA ARIA | AIR DA | AIR DAMPER ACTUATOR (ALTERNATIVE) | | | | | | | | | CMF | 5 | COMMUT. MANUALE FUNZ. 0)FERMC | 1)ALTA FIAMMA 2)BASSA I | FIAMMA 3)AUTOMATIO | O MANUA | AL SWITCH 0)OFF 1)HIGH F | LAME 2)LOW F | LAME 3)AU | TOMATIC | | | | СО | 4 | CONTAORE DI FUNZIONAMENTO (| OPTIONAL) | | OPERA | TION TIME COUNTER (OPT | IONAL) | | | | | | EVG1/2 | 4 | ELETTROVALVOLE GASOLIO | | | LIGHT | OIL ELECTRO VALVE | | | | | | | EVP1/2 | 3 | ELETTROVALVOLE PILOTA GAS | | | PILOT | PILOT GAS ELECTRO-VALVES | | | | | | | FR | 3 | FOTORESISTENZA RILEVAZIONE FIAMMA | | | PHOTO | PHOTORESISTOR FLAME DETECTOR | | | | | | | FU | 5 | FUSIBILE | | | FUSE | | | | | | | | FU1.2 | 1 | FUSIBILI LINEA BRUCIATORE | | | BURNE | BURNER LINE FUSES | | | | | | | FU1.5 | 1 | FUSIBILI LINEA POMPA | | | PUMP | PUMP LINE FUSES | | | | | | | FU1.7 | 1 | FUSIBILE LINEA AUSILIARI | | | AUXILIARY LINE FUSE | | | | | | | | IG | 1 | INTERRUTTORE LINEA BRUCIATORE | | | BURNE | BURNER LINE SWITCH | | | | | | | IL | 1 | INTERRUTTORE LINEA AUSILIARI | NTERRUTTORE LINEA AUSILIARI | | | AUXILIARY LINE SWITCH | | | | | | | KA4.2 | 4 | RELE' AUSILIARIO | RELE' AUSILIARIO | | | AUXILIARY RELAY | | | | | | | KM3.3 | 3 | CONTATTORE MOTORE VENTILAT | CONTATTORE MOTORE VENTILATORE (LINEA) | | | FAN MOTOR CONTACTOR (LINE) | | | | | | | KM3.4S | 3 | CONTATTORE MOTORE VENTILAT | ORE (STELLA) | | FAN M | FAN MOTOR CONTACTOR (STAR) | | | | | | | KM3.4T | 3 | CONTATTORE MOTORE VENTILAT | ORE (TRIANGOLO) | | FAN M | FAN MOTOR CONTACTOR (DELTA) | | | | | | | KM3.6 | 3 | | CONTATTORE MOTORE POMPA GASOLIO | | | LIGHT OIL PUMP MOTOR CONTACTOR | | | | | | | KT3.5 | 3 | TEMPORIZZATORE STELLA/TRIA | TEMPORIZZATORE STELLA/TRIANGOLO | | | STAR/DELTA DELAYED RELAY | | | | | | | LAF | 4 | LAMPADA SEGNALAZIONE ALTA | | | BURNER IN HIGH FLAME INDICATOR LIGHT | | | | | | | | LB | 3 | LAMPADA SEGNALAZIONE BLOCC | | | | TOR LIGHT FOR BURNER L | | | | | | | LBF | 4 | LAMPADA SEGNALAZIONE BASSA | | | BURNER IN LOW FLAME INDICATOR LIGHT | | | | | | | | LEVG | 4 | LAMPADA SEGNALAZIONE APER | | | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVG] | | | | | | | | LEVP | 3 | | LAMPADA SEGNALAZIONE APERTURA [EVP] | | | INDICATOR LIGHT FOR OPENING OF ELECTRO-VALVE [EVP] | | | | | | | LPGP | 2 | LAMPADA SEGNALAZIONE PRESS | | | | TOR LIGHT FOR PRESENC | | IE PILOT NE | TWORK | | | | LS | 2 | LAMPADA SEGNALAZIONE SOSTA | | | | TOR LIGHT FOR BURNER S | | | | | | | LT | 2 | LAMPADA SEGNALAZIONE BLOCC | | | | TOR LIGHT FOR FAN OVEI | |) | | | | | LTA | 3 | LAMPADA SEGNALAZIONE TRASI | | E | | ON TRANSFORMER INDICA | | | | | | | LTP | 2 | LAMPADA SEGNALAZIONE BLOCO | O TERMICO POMPA | | INDICATOR LIGHT FOR PUMP OVERLOAD TRIPPED | | | | | | | | MP | 1 | | MOTORE POMPA GASOLIO | | | LIGHT OIL PUMP MOTOR | | | | | | | MV | 1 | | MOTORE VENTILATORE | | | FAN MOTOR | | | | | | | PA | 2 | | PRESSOSTATO ARIA | | | AIR PRESSURE SWITCH | | | | | | | PGP | 2 | | PRESSOSTATO PILOTA GAS | | | PILOT MINIMUM GAS PRESSURE SWITCH | | | | | | | PS PT400 | 2 | PULSANTE SBLOCCO FIAMMA | | | LOCK-OUT RESET BUTTON | | | | | | | | PT100 | 5 | SONDA DI TEMPERATURA | | | TEMPERATURE PROBE | | | | | | | | SD-PRESS | 5 | | SONDA DI PRESSIONE | | | PRESSURE PROBE | | | | | | | SD-TEMP. | - | SONDA DI TEMPERATURA | ONE | | | TEMPERATURE PROBE | | | | | | | SD - 0÷10V | 5 | TRASDUTTORE USCITA IN TENSIONE | | | | TRANSDUCER VOLTAGE OUTPUT | | | | | | | SD - 4÷20mA
SIEMENS LAL 2.25 | 5 | TRASDUTTORE USCITA IN CORRENTE APPARECCHIATURA CONTROLLO FIAMMA | | | TRANSDUCER CURRENT OUTPUT CONTROL BOX | | | | | | | | SIEMENS LAL 2.25
SIEMENS RWF40.0x | | | FIAMMA | | | | | | | | | | SQM10 | 4 | REGOLATORE MODULANTE | | | BURNER MODULATOR | | | | | | | | ST | 2 | SERVOCOMANDO SERRANDA ARIA | | | AIR DAMPER ACTUATOR SERIES OF THERMOSTATS OR PRESSURE SWITCHES | | | | | | | | TA | 3 | SERIE TERMOSTATI/PRESSOSTATI | | | IGNITION TRANSFORMER | | | | | | | | TC | 5 | TRASFORMATORE DI ACCENSIONE | | | THERMOCOUPLE | | | | | | | | TP | 1 | TERMOCOPPIA TERMICO MOTORE POMPA | | | PUMP MOTOR THERMAL | | | | | | | | TV | 1 | | | | | FAN MOTOR THERMAL | | | | | | | _ · v | 11 | TEMPLE TOTORE VENTILATORE | | | p AN M | OTON THENTIAL | | | | | | | Data | 01/02/2008 | PREC. | FOGLIO | | |-----------|------------|-------|--------|--| | Revisione | 02 | 6 | 7 | | | | 0 444 | SEGUE | TOTALE | | | Dis. N. 1 | 2 – 141 | / | 7 | |